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A major challenge in shotgun proteomics has been the assignment of identified peptides 
to the proteins from which they originate, referred to as the protein inference problem.  
Redundant and homologous protein sequences present a challenge in being correctly 
identified, as a set of peptides may in many cases represent multiple proteins. One simple 
solution to this problem is the assignment of the smallest number of proteins that explains 
the identified peptides. However, it is not certain that a natural system should be accu-
rately represented using this minimalist approach. In this paper, we propose a reformula-
tion of the protein inference problem by utilizing the recently introduced concept of pep-
tide detectability. We also propose a heuristic algorithm to solve this problem and evalu-
ate its performance on synthetic and real proteomics data. In comparison to a greedy im-
plementation of the minimum protein set algorithm, our solution that incorporates peptide 
detectability performs favorably. 

1.   Introduction 

Shotgun proteomics refers to the use of bottom-up proteomics techniques in 
which the protein content in a biological sample mixture is digested prior to 
separation and mass spectrometry analysis.1-3 Typically, liquid chromatography 
(LC) is coupled with tandem mass spectrometry (MS/MS) resulting in high-
throughput peptide analysis. The MS/MS spectra are searched against a protein 
database to identify peptides in the sample. Currently, Sequest4 and Mascot5 are 
the most frequently used computer programs for conducting peptide identifica-
tion, both comparing experimental MS/MS spectra with in silico spectra gener-
ated from the peptide sequences in a database. Compared to top-down pro-
teomics techniques, shotgun proteomics avoids the modest separation efficiency 
and poor mass spectral sensitivity associated with intact protein analysis, but it 
also encounters a new problem in data analysis, that of determining the set of 
proteins present in the sample based on the peptide identification results. At a 
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first glance, this problem seems trivial. It may be concluded that a protein is 
present in the sample, if and only if at least one of its peptides is identified. This 
conclusion is true, however, only when each identified peptide is unique, i.e. 
when it belongs to only one protein. If some peptides are degenerate,6 i.e. 
shared by two or more proteins in the database, determining which of these 
proteins exist in the sample has multiple possible solutions. Indeed, tryptic pep-
tides are frequently degenerate, especially for the proteome samples of verte-
brates, which, due to recent gene duplications, often have a large number of 
paralogs. In addition, alternative splicing in higher eukaryotes results in many 
identical protein subsequences. The following example illustrates the extent of 
peptide degeneracy in a real proteomics experiment. Of the 693 identified pep-
tides from a real rat sample used in this study (see sections 3-4 for details), 296 
were unique and 397 were degenerate, when searched against the full proteome 
of R. norvegicus. These peptides can be assigned to a total of 805 proteins, of 
which only 149 proteins could be assigned based on the 296 unique peptides.  

Nesvizhskii and colleagues first formalized this challenge in shotgun pro-
teomics data analysis. They formulated the protein inference problem and pro-
posed a solution as the minimum number of proteins containing the set of identi-
fied peptides.6, 7 Other methods assign the unique peptides first, and then use 
statistical methods6 to assign the degenerate peptides based on the likelihood of 
each putative protein already identified. As a result, if two proteins share some 
common tryptic peptides, the presence of each protein can be decided using this 
method only if there exists at least one identified unique peptide in one of the 
proteins. The degenerate peptides will be most likely assigned to the longer 
protein, because the shorter proteins may not contain any unique peptide (e.g. 
see Fig. 2 in reference 7). 

In this paper, we revisit the protein inference problem based on the recently 
proposed concept of peptide detectability.8 The detectability of a peptide is 
defined as the probability of observing it in a standard proteomics experiment. 
We proposed that detectability is an intrinsic property of a peptide, completely 
determined by its sequence and its parent protein. We also showed that the pep-
tide detectability can be estimated from its parent protein’s primary structure 
using a machine learning approach.8 The introduction of peptide detectability 
provides a new approach to protein inference, in which not only identified pep-
tides but also those that are missed (not identified) are important for the overall 
outcome. Figure 1 illustrates the advantage of the new idea. Assume A and B are 
two proteins sharing 3 degenerate tryptic peptides (a, b, and c, shaded). Each 
protein in Fig. 1 also has unique tryptic peptides (d, e, and f, g, h, i respectively, 
white). According to the original formulation of the protein inference problem, 
the identities of A and B cannot be determined since the only identified peptides 
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are degenerate.7 However, if all the tryptic peptides are ranked in each protein 
according to their detectabilities (Fig. 1), we may infer that protein A is more 
likely to be present in the sample than protein B. This is because if B is present 
we would have probably observed peptides f-i along with peptides a-c, which all 
have lower detectabilities than either f, g, h, or i. On the other hand, if protein A 
is present, we may still miss peptides d and e, which have lower detectabilities 
than peptides a-c, especially if A is at relatively low abundance.8 In summary, 
peptide detectability and its correlation with protein abundance provides a 
means of inferring the likelihood of identifying a peptide relative to all other 
peptides in the same parent protein. This idea can then be used to distinguish 
between proteins that share tryptic peptides based on a probabilistic framework. 

