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Motivation: The promises of the post-genome era disease-related discoveries and 

advances have yet to be fully realized, with many opportunities for discovery hiding in 

the millions of biomedical papers published since. Public databases give access to data 

extracted from the literature by teams of experts, but their coverage is often limited and 

lags behind recent discoveries. We present a computational method that combines data 

extracted from the literature with data from curated sources in order to uncover possible 

gene-disease relationships that are not directly stated or were missed by the initial mining.  

Method: An initial set of genes and proteins is obtained from gene-disease relationships 

extracted from PubMed abstracts using natural language processing. Interactions 

involving the corresponding proteins are similarly extracted and integrated with 

interactions from curated databases (such as BIND and DIP), assigning a confidence 

measure to each interaction depending on its source. The augmented list of genes and 

gene products is then ranked combining two scores: one that reflects the strength of the 

relationship with the initial set of genes and incorporates user-defined weights and 

another that reflects the importance of the gene in maintaining the connectivity of the 

network. We applied the method to atherosclerosis to assess its effectiveness. 

Results: Top-ranked proteins from the method are related to atherosclerosis with 

accuracy between 0.85 to 1.00 for the top 20 and 0.64 to 0.80 for the top 90 if duplicates 

are ignored, with 45% of the top 20 and 75% of the top 90 derived by the method, not 

extracted from text. Thus, though the initial gene set and interactions were automatically 

extracted from text (and subject to the impreciseness of automatic extraction), their use 

for further hypothesis generation is valuable given adequate computational analysis. 

1. Introduction  

Post-genome project data and techniques available to the research 

community have exponentially increased the capacity of researchers to conduct 

experiments and publish results. The resulting deluge of biomedical literature, 

however, has reached a point that exceeds the capacity of any researcher to 

process and assume, making it difficult to realize the full benefit of these 

findings. From 1994 to 2004, close to 3 million biomedical articles were 

published by US and European researchers [1]. This publication rate has resulted 

in approximately 16 million publications currently indexed in PubMed.  
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Efforts have been made to extract data from articles and abstracts. For 

example, Entrez’s OMIM [2] has summaries of published work that relate genes 

to diseases. However, it covers only about 20% of the human genes in the Entrez 

Gene database. A similar initiative for gene function annotation, GeneRIF (Gene 

Reference Into Function), was started in 2002, but it covers only about 1.7% of 

all the genes in Entrez and 25% of human genes[3]. New findings usually take a 

long time to be reflected by curated sources such as these, and any computational 

method that relies solely on them will necessarily have its hands tied. 

To fill this void, the Collaborative Bio Curation (CBioC) project [4, 5] was 

started to bring together nuggets of information automatically extracted from the 

published biomedical literature and the intellectual power of a social network of 

researchers, who can rate the accuracy of the extraction. Extracted facts include 

protein-protein interactions, gene-disease and gene-bioprocess relationships.   

This paper describes a computational method that uses extracted facts from 

the CBioC database and integrates them with curated sources to find a set of 

proteins potentially related to a target disease, ranking them so that existing 

knowledge (known gene-disease relationships and curated protein-protein 

interactions) is balanced with the potential impact of new information (protein-

protein interactions extracted from the literature) and the researcher’s intuition. 

An assessment of the method through a study of atherosclerosis is also described 

and reported in the Results section. 

This balance of different factors, notably a network connectivity impact 

measure for each gene, among others, marks the difference between our 

approach and others such as MedGene [6] and  the method in [7]. The scope of 

the initial gene-disease data also differs, as well as the level of user interaction, 

 
Figure 1. Overview and data flow of the computational method presented here to mine the 

biomedical literature for genes potentially related to a specific disease.    
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which is very limited in other approaches. A comparative view to these efforts is 

presented in the Related Work section and in Section 2.4. 

The resulting ranked list of genes and gene products can provide the basis 

for further focused experiments to investigate the genetic determinants of any 

disease. On top of helping to find gene-disease relationships that were not 

discovered in the information extraction step (false negatives), this focused 

analysis could uncover yet unexplored genetic linkages and provide an insight 

into specific genetic and proteomic pathways related to any disease, as our study  

in atherosclerosis will show. The method is implemented in Java using SQL to 

access the CBioC database (which is stored as a MySQL database). On-demand 

runs can be requested by contacting the authors. A web-based interface to the 

software is in development.   

