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We introduce a new graph-based multiple sequence alignment method for protein
sequences. We name our method HSA (Horizontal Sequence Alignment) for it
horizontally slides a window on the protein sequences simultaneously. Current
progressive alignment tools build up final alignment by adding sequences one by
one to existing alignment. Thus, they have the shortcoming of order-dependent
alignment. In contrast, HSA considers all the proteins at once. It obtains final
alignment by concatenating cliques of graph. In order to find a biologically rele-
vant alignment, HSA takes secondary structure information as well as amino acid
sequences into account. The experimental results show that HSA achieves higher
accuracy compared to existing tools on BAliBASE benchmarks. The improvement
is more significant for proteins with low similarity.

1. Motivation
Multiple sequence alignment (MSA) of protein sequences is one of the

most fundamental problems in computational biology. It is an alignment of
three or more protein sequences. MSA is widely used in many applications
such as phylogenetic analysis 17 and identification of conserved motifs 22.

The alignment of two sequences with maximum score can be found in
O(L2) time using dynamic programing 14, where L is the length of the
sequences. This algorithm can be extended to align N sequences, but re-
quires O(LN ) time 12,18. A variety of heuristic MSA algorithms have been
developed. Most of them are based on progressive application of pairwise
alignment. They build up alignments of larger numbers of sequences by
adding sequences one by one to existing alignment 5. We call this a vertical
alignment since it progressively adds a new sequence (i.e., row) to a con-
sensus alignment. These methods have the shortcoming that the order of
sequences to be added to existing alignment significantly affects the quality
of the resulting alignment. This problem is more apparent when the per-
centage of identities among amino acids falls below 25%, called the twilight
zone 3. The accuracies of most progressive sequence alignment methods
drop considerably for such proteins.

In this paper, we consider the problem of alignment of multiple pro-
teins. We develop a graph-based solution to this problem. We name this
algorithm HSA (Horizontal Sequence Alignment) as it horizontally aligns
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sequences. Here, horizontal alignment means that all proteins are aligned
simultaneously, one column at a time. HSA first constructs a directed-
graph. In this graph, each amino acid of the input sequences maps to a
vertex. An edge is drawn between pairs of vertices that may be aligned
together. The graph is then adjusted by inserting gap vertices. Later, this
graph is traversed to find high scoring cliques. Final alignment is obtained
by concatenating these cliques. The experimental results show that HSA
finds better alignments on average than existing popular tools. The quality
improvement is much greater for low similarity sequences.

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the algorithm in detail. Section 4 presents
experimental results. Section 5 concludes with a brief discussion.
2. Related Work

Finding the multiple sequence alignment that maximizes the SP (Sum-
of-Pairs) score is an NP-complete problem 26. A variety of heuristic algo-
rithms have been developed to overcome this difficulty 21. These heuristic
methods can be classified into four groups: progressive, iterative, anchor-
based and probabilistic.

Progressive methods find multiple alignment by iteratively picking two
sequences from this set and replacing them with their alignment (i.e., con-
sensus sequence) until all sequences are aligned into a single consensus se-
quence. Thus, progressive methods guarantee that never more than two se-
quences are simultaneously aligned. This approach is sufficiently fast to al-
low alignments of virtually any size. ClustalW 21,23, T-coffee 16, Treealign 7

and POA 11 can be grouped into this class 20.
Iterative methods start with an initial alignment. They then repeatedly

refine this alignment through a series of iterations until no more improve-
ments can be made. Depending on the strategy used to improve the align-
ment, iterative methods can be deterministic or stochastic. Muscle 4 and
DIALIGN 13 can be grouped into this class.

Anchor-based methods use local motifs (short common subsequences)
as anchors. Later, the unaligned regions between consecutive anchors are
aligned using other techniques. MAFFT 10, Align-m 25, L-align 8, Mavid,
PRRP 6, DIALIGN 13 belongs to this class.