Based on this simple principle, we propose a reformulation of the protein 
inference problem so as to exploit the information about computed peptide de-
tectabilities. We also propose a tractable heuristic algorithm to solve this prob-
lem. The results of our study show that this algorithm produces reliable and less 
ambiguous protein identities. These encouraging results demonstrate that pep-
tide detectability can be useful for not only label-free protein quantification, but 
also for protein identification that is based on identified peptides.8, 9 

 
 

Figure 1. Detectability plot of a hypothetical protein A, broken up into tryptic 
peptides a-e, and protein B, containing peptides a-c and f-i. Assume that peptides 
a-c are identified by the peptide identification software (shaded). Peptides in 
each protein are sorted according to their detectability. The example shows the 
intuition for tie breaking in the proposed protein inference problem. Peptides a-c 
are more likely to be observed in protein A than d-e, while they are less likely to 
be observed than peptides f-i in protein B. Thus, protein A is a more likely to be 
present in the sample than B. Note that the detectability for the same peptide 
within different proteins is not necessarily identical, due to the influence of 
neighboring regions in its parent proteins. 

Pacific Symposium on Biocomputing 12:409-420(2007) 



 

2.   Problem Formulation 

Consider a set of proteins P = {P1, P2, …, PN} such that each protein Pj consists 
of a set of tryptic peptides }{ i

jp , i = 1, 2, …, nj, where nj is the number of pep-
tides in }{ i

jp . Suppose that F = {f1, f2, …, fM} is the set of peptides identified by 
some database search tool and that F ⊆ }{ i

jp∪ . Finally, assume each pep-
tide i

jp has a computed detectability )( i
jpD , for j = 1, 2, …, N, and i = 1, 2, …, 

nj. We use D to denote the set of all detectabilities )( i
jpD , for each i and j.  

The goal of a protein inference algorithm is to assign every peptide from F 
to a subset of proteins from P which are actually present in the sample. We call 
this assignment the correct peptide assignment. However, because in a real 
proteomics experiment the identity of the proteins in the sample is unknown, it 
is difficult to formulate the fitness function that equates optimal and correct 
solutions. Thus, the protein inference problem can be redefined to find an algo-
rithm and a fitness function which result in the peptide-to-protein assignments 
that are most probable, given that the detectability for each peptide is accurately 
computed. In a practical setting, the algorithm’s optimality can be further traded 
for its robustness and tractability. 

If all peptides in F are required to be assigned to at least one protein, the 
choice of the likelihood function does not affect the assignment of unique (non-
degenerate) peptides in }{ i

jp∪ . On the other hand, the tie resolution for degen-
erate peptides will depend on all the other peptides that can be assigned to their 
parent proteins, and their detectabilities. In order to formalize our approach we 
proceed with the following definitions. 

Definition 1. Suppose that the peptide-to-protein assignment is known. A pep-
tide }{ i

j
i
j pp ∈ is considered assigned to Pj if and only if F∈i

jp  and )( i
jpD  ≥ 

Mj. Then, Mj ∈ D is called the Minimum Detectability of Assigned Peptides 
(MDAP) of protein Pj. 
Definition 2. A set of MDAPs {Mj}j = 1, 2, …, N is acceptable if for each f ∈ F, 
there exists Pj, such that jMfD ≥)( . Thus, any acceptable MDAP set will re-
sult in an assignment of identified peptides that guarantees that every identified 
peptide is assigned to at least one protein.  
Definition 3. A peptide i

jp is missed if F∉i
jp  and j

i
j MpD ≥)( .  

Note that, due to the connection between peptide detectability and protein 
amount in the sample, peptides whose detectabilities are below Mj are not con-
sidered missed. We can now formulate the protein inference problem as follows. 