Other sections cover the computational method, the results of applying the 

method to the study of atherosclerosis, and a comparison with related work. 

2. The computational method 

The computational method presented here takes a 4-step approach to the task of 

finding and ranking genes and gene products related to a given disease, relying 

not only on automatic computation, but allowing (not requiring) user input at 

different levels. The method can be summarized as follows: 

1. Obtain a list of genes or gene products known to be involved with the target 

disease from the CBioC[5] database.  

2. Apply heuristics to unify variants of extracted names, and use HUGO [8] to 

normalize both the set obtained in the previous step and the names stored in 

CBioC. This will be referred to as the initial set. 

3. Apply nearest-neighbor expansion to the initial set to build a protein 

interaction network using data from the CBioC database and curated 

databases. Analyze the connectivity of the network. The genes and proteins 

in this network (derived from the interactions) form the extended set. 

4. Apply a heuristic scoring formula to the extended set to predict the proteins 

most likely related to the disease. 

One part of the formula measures the number of interactions of each gene in 

the extended set with proteins in the initial set, incorporating contextual 

information if indicated by the user.  The second part measures the role of the 

protein in the connectivity of the protein network, since high degrees of local 

network interconnectivity can identify sets of functionally related proteins [9, 10]. 

Researchers can focus the analysis through different interventions. Figure 1 

shows the data and process flow of the method. Each step is detailed next. 
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2.1. Initial set of disease-related genes and gene products 

The initial set of genes and gene products of interest is obtained by querying the 

CBioC database using the disease of interest and any variants or synonyms of its 

name. CBioC uses a natural language processing extraction system, IntEx [11],  

which is based on identification of syntactic roles, such as subject, objects, verbs, 

and modifiers. English grammar dependencies reported by Link Grammar [12] 

are used to identify the roles and transform complex sentences of interest into 

triplets of the form (Entity1, interaction, Entity2). We extended IntEx to extract 

not only protein-protein interactions, but also gene-disease relationships, using 

MeSH [13] terms under the disease category to recognize them in the abstracts.  

Even though the natural language processing approach allows for more 

precise extractions than co-occurrence[11], the gene-disease relationships and 

protein-protein interactions extracted directly from the literature are not perfect. 

In fact, IntEx reports a 65.7% precision in extracted interactions[11]. Thus, there 

will be genes and gene products in the initial set that are not related to the 

disease (false positives), just as there will be others that are not retrieved even 

though they are related (false negatives). The protein interaction network 

analysis and the incorporation of protein-protein interactions from curated 

sources helps assuage the impact of these problems. Also, users might filter the 

initial set to narrow the focus to a particular set of genes and gene products. 

2.2. Unifying extracted gene and protein names 

One of the challenges of using data extracted directly from biomedical texts is 

the great variety of names used for the same entity: one gene or gene product 

might appear under different synonyms and variants. For example, HNF4A 

might appear as hepatocyte nuclear factor 4 alpha or any of a number of aliases 

(such as HNF4, MODY, TCF, or TCF14), or variants of any of these, such as 

HNF4-alpha or HNF 4A. An additional problem is that the triplets in the CBioC 

database sometimes include modifiers that were in the same noun phrase or 

modifying phrase, such as “HNF4A protein” or “HNF4A mutation”. It was 

necessary to unify the names (normalize them) so when the protein network is 

built, all the interactions of the same protein are clustered into a single node. A 

naive normalization algorithm was applied to entries in the CBioC database to 

eliminate non-essential words (such as “protein” or “mutation” at the end of a 

name), in order to then find its official abbreviation in the HUGO[8] database.  

2.3. Build the protein network 

The CBioC database is queried for any and all interactions involving the genes 

and gene products in the initial set. On top of the extracted interactions, CBioC 
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integrates interaction data from BIND[14], MINT[15], DIP[16], IntAct [17], and 

BioGRID[18]. A nearest neighbor algorithm is run to build a protein interaction 

network, noting the confidence level for each interaction as follows: 

1. If the interaction comes from any of the curated sources, its confidence level 

is noted as 1. 

2. If the interaction comes from CBioC, and it has received “Yes” votes from 

the community of users, its confidence level is noted as .65 plus .07 for each 

“Yes” vote up to 1. CBioC counts only one vote per user per fact.  