Probabilistic methods pre-compute the substitution probabilities by an-
alyzing known multiple alignments. They use these probabilities to maxi-
mize the substitution probabilities for a given set of sequences. Probcons 3,
Hmmt 19, SAGA 15, and Muscle 4 can be grouped into this class.
3. Proposed method

The underlying assumption of HSA is that the residues that have same
SSE types have more chance to be aligned compared to the residues that
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have different SSE types. This assumption is verified by a number of real
experiments and observations 1,2,9,24.

HSA works in five steps: (1) An initial directed graph is constructed by
considering residue information such as amino acid and secondary structure
type. (2) The vertices are grouped based on the types of residues. The
residue vertices in each group are more likely to be aligned together in
the following step. (3) Gap vertices are inserted to the graph in order to
bring vertices in the same group close to each other in terms topological
position in the graph. (4) A window is slid from beginning to end. The
clique with highest score is found in each window and an initial alignment
is constructed by concatenating these cliques. (5) The final alignment is
constructed by adjusting gap vertices of the initial alignment. Next, we
describe these five steps in detail.
3.1. Constructing initial graph

This step constructs the initial graph which will guide the alignment
later. Let s1, s2, · · · , sk be the protein sequences to be aligned. Let si(j)
denote the jth amino acid of protein si. A vertex is built for each amino
acid. The vertices corresponding to different proteins are marked with
different colors. Thus, the vertices of the graph span k different colors. If
available, Secondary Structure Element (SSE) type (α-helix , β-sheet) of
each residue is also stored along with the vertex. For simplicity, SSE types
include α-helix , β-sheet, and no SSE information, as shown in Figure 1.
Two types of edges are defined. First, a directed edge is included from the
vertex corresponding to si(j) to si(j + 1) for all consecutive amino acids.
Second, an undirected edge is drawn between pairs of vertices of different
colors if their substitution score is higher than a threshold. HSA gets the
substitution score from BLOSUM62 matrix. A weight is assigned to each
undirected edge as the sum of the substitution score and typeScore for the
amino acid pair that make up that edge. The typeScore is computed from
the SSE types. If two residues belong to the same SSE type, then their
typeScore is high. Otherwise, it is low. We discuss this in more detail in
Section 3.2. This policy of weight assignment lets residues with same SSE
type or similar amino acids have higher change to be aligned in following
steps. We will discuss this in Section 3.4. Figure 1 demonstrates this step
on three proteins. The amino acid sequences and the SSEs are shown at
the top of this figure. The dotted arrows represent the undirected edges
between two vertices of different color, the solid arrows only appear between
the vertices corresponding to consecutive amino acids of the same protein
and they only have one direction, from left to right.
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Figure 1. The initial graph constructed for sequence S1, S2 and S3. Each residue maps
to a vertex in this graph. The figure shows some edges between the first vertices of the
sequences, indicated by dashed arrows. The vertices for different sequences are marked
with different colors (colors not shown in figure).

3.2. Grouping Fragments

The graph constructed at the first step shows the similarity of pairs
of residues. However, multiple alignment involves alignment of groups of
amino acids rather than pairs. In this step, we group the fragments that
are more likely to be aligned together. Here, a fragment is defined by the
following four properties: 1) It is composed of consecutive vertices. 2) All
the vertices have the same color. 3) All vertices have the same SSE type.
4) There is no other fragment that contains it. For example, in Figure 2,
S1 consists of four fragments: f1 = LT, f2 = GKTIV, f3 = E, and f4 =
IAK. Thus, S1 can be written as S1 = f1f2f3f4.