Minimum missed peptide problem. Given N proteins, each consisting of nj 
tryptic peptides, and a set of identified peptides F, find an acceptable set of 
MDAPs, {Mj}j = 1, 2, …, N , which result in a minimum number of missed peptides.  
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If a protein does not exist in the sample, the MDAP Mj needs to be assigned a 
value greater than the maximum detectability observed in Pj. If protein Pj is not 
present in the sample, we set Mj to a maximum MDAP (= ∞). Hence, only pro-
teins whose Mj ≤ 1 are considered identified. Note that in nearly all practical 
cases the maximum MDAP can be set to 1, except when there is a peptide in 

}{ i
jp∪  whose 1)( =i

jpD . The relationship between the minimum missed pep-
tide problem and the original minimum protein set problem becomes evident in 
the following theorem. 
 
Theorem 1. Minimum missed peptide problem is NP-hard. 
 
Proof: The minimum missed peptide problem can be reduced to the set-covering 
problem10 by setting 0)( =i

jpD for each i, j and adding a non-existing peptide 
with detectability of 1 to each protein. Minimizing the number of missed pepti-
des now minimizes the number of covering subsets (proteins) in the solution set. 

□ 

3.   Materials and Methods 

3.1.   Data 

The data used in this paper were obtained from three different sources. Our first 
two datasets were generated using mixtures of model proteins. Therefore, we 
know the proteins in these two samples. The first set was generated as a stan-
dard protein mixture consisting of 12 model proteins and 23 model peptides 
mixed at similar concentrations from 73 to 713 nM for proteins and from 50 to 
1800 nM for peptides.11 This data set was made available to us by the authors.  

The second data set from a mixture of twelve standard proteins8 was pre-
pared at 1 μM of final digestion solution for each protein except human hemo-
globin which is at 2 μM (mixture B), combined with buffer, reduced, alkylated, 
and digested overnight with trypsin. Peptides were separated by nano-flow re-
versed-phase liquid chromatography gradient and analyzed by mass spectrome-
try and tandem mass spectrometry in a Thermo Electron (San Jose, CA) LTQ 
linear ion trap mass spectrometer.  

The third sample was generated using a complex proteome sample from R. 
norvegicus. Rat brain hippocampus samples were homogenized and separated 
by sedimentation in a centrifuge to produce four fractions enriched in nuclei, 
mitochondria, microsomes (remaining organelles), and the cytosol. Each subcel-
lular fraction was subjected to proteolytic digestion with trypsin and analyzed 
by reversed-phase capillary LC tandem mass spectrometry using a 3-D ion trap 
(ThermoFinnigan LCQ Deca XP). Searches versus either the Swiss-Prot or the 

Pacific Symposium on Biocomputing 12:409-420(2007) 



 

IPI rat database were performed for fully tryptic peptides using Mascot5 with a 
minimum score of 40 and allowing for N-terminal protein acetylation and me-
thionine oxidation.   

3.2.   Prediction of peptide detectability 

As mentioned above, the probability that a peptide will be identified in a stan-
dardized proteomics experiment is referred to as the peptide detectability.8 Us-
ing machine learning approaches we previously provided evidence that peptide 
detectability can be predicted solely from the amino acid sequence of its parent 
protein. We constructed a set of 175 features describing the peptide sequence 
itself as well as the regions up or downstream from the peptide. An ensemble of 
neural networks was then trained and evaluated. We estimated its balanced-
sample accuracy at about 70% across training and test sets obtained from several 
independent proteomics studies. The usefulness of the learned peptide detect-
abilities was demonstrated on the problem of label-free protein quantification 
where the detectability of a peptide showed negative correlation with the abun-
dance of its parent protein. 

3.3.   Solving minimum missed peptide problem 

We propose a simple greedy algorithm to solve the minimum missed peptide 
problem. It assigns identified peptides to proteins in the order of their detect-
abilities and does not change the peptide assignments once they are made. The 
algorithm assigns the peptide with lowest detectability first (denoted as Lowest-
Detectability First Algorithm, LDFA). The pseudocode for the LDFA is pre-
sented in Fig. 2. We assume the detectabilities of a single peptide across differ-
ent parent proteins are close enough not to affect the relative order of each such 
peptide in its parent protein if a representative detectability is selected. Thus, all 
identified peptides can be sorted consistently based on their detectabilities.  

For comparison with LDFA, we also implement a greedy solution to the 
minimum protein set algorithm (GMPSA), which can be formulated as a set-
covering problem10 with very little modification. 