3. If the interaction comes form CBioC, and has not been rated by any user, its 

confidence level is given as .65 (the measured precision of IntEx [11]). 

2.4. Rank the genes and gene products in the expanded network 

To rank the genes in the resulting set, we score each gene or gene product based 

on the number and confidence levels of its interactions with proteins in the initial 

set, and combine this measure with another that reflects how relevant it is for 

maintaining the protein network connectivity. Both measures are important. The 

first helps discover the most active proteins with respect to the disease (high 

precision), preferring interactions with the highest confidence level (high 

fidelity), while the second finds those that could potentially play a crucial role in 

a pathway related to the disease or that are very likely related to the known 

(extracted) genes, as high degrees of local network interconnectivity can identify 

sets of functionally related proteins [9, 10].   

The first score also incorporates user-defined weights. For example, given 

interactions as triplets (Entity1, interaction-term, Entity2), users might indicate 

that interactions that include “phosphorylates” as an interaction term should be 

given greater weight.  Let us assume for now that no user weights are defined. 

We use a variation of the formula given in [7] for this level, removing a bias 

towards the initial set that the formula in [7] suffers from. Let 

• A be the extended set of proteins (initial set plus interactions). 

• N(i) is the set of proteins in the initial set interacting with protein i. 

• p(i,j) be the confidence level of the interaction between proteins i and j.  

• N(i,j) = 1 if protein i ∈ A and j ∈ N(i), and 0 otherwise. 

Then a score t is assigned to each protein i by applying Eq.(1).  

ti = ui
2
 * | N(i) |  

( )

N(i)

,
)(

∑
=

∈ iNj

i

jip

u  

Equation (2), ui, is the average confidence level of the interactions involving i. 

Equation (1) results from expanding the formula used in [7], noting that in [7], 

N(i) is the set of proteins interacting with protein i and N(i,j) = 1 if j ∈ N(i) ∩ A. 

(1) 

(2) 
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From the last expression, using k=2 as in [7], and noting that |N(i) ∩ A| = N(i) 

(since only interactions in A are included), we get Eq. (1). Since ui<=1 remains 

relatively constant, the score ti mainly depends on the number of interactions for 

i. By the definition of N(i) in the method presented here, only interactions with 

proteins in the initial set would be counted, whereas all of the interactions loaded 

for i are counted in [7].  

Thus, since only interactions that have at least one member in the initial set 

are loaded, all of the interactions involving the proteins that belong to the initial 

set will be counted in [7], compared to only a small fraction of the interactions 

for the proteins not in the initial set. Naturally, this leads to a scoring bias in [7], 

with proteins in the initial set having a larger score than all other proteins. This 

explains why only one of the top ranked proteins in their final ranking was 

“novel” (not in the initial set –“derived” in this study–). Figure 2 illustrates the 

problem by comparing what would be the score given with each method given a 

confidence level of 1 for all interactions. The method in [7] (column (a)) would 

score g2, g3, g4 the highest, while the method presented here (column (b)) will 

rate g4 and g7 equally high.  

Thus, we count only interactions with proteins in the initial set, which 

“evens out” the playing field for the proteins added later: if they interact with a 

good number of proteins in the initial set, their score will go up. Aside from the 

purely mathematical, this change makes biological sense: if a relationship has 

been reported between a gene and a disease, other proteins that are highly 

connected to the known facts might be important pieces in a pathway.  

The fairness of the formula is obvious in our evaluation study (Section 3), 

where 45% of the top 20 ranked proteins in our resulting list were derived from 

interactions, compared to 1 in 20 in [7].  

(3) 
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Further mathematical manipulations at this level include applying user-

defined bias to certain proteins, as explained before,  and normalization over 100 

to reflect the relative ranking (thus, the interaction score ti of protein i indicates 

the % of proteins with an interaction score less than or equal to that of i). 

The second level of scoring involves evaluating the role of the gene on the 

overall connectivity of the protein network. It has been demonstrated that high 

degrees of local network interconnectivity can identify sets of functionally 

related proteins [9, 10]. The statistical validity of using network connectivity 

measures for sets of interacting proteins in this way has already been established 

[7, 9, 10, 19]. Here, this concept is applied to assessing the importance of a 

protein, measuring how much would the connectivity of the network be affected 

if it were removed. To formulate this precisely, let 

• The path between two proteins p1 and pn be the set {p1, p2, …pk-1, pk,… pn} 

such that for n > 2, pk-1 interacts with pk for every k in 2…n.  