With the knowledge that the fragments with the same SSE type are
more likely to be aligned, all sequences are scanned to find fragments with
known SSE types. The fragments are then clustered into groups, where each
group consists of one fragment from each sequence. To group fragments, we
align the fragments first. We use a simplified dynamic programming algo-
rithm by considering each fragment as a residue in the basic algorithm 14.
The score of two fragment pairs is computed from the following formula:

totalScore = typeScore− positionPenalty − lengthPenalty
The typeScore is computed from the SSE types. Fragments with the same
SSE type contribute a high score whereas fragments of different SSE types
incur penalty. This is because of our assumption that residues with the same
SSE type have higher chance to be aligned. Thus typeScore is calculated
as follows: we check the types of two fragment first and return a number
according to the following 5 different conditions. 1) They are the same
type of α-helix, we return 4; 2) They are the same type of β-sheet, we
return 2; 3) They are the same type of no SSE type, we return 1; 4) They
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Figure 2. The fragments with similar features, such as SSE types, lengths and positions
in original sequences are grouped together.

are α-helix and β-sheet, we return -4; 5) Otherwise, we return 0. The
positionPenalty is computed as the difference between the positions of two
fragments. Here the position of a fragment is the topological position in
the original sequence. If two fragments are far away in their sequences,
then the pair of them gets a higher penalty. This is because the alignment
of such fragments introduce many gaps. The lengthPenalty is computed
as the difference between the lengths of the two fragments. The length
of a fragment is the number of residues it contains. Fragment pairs with
similar length will be given smaller penalty. This is because as the lengths
the fragment pairs differ more, the number of gap vertices that need to be
inserted in the later alignment increases.

Figure 2 demonstrates how HSA groups fragments. Using the example
of Figure 1, fragments with same SSE type, similar positions and lengths are
clustered into the same group. Two such groups with α-helix and β-sheet
are circled in Figure 2.
3.3. Fragment Position Adjustment

Once the groups of fragments are determined, we update the graph to
bring the fragments in same group close to each other in terms of vertical
position. Here, vertical position corresponds to a position in the topological
order of the vertices of the same color. For example, in Figure 3, vertex L
in S1, vertex P in S2, and vertex P in S3 are at the same vertical position
1, similarly, vertex T in S1, vertex N in S2, and vertex S in S3 are at the
same vertical position 2, etc. As we will discuss later, this process increases
the possibility that the vertices in these fragments are aligned.

We update the graph by inserting gap vertices, as shown in Figure 3.
First, we compute the number of gap vertices to be inserted based on two
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Figure 3. A gap vertex is inserted to let the fragments in same group close to other
each other vertically.

factors: 1) The number of residues in fragments. 2) The relative positions
of fragments in the same group. Here a good relative position of fragments
means that the positions of fragments lead to a high scoring alignment of the
vertices in these fragments. We align the vertices in fragments of the same
group to compute those positions. Then, we randomly select a position
between two consecutive fragment groups. Finally, for each sequence we
insert gap vertices at these positions to bring the fragments within the
same group together. In Figure 3, a gap vertex is inserted before residue I
in S3 to bring fragments in the group with β-sheet type close to each other.
3.4. Alignment

So far, we have prepared the graph for actual alignment by two means.
(1) We determined vertex pairs that can be a part of the alignment; (2)
We brought sequences to roughly the same size by inserting gap vertices,
while keeping similar vertices vertically close. In this step, the sequences
are actually aligned by scanning the updated graph in topological order.

As demonstrated in Figure 4, we start by placing a window of width w
at the beginning of each sequence. This window defines a subgraph of the
graph. Typically, we use w = 4 or 6. The example in Figure 4 uses w = 3.
Next, we greedily choose a clique with the best expectation score from this
subgraph. We will define the expectation score of a clique later. A clique
here is defined as a complete subgraph that consists of one vertex from each
color. In other words, if K sequences are to be aligned, a clique corresponds
to the alignment of one letter from each of the K sequences. Thus, each
clique produces one column of the multiple alignment. For each clique, we
align the letters of that clique, and iteratively find the next best clique that
1) does not conflict with this clique, and 2) has at least one letter next to
a letter in this clique. This iteration is repeated t times to find t columns.
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Figure 4. Cliques found in the sliding window (window size = 3) are the columns of
the resulting alignment. Gaps are inserted to concatenate these columns.