4.   Results 

We compared the performance of the LDFA and GMPSA. First, we used identi-
fied peptides from a synthetic sample mixture B,8 and Swiss-Prot as a reference 
database to conduct a controlled protein inference experiment. The advantage of 
this evaluation for quantifying the performance of the algorithm is that all pro-
teins present in the sample are known. The sample mixture B contained 12 pro-
teins corresponding to the 93 peptides identified in the experiment.  
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Out of 176,470 proteins from Swiss-Prot, 494 proteins (including the 12 
proteins from the mixture) were identified as containing at least one identified 
peptide. The LDFA identified 12 proteins in the sample, 11 correctly. Of the 11 
proteins that were correctly assigned, in only one instance could the algorithm 
not distinguish between the correct protein and one of its close homologs. We 
refer to this situation as a tie. Each tie is resolved by a random selection.   

The same data was tested using the GMPSA which simply tries to explain 
the identified peptides with the smallest possible number of proteins. GMPSA 
also identified 12 proteins as the total number of proteins in the sample, how-
ever, it suffered in accuracy. For 5 out of the 12 proteins, the GMPSA could not 
distinguish between the correct proteins and their homologs. Since in each step, 
the GMPSA considers only the number of the identified peptides per protein it is 
much more likely to encounter ties than the LDFA. As shown in Fig. 1, the 
GMPSA does not have a means of differentiating between proteins containing 
no unique identified peptides and the same number of degenerate peptides. In 
practice, these result in ties involving more homologs than the LDFA, thus re-
duce the chance of selecting the correct protein. An example of such a tie in-
volves protein HBB_HUMAN. LDFA found two possible solutions 
(HBB_HUMAN and HBB_GORGO), resulting in a 50% chance of a correct 
selection. On the other hand, the GMPSA selected between four different pro-
teins (HBB_HUMAN, HBB_HAPGR, HBB_HYLLA and HBB_PANPO) re-
sulting in 25% chance of a correct prediction. Furthermore, the smaller average 
number of proteins per tie encountered by LDFA is advantageous for reporting 
results of identification. To avoid information leak in calculating peptide detect-
abilities, the training set for the predictor was constructed from a different syn-
thetic dataset.11  

 
Algorithm.  Lowest-detectability first algorithm (LDFA) 
Assign all unique peptides in F and remove them from F 
Mj = ∞ for all j’s 
while F  ≠ ∅   
          Choose f ∈ F with lowest detectability 
           for each protein i containing f 
                      Compute the number of missed peptides, assuming 
                      Mi =D( f ) 
          Select protein j with the minimum number of missed peptides 
          Set Mj = D( f ) 
          Remove from F all peptides from protein j 

Figure 2. Pseudocode for the LDFA solution to the minimum missed peptide 
problem.  
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The one protein that was not identified correctly by the LDFA, bovine 
RNase A, was assigned to a close homolog from one of 7 organisms (69.4% 
average sequence identity) chosen at random. This assignment was made with a 
single identified peptide. Furthermore, the sequence for bovine RNase A in the 
Swiss-Prot database includes the 26-amino acid signal peptide that is not actu-
ally present in the sample. Since LDFA takes into consideration the detectabili-
ties of both identified and unidentified peptides, the presence of the signal pep-
tide in the database hinders the assignment of bovine RNase A. After the signal 
peptide is removed, the sequence identity compared to all seven sequences that 
match the identified peptide is 84.0%. In comparison, the GMPSA randomly 
selects among 20 proteins from Swiss-Prot sharing the identified peptide. 

Another experiment was performed on a biological sample from R. 
norvegicus, in which the correct proteins were not known. The identified pep-
tides in the sample (693 in total) were searched against an IPI 
(http://ncbi.nlm.nih.gov) database and were found in 805 proteins. These are the 
proteins that may potentially be present in the sample. Table 1 shows the distri-
bution of these peptides contained by different numbers of proteins. In this ex-
periment, about 60% identified peptides (397 out of 693) are degenerate pep-
tides, i.e. contained by two or more proteins. The two algorithms described 
above, LDFA and GMPSA, were run on this set.  
 

Table 1. Distribution of identified peptides contained by different number of 
proteins in a R. norvegicus proteome analysis. 