• A set of interactions is called a network.  

• The largest connected sub-network in a network is the largest subset of 

interactions from it that forms a path. 

• The connectivity index (aka index of aggregation) of a network N, C(N), is 

the ratio of the size of the largest sub-network of N to the size of N. 

The connectivity score for a given gene or gene product i is given by Eq(4). 

connectivity_scorei =  C(N) – C(N\i) 

In Eq.(4), N\i stands for all the proteins in N except i. This score is then 

combined with the interaction score ti given by Eq. (1) using Eqs.(5) and (6). 

combined_scorei = ti 
s
 

s = 1 + (w * connectivity_scorei)  

The exponential combination of the scores was preferred over linear since 

the connectivity score is very small (less than 0.01 in most cases). The constant 

w is used to adjust the weight of the connectivity score in the overall ranking. 

 
Figure 2. Simplified comparative scoring, assuming average confidence = 1, using scoring as in Eq. 

(1) but counting (a) all interactions involving protein i, as in [7], and (b) counting only interactions 

with proteins in the initial set, as done in the method presented here –before normalizing over 100-, 

with the corresponding (c) connectivity score (an innovative aspect of this method).  
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g1 1 1 0 

g2 3 1 2/8 
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g4 3 2 2/8 
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g9 1 1 0 
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The study in atherosclerosis presented here uses w=4 to achieve an approximate 

even split in the extracted and derived proteins among the top 20.  

The combined score allows distinctions among genes such as g4 and g7 in 

Figure 1, where the connectivity score (column (c)) will break the tie and favor 

g7, since removing g7 will disconnect the network. 

3. Results 

According to the American Heart Association, more than 71 million American 

adults have one or more types of cardiovascular
 
disease. It is the underlying 

cause of death in 37% and a contributing cause in 58% of all deaths in the 

United States. It claims more lives than the next 4 leading causes of death 

combined [20]. Atherosclerosis is the deadliest of cardiovascular disease and 

accounts for nearly three-fourths of all deaths.  

Atherosclerosis results from a complex process involving endothelial 

dysfunction, inflammation, and dyslipidemia (a process called atherogenesis). 

The process leads to the accumulation of lipid and extracellular matrix proteins 

in the intima of arteries. Even though the genetic basis of atherosclerosis is not 

completely understood [21], a number of genes have been associated with 

atherosclerosis. Gene expression profiling of atherosclerosis
 
has been used to 

identify relevant genes and pathways [22]. Our tool will allow the incorporation 

of published data into these experiments, and could help form new hypothesis. 

There were 98 genes and gene products in the initial set from the CBioC 

database, resulting in 9963 genes in the extended set. Coverage was calculated 

with respect to OMIM [2] at 0.70 (with 73 out of the 104 genes listed in OMIM 

included in the extended set), using edit distance <= 1 to match (i.e., one or no 

characters were dropped or added to declare a match).  

We researched the evidence supporting the relationship of the top-ranked 

genes as to atherosclerosis, annotating each gene according to the findings, as 

described in Table 1. The accuracy statistics for the top n proteins appear in 

Table 2, with definitions and formulas used for all measures in Table 1.  

Table 3 presents the details for the top 20 unique proteins. Annotations for 

the top 90 unique proteins are available at http://www.cbioc.org. Those marked 

“found”, like TNF alpha, Angiotensin II, IL1, Collagen, and PLAT, were 

verified by direct PubMed searches. Consider TNF alpha: among over 800 hits, 

PMID 16718633 reports the contribution of TNF-alpha, TGF-beta and IL-6 gene 

expression to systemic inflammation in atherosclerosis. It is also mapped to GO 

term 0008289, “lipid binding activity” [23].  However, they are not mentioned in 

OMIM and in some cases nor in Entrez Gene as being related to atherosclerosis, 

and would have been missed by relying only on the information in these sources. 
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Table 1. Definitions used in assessing the computational method (TP = true positives, FN = false 

negatives, FP= false positives). 