Typically, t = 4. These t cliques define a local alignment of the input
sequences. The expectation score of the original clique is defined as the SP
score of this local alignment. After finding the highest expectation score
clique, we add this clique as a column to existing alignment. We then slide
the window to the location which is immediately after the clique found and
repeat the same process until it reaches the end of sequences. Each clique
defines a column in the multiple alignment. The columns are concatenated
and gaps are inserted to align them. Figure 4 illustrates this step, in the
window (circled by the dotted rectangle), the highest expectation score
clique (the left shadow background marked column) consists of residues T,
R, and I in S1, S2 and S3 respectively. Then, the window slides to next
location toward the right of the graph (this window is not shown in the
Figure 4), and the highest expectation score clique (the right background
marked column) in the window consists of residue V, V, and C in S1, S2 and
S3 respectively. The two cliques found (marked by shadow background) are
two columns in resulting alignment. The resulting alignment is obtained
by inserting a gap vertex to S3.

As mentioned in section 3.1, due to the policy of edge weight assignment,
cliques that contain vertices of the same SSE type or similar amino acids
have higher score than other possible cliques. Since a clique contains one
vertex of each color, finding the best clique does not assure any order for
traversal of vertices of different colors. Thus, unlike existing tools, our
method is order independent.
3.5. Gap Adjustment

After concatenating the cliques in previous step, short gaps may be
scattered in the sequence. In this step, the alignment obtained in the
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previous step is adjusted by moving the gaps as follows. The sequences are
scanned from left to right to find isolated gaps. If a gap is inside a fragment
of type α-helix or β-sheet, it is moved outside of that fragment, either
before or after. We choose the direction that produces higher alignment
score. If a gap is inside a fragment with no SSE type, it is moved next to
the neighboring gap only if the movement produces a higher score than the
current alignment.

The final alignment is obtained by mapping each vertex in the final
graph back to its original residue.
4. Experimental Result

In order to demonstrate the feasibility of our method, we ran it on
BAliBASE benchmarks 22 (http://www-igbmc.u-strasbg.fr/BioInfo/
BAliBASE/). We chose the benchmarks that contain SSE information
since our algorithm needs SSE information of sequences. We downloaded
ClustalW 21,23, Probcons 3, Muscle 4 and T-Coffee 16 for comparison since
they are the most commonly used and the most recent tools. We ran all
experiments on a computer with 3 GHz speed, Intel pentium 4 processor,
and 1 GB main memory. The operating system is Windows XP.
4.1. Evaluation of alignment quality

Alignment of dissimilar proteins is usually harder than the alignment of
highly similar proteins. Figures 5, 6 and 7 show the BAliBASE scores of
HSA, ClustalW, Probcons, Muscle and T-Coffee on benchmarks with low,
medium, and high similarity respectively. From Figure 5, we conclude that
for low similarity benchmarks, our method outperforms all other tools. On
the average HSA achieves a score of 0.619, which is better than any other
tool. HSA finds the best result for 14 out of 21 reference benchmarks. HSA
is the second best in 5 of the remaining 7 benchmarks. Figure 6 shows
that for sequences with 20-40% identity, HSA is comparable to other tools
on average. The average score is not the best one. However, it is only
slightly worse than the winner of this group (0.909 versus 0.901). HSA
performs best for 2 cases out of 7, including a case for which HSA gets
full score. In Figure 7, HSA is higher than other tools on average. HSA
performs best on 2 cases out of 7, including a case for which HSA gets full
score. High scores of existing methods for sequences with high percentage
of identity (Figures 6 and 7) show that there is little room for improvement
for such sequences. Proteins at the twilight zone (Figure 5) pose a greater
challenge. These results show that our algorithm performs best for such
sequences. For medium and high similarity benchmarks, our results are
comparable to existing tools.