No. proteins 1 2-5 6-10 11-20 >20 
No. peptides 296 330 43 16 8 

 
Mascot had originally assigned 301 proteins in this sample, LDFA assigned 275 
proteins and GMPSA assigned 247 proteins. Taking into consideration all 
unique peptides from the rat sample only 149 proteins could be assigned by at 
least one unique peptide. Thus, any other protein to be assigned by any of the 
three methods would have to rely solely on degenerate peptides. Due to the 
prevalence of ties, GMPSA was run 30 times. Only 153 proteins were consis-
tently assigned in all runs. Out of 430 proteins assigned over all GMPSA runs, 
229 were assigned less than 50% of the time. 

Since the correct proteins in this sample were not known, the accuracy of 
the LDFA and GMPSA could not be quantified as on the synthetic data. Instead, 
a different approach was taken where protein distinguishability was measured in 
this experiment. Figure 3 shows, in grey, all pairs of 805 identified proteins that 
shared at least one identified peptide. The y-axis corresponds to the percentage 
of sequence identity, while the x-axis represents the length of one of the proteins 
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in the pair. Figure 3a shows, in black, all pairs of proteins that share at least one 
identified peptide and that the LDFA could not distinguish. This means that at 
one point during the execution LDFA had to randomly select between those two 
proteins and that at the completion of the algorithm one of the proteins is not 
present in the final solution. Figure 3b shows the equivalent plot for the 
GMPSA. In a single run of each algorithm, there were 94 indistinguishable pairs 
for the LDFA and 2,346 indistinguishable pairs for the GMPSA. Interestingly, 

 

 
Figure 3. A pairwise comparison of all proteins in IPI rat database in 
which proteins share at least one identified peptide. The grey dots indicate 
all pairs while the black triangles indicate pairs where the algorithm made 
a random selection between the two proteins for a) LDFA and b) GMPSA. 
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the total number of proteins that were excluded from the final solution at ran-
dom was 69 and 188 for the LDFA and GMPSA, respectively. 

5.   Discussion 

In the previous study we have defined the Minimum acceptable Detectability of 
Identified Peptides (MDIP) as the detectability of an identified peptide that 
maximizes the average of the true positive and true negative rates for an identi-
fied protein. We also showed that MDIP of a protein is correlated with its abun-
dance in the sample. The relationship between MDIP and MDAP is shown in 
Fig. 4 where the identified and non-identified peptides are shown for the same 
protein under two different experiments. While MDAP is always the lowest 
detectability of an identified peptide in a protein, MDIP is influenced by non-
identified peptides as well. Ideally, as in the left part of Fig. 4, peptides are con-
secutively identified according to their decreasing detectabilities (starting from 
the top one), thus giving MDIP = MDAP. Non-identified peptides in the right 
part of Fig. 4 allow discrepancy between these two quantities which we believe 
will be useful for the advancement of label-free protein quantification. 

One challenge in correctly interpreting shotgun proteomics data involves as-
signing identified peptides to the proteins from which they originate.1, 3, 7, 12-15 

 
 

Figure 4. Detectability plot of a hypothetical protein consisting of 8 tryptic pep-
tides from two shotgun proteomics experiments. Peptides that are identified are 
represented in grey. In experiment 1, MDIP is obtained as the detectability of an 
identified peptide that maximizes true positive (100%) and true negative (100%) 
rates. In experiment 2, the maximum true positive rate is 75%, while true negative 
rate is 100%. 
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When the same peptide can be assigned to multiple proteins, this task – referred 
to as the protein inference problem – is non-trivial. Here we address this prob-
lem by utilizing the concept of peptide detectability – the probability that a pep-
tide will be identified in a shotgun proteomics experiment based on inherent 
properties of the peptide and its surroundings within a protein. Previous work 
has shown that the rules governing peptide detectability can be assigned using a 
machine learning approach and that a peptide’s detectability depends on its 
source protein concentration.8 In cases where a peptide sequence is found in 
multiple protein sequences, knowledge of the detectabilities of both the identi-
fied peptides (similar sequences in the multiple proteins) and the unidentified 
peptides (some of which will differ in the multiple proteins) can be used to dis-
cern between assignments that would not otherwise be distinguishable. 

The results shown here for 693 peptides identified from a rat brain sample 
indicate that 247 proteins can be assigned using a greedy algorithm for the 
minimum protein coverage formulation, but 94 (38%) of these are selected ran-
domly. When peptide detectability is incorporated into the assignment algo-
rithm, 275 proteins are assigned and only 51 (19%) of these are ambiguous. 
While the accuracy of this approach is difficult to test on a real proteomics data 
set, it is clear that the ability to distinguish potential peptide-to-protein assign-
ments offers a significant advance in addressing the protein inference problem. 