Figure 8 shows the SP scores of HSA, ClustalW, Probcons, Muscle,
T-Coffee and original BAliBASE alignment. On the average, ClustalW,
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ClustalW Probcons Muscle T-Coffee HSA
Short 1aboA 0.693 0.624 0.616 0.320 0.833

1idy 0.546 0.679 0.354 0.183 0.700
1r69 0.655 0.655 0.345 0.234 0.772

1tvxA 0.223 0.439 0.239 0.235 0.462
1ubi 0.607 0.464 0.478 0.445 0.648
1wit 0.630 0.690 0.660 0.707 0.675
2trx 0.660 0.705 0.712 0.667 0.756

avg 0.573 0.608 0.486 0.398 0.692

Medium 1bbt3 0.512 0.373 0.488 0.440 0.539
1sbp 0.467 0.585 0.587 0.548 0.590

1havA 0.222 0.397 0.293 0.256 0.352
1uky 0.531 0.498 0.535 0.441 0.596
2hsdA 0.482 0.606 0.748 0.573 0.614
2pia 0.624 0.700 0.691 0.579 0.608
3grs 0.377 0.355 0.309 0.383 0.487

avg 0.459 0.502 0.521 0.460 0.541

long 1ajsA 0.388 0.411 0.370 0.379 0.472
1cpt 0.697 0.719 0.765 0.726 0.810
1lvl 0.368 0.590 0.451 0.528 0.532

1pamA 0.405 0.534 0.439 0.461 0.524
1ped 0.678 0.717 0.746 0.638 0.746
2myr 0.394 0.568 0.386 0.454 0.630
4enl 0.664 0.573 0.526 0.582 0.652

avg 0.513 0.587 0.526 0.538 0.624

Avg all 0.515 0.565 0.511 0.465 0.619

Figure 5. The BAliBASE score of HSA and other tools. less than 25 % identity

Muscle, and T-Coffee find the highest SP score for low, medium, and high
similarity sequences respectively. However, according to Figures 5 to 7,
those methods have relatively low BAliBASE scores. This means that, the
alignment with the highest SP score is not necessarily the most meaningful
alignment. The SP score of HSA is comparable to other tools on the aver-
age. For low similarity sequence benchmarks, the average SP score of HSA
is higher than the average SP score of the reference alignment.
4.2. Performance Evaluation

The time complexity of our algorithm is O(WKN + K2M2), where
K is the number of sequences, W is the sliding window size, N is the
sequence length and M is the number of fragments in a protein sequence.
The complexity is computed as follows. The clique, in a window, with the
highest expectation score is found in WK time, and there are N positions
for the sliding window. K2M2 time is required for aligning fragments.
Usually, M " N . Thus, the total time complexity, in practice, is O(WKN).
Typically W is a small number such as 4. For reasonably small K, WKN =
O(N). Therefore, for small K, the complexity is O(N). As K increases,
the complexity increases quickly. However, this complexity is observed
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ClustalW Probcons Muscle T-Coffee HSA
1fjlA 0.994 0.989 0.971 0.991 1.000
1csy 0.861 0.897 0.799 0.887 0.871

1tgxA 0.833 0.760 0.679 0.817 0.782
1ldg 0.920 0.939 0.954 0.956 0.941
1mrj 0.853 0.925 0.894 0.894 0.925
1pgtA 0.941 0.926 0.912 0.955 0.924
1ton 0.718 0.898 0.865 0.867 0.867
avg 0.874 0.904 0.867 0.909 0.901

Figure 6. The BAliBASE score of HSA and other tools. 20%-40% identity

ClustalW Probcons Muscle T-Coffee HSA
1amk 0.978 0.984 0.986 0.988 0.986
1ar5A 0.953 0.956 0.969 0.947 1.000
1led 0.900 0.931 0.950 0.956 0.929
1ppn 0.987 0.983 0.983 0.984 0.981
1thm 0.898 0.900 0.899 0.893 0.910
1zin 0.955 0.975 0.985 0.958 0.978
5ptp 0.948 0.963 0.950 0.961 0.957
avg 0.945 0.956 0.960 0.955 0.963

Figure 7. The BAliBASE score of HSA and other tools. more than 35% identity

only if the subgraphs inside a window is highly connected. It is possible to
get rid of the WK term in the complexity by using longest path methods
rather than clique finding methods. The experimental results in Figure 9
coincides with the above conclusion. In general, ClustalW performs best.
However, ClustalW achieves this at expense of low accuracy (see Figures 5
to 7). HSA is slower than ClustalW and Muscle. It is, however, faster
than Probcons and T-Coffee.
5. Conclusion and Future Work

We developed a new algorithm called HSA for alignment of multiple
proteins. HSA is graph-based and differs from existing progressive multi-
ple sequence alignment methods since it builds up the final alignment by
considering all sequences at once. HSA first constructs a graph based on
the amino acid and SSE types of the residues of the input proteins. It then
groups the vertices of this graph with the guide of SSE type information.
Next, HSA slides a window from the beginning to the end of the graph and
finds cliques in the window. The concatenation of these cliques defines an
alignment. HSA obtains the final alignment by adjusting the positions of
the gap vertices in the graph.

Experimental results show that HSA achieves high accuracy and still
maintains competitive running time. The quality improvement over existing
tools is more significant for low similarity sequences. For high or medium
similarity sequences, HSA produces comparable accuracy. The running
time of HSA is comparable to existing tools.
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REF ClustalW Probcons Muscle T-Coffee HSA
Short, <25% -602 -453 -594 -496 -912 -599

Medium, <25% -2036 -1466 -2516 -1543 -2461 -1617
Long, <25% -2989 -1964 -3266 -2291 -2991 -2436

Short, 20%-40% 456 499 508 480 491 493
Medium, 20%-40% 1238 1119 1138 1231 1191 1138

Medium, >35% 3474 3477 3479 3526 3528 3468

AVG overall -76 202 -208 151 -192 74

Figure 8. The SP score of HSA and other tools.

ClustalW Probcons Muscle T-Coffee HSA
Short, <25% 69 238 98 915 194

Medium, <25% 133 638 297 1890 535
Long, <25% 308 1564 584 3240 1191

Short, 20%-40% 62 265 83 1187 421
Medium, 20%-40% 171 695 175 2316 613

Medium, >35% 154 629 136 2502 660

AVG overall 149 672 229 2008 602

Figure 9. The running time of HSA and other tools (measured by milliseconds).

The running time of HSA can be further improved by employing longest
path methods rather than cliques. Another future direction is to iteratively
refine the alignment by the updating the graph after alignment 6.
References

1. Phil Bradley, Peter S. Kim, and Bonnie Berger. Trilogy: Discovery of
sequence-structure patterns across diverse proteins. In Annual Conference
on Research in Computational Molecular Biology, pages 77 – 88, 2002.

2. Luonan Chen. Multiple Protein Structure Alignment by Deterministic An-
nealing. In IEEE Computer Society Bioinformatics Conference (CSB’03),
volume 00, page 609, 2003.

3. C. Do, M. Brudno, and S. Batzoglou. PROBCONS: Probabilistic
Consistency-based Multiple Alignment of Amino Acid Sequences . In In-
telligent Systems for Molecular Biology (ISMB), 2004.

4. R.C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

5. D.F. Feng and R.F. Doolittle. Progressive Sequence Alignment As A Pre-
requisite To Correct Phylogenetic Trees. Journal Of Molecular Evolution,
25(4):351–360, 1987.

6. O. Gotoh. Significant Improvement in Accuracy of Multiple Protein Sequence
Alignments by Iterative Refinement as Assessed by Reference to Structural
Alignments. Journal of Molecular Biology, 264(4):823–838, 1996.