In a typical shotgun proteomics experiment, less than 10% identified tryptic 
peptides contain missed cleavages. Currently, we are not able to predict the 
detectabilities of these peptides because of the lack of training data. As a result, 
missed-cleavage peptides are neglected in protein inference even if they are 
identified. We aim to incorporate this prediction in the future. In this study, the 
identified peptides are determined based on a threshold of Mascot score 40, 
consistent with the condition used to generate the identified peptides in the data-
set for training the detectability predictor.8 If a different threshold is used, the 
predicted detectability may be different. The effects of threshold selection and 
other conditions used in peptide identification on the detectability prediction and 
protein inference will be explored in the future. 

Acknowledgements 

The authors wish to acknowledge the Office of the Vice President for Research 
for a Faculty Research Support Grant to RJA, PR, & HT. RJA and MVN ac-
knowledge support from the 21st Century Fund (State of Indiana). JPR wishes to 
acknowledge support from NSF grant CHE-0518234. 

Pacific Symposium on Biocomputing 12:409-420(2007) 



 

References 

1.   Aebersold, R. & Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 
198-207. 

2.  McDonald, W. H. & Yates, J. R. r. (2003). Shotgun proteomics: integrating 
technologies to answer biological questions. Curr Opin Mol Ther. 5, 302-309. 

3.   Kislinger, T. & Emili, A. (2003). Going global: protein expression profiling using 
shotgun mass spectrometry. Curr Opin Mol Ther. 5, 285-293. 

4.   Yates, J. R., Eng, J. K., McCormack, A. L. & Schieltz, D. (1995). Method to correlate 
tandem mass spectra of modified peptides to amino acid sequences in the protein da-
tabase. Anal Chem 67, 1426-1436. 

5.   Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. (1999). Probability-
based protein identification by searching sequence databases using mass spectrometry 
data. Electrophoresis 20, 3551-67. 

6.   Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. (2003). A statistical model 
for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646-4658. . 

7.   Nesvizhskii, A. I. & Aebersold, R. (2005). Interpretation of shotgun proteomic data: 
the protein inference problem. Mol Cell Proteomics 4, 1419-1440. 

8.   Tang, H., Arnold, R. J., Alves, P., Xun, Z., Clemmer, D. E., Novotny, M. V., Reilly, 
J. P. & Radivojac, P. (2006). A computational approach toward label-free protein 
quantification using predicted peptide detectability. Bioinformatics 22, (in press). 

9.   Gao, J., Opiteck, G. J., Friedrichs, M., Dongre, A. R. & Hefta, S. A. (2003). Changes 
in the protein expression of yeast as a function of carbon source. J. Proteome Res., 
643–649. 

10.   Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2001). Introduction to 
algorithms. 2nd edit, MIT Press, Cambridge, MA, U.S.A. 

11.   Purvine, S., Picone, A. F. & Kolker, E. (2004). Standard mixtures for proteome 
studies. Omics 8, 79-92. 

12.   Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K. & Nesvizhskii, A. 
(2004). The need for guidelines in publication of peptide and protein identification 
data: Working Group on Publication Guidelines for Peptide and Protein Identification 
Data. Mol Cell Proteomics 3, 531-3. 

13.   Rappsilber, J. & Mann, M. (2002). What does it mean to identify a protein in 
proteomics? Trends Biochem Sci 27, 74-8. 

14.   Resing, K. A., Meyer-Arendt, K., Mendoza, A. M., Aveline-Wolf, L. D., Jonscher, K. 
R., Pierce, K. G., Old, W. M., Cheung, H. T., Russell, S., Wattawa, J. L., Goehle, G. 
R., Knight, R. D. & Ahn, N. G. (2004). Improving reproducibility and sensitivity in 
identifying human proteins by shotgun proteomics. Anal Chem 76, 3556-68. 

15.   Yang, X., Dondeti, V., Dezube, R., Maynard, D. M., Geer, L. Y., Epstein, J., Chen, 
X., Markey, S. P. & Kowalak, J. A. (2004). DBParser: web-based software for shot-
gun proteomic data analyses. J Proteome Res 3, 1002-8. 

Pacific Symposium on Biocomputing 12:409-420(2007) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