7. J Hein. A new method that simultaneously aligns and reconstructs ancestral
sequences forany number of homologous sequences, when the phylogeny is
given. Molecular Biology and Evolution, 6(6):649–668, 1989.

8. X. Huang and W. Miller. A time-efficient, linear-space local similarity algo-
rithm. Advances in Applied Mathematics, 12:337–357, 1991.

9. Gibrat JF, Madej T, and Bryant SH. Surprising similarities in structure
comparison. Current Opinion in Structural Biology, 6(3):377–385, 1996.



September 22, 2005 23:53 Proceedings Trim Size: 9in x 6in mg

10. K. Katoh, K. Misawa, K. Kuma, and T. Miyata. MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Research, 30(14):3059–3066, 2002.

11. C. Lee, C. Grasso, and M.F. Sharlow. Multiple sequence alignment using
partial order graphs. Bioinformatics, 18(3):452–464, 2002.

12. D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A Tool for Multiple Se-
quence Alignment. Proceedings of the National Academy of Sciences of the
United States of America (PNAS), 86(12):4412–4415, 1989.

13. B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: Finding Local
Similarities by Multiple Sequence Alignment. Bioinformatics, 14(3):290–294,
1998.

14. S. B. Needleman and C. D. Wunsch. A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins. Journal
of Molecular Biology, 48:443–53, 1970.

15. C Notredame and DG Higgins. SAGA: sequence alignment by genetic algo-
rithm. Nucleic Acids Research, 24(8):1515–1524, 1996.

16. C. Notredame, D.G. Higgins, and J. Heringa. T-coffee: a novel method for
fast and accurate multiple sequence alignment. Journal of Molecular Biology,
302(1):205–217, 2000.

17. A. Phillips, D. Janies, and W. Wheeler. Multiple Sequence Alignment in
Phylogenetic Analysis. Molecular Phylogenetics and Evolution, 16(3):317–
330, 2000.

18. Gupta SK, Kececioglu JD, and Schaffer AA. Improving the Practical Space
and Time Efficiency of the Shortest-paths Approach to Sum-of-pairs Multiple
Sequence Alignment. Journal of Computational Biology, 2(3):459, 1995.

19. Eddy SR. Multiple Alignment Using Hidden Markov Models. In Intelligent
Systems for Molecular Biology (ISMB), volume 3, pages 114–120, 1995.

20. S.-H. Sze, Y. Lu, and Q. Yang. A polynomial time solvable formulation of
multiple sequence alignment. In International Conference on Research in
Computational Molecular Biology (RECOMB), pages 204–216, 2005.

21. J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: Improving
the Sensitivity of Progressive Multiple Sequence Alignment through Sequence
Weighting, Position-specific Gap Penalties and Weight Matrix Choice. Nu-
cleic Acids Research, 22(22):4673–4680, 1994.

22. J.D. Thompson, H. Plewniak, and O. Poch. A comprehensive comparison of
multiple sequence alignment programs. Nucleic Acids Research, 27(13):2682–
2690, 1999.

23. Rene Thomsen, Gary B. Fogel, and Thiemo Krink. Improvement of Clustal-
Derived Sequence Alignments with Evolutionary Algorithms. In Congress on
Evolutionary Computation, volume 1, pages 312–319, 2003.

24. Simossis V.A. and Heringa J. A new method for iterative multiple sequence
alignment using secondary structure prediction. In Intelligent Systems for
Molecular Biology (ISMB), 2002.

25. I.V. Walle, I. Lasters, and L. Wyns. Align-m–a new algorithm for multiple
alignment of highly divergent sequences. Bioinformatics, 20(9):1428–1435,
2004.

26. L Wang and T. Jiang. On the complexity of multiple sequence alignment.
Journal of Computational Biology, 1(4):337–348, 1994.