Extracted protein belongs to the initial set  

Derived protein belongs to the extended set 

Known protein is among those reported in OMIM as related to the disease  

Found protein found in the literature as related to the disease 

Suspect protein likely related to the disease based on its function or interactions  

Some support protein found to be related, small number of supporting articles 

Not Found protein not found to be related to the disease 

Not a gene extracted entity does not refer to a gene or protein 

Duplicate synonym or variant of a previously listed protein  

strict_TP known + found 

relaxed_TP known + found + some support + suspect 

Coverage TP / (TP + FN) = known / all OMIM genes related to disease 

Accuracy_stp TP / (TP + FP) = strict_TP /  (extracted + derived – duplicates) 

Accuracy_rtp TP / (TP + FP) = relaxed_TP /  (extracted + derived – duplicates)  

Accuracy_stp w/ dups TP / (TP + FP) = strict_TP /  (extracted + derived) 

Accuracy_rtp w/ dups TP / (TP + FP) = relaxed_TP /  (extracted + derived) 
 

Proteins marked “Suspect” are those 

for which there are threads in the literature 

that suggest they might be involved in the 

disease due to their interactions or function, 

but no direct report linking the two was 

found. For example, for PRKCG, PMID 

10617676 states: “the signaling pathway of 

protein kinase C is known to play a role in 

mediating the action of cytokines”. Other 

cytokines, such as IL1 and IL6 have strong 

evidence of linkage to atherosclerosis [24]. 

For ERVK2 (HERV), PMID 11672541 

states that it “may cause type I diabetes by 

activating autoreactive T cells”, and that 

“endogenous retroviral (HERV) 

superantigens induced via IFN-alpha by viral infections is a novel mechanism 

through which environmental factors may cause disease in genetically 

susceptible individuals.” In turn, PMID 16973967 states that “Adaptive 

immunity, in particular T cells, is highly involved in atherogenesis”, relating T 

cells to the disease. Other articles support this idea.  

Overall, the top genes identified fit into categories underlying pathogenetic 

mechanisms of atherosclerosis: insulin resistance (insulin, ALB, ERVK2), lipids 

(APOB, APOE, HDL and LDL), inflammation (IL6, TNFa, IL1 –cytokines-), 

hypercoagulability (Fibrinogen) and endothelial injury (NOS, and ICAM).  

 

Table 2. Performance measures for the top 
n proteins. See definitions in Table 1. 

 n = 27 n = 123 

Unique proteins 20 90 

Extracted 12 31 

Derived 15 92 

% derived 56% 75% 

Known (in OMIM) 9 16 

Found (in literature) 8 42 

Some support 1 6 

Suspect 2 8 

Not Found 0 16 

Not a gene 0 2 

Duplicate 7 33 

Coverage wrt OMIM 0.09 0.15 

Accuracy_stp 0.85 0.64 

Accuracy_rtp 1.00 0.80 

Accuracy_stp-w/ dups 0.63 0.47 

Accuracy_rtp-w/ dups 0.74 0.59 
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Table 3. Top genes and gene products, ranked by combined score, using w=4. 

Duplicates due to name variants are not shown. 

Protein Type 

Interaction 

score 

Connectivity 

score 

Combined 

score Evidence 

INSULIN extracted 100.0  0.2149  5239.1  Known 

ALB extracted 60.0  0.0375  110.9  Known 

APOE extracted 65.0  0.0314  109.8  Known 

FIBRINOGEN extracted 52.5  0.0334  89.1  Found 

ICAM 1 extracted 42.5  0.0341  70.9  Known 

IL6 extracted 40.0  0.0315  63.7  Known 

HDL extracted 52.5  0.0116  63.1  Found 

TNF ALPHA derived 62.5  0.0001  62.6  Found 

LDL extracted 50.0 0.0120 60.3 Known 

NOS  extracted 37.5  0.0304  58.3  Found 

APOB extracted 45.0  0.0116  53.7  Known 

ERVK2 derived 50.0  0.0001  50.1  Suspect 

ANGIOTENSIN II derived 50.0  0.0001  50.1  Found 

IL 1 derived 50.0  0.0001  50.1  Found 

PRKCG derived 47.5  0.0001  47.6  Suspect 

COLLAGEN derived 45.0 0.0001  45.1  Found 

TAT derived 44.5  0.0001  44.6  Some support 

VWF extracted 32.5  0.0217  44.0  Known 

PLAT derived 42.5  0.0001  42.6  Found 

LIPOPROTEIN L  derived 40.0  0.0002  40.1  Known 

4. Related Work 

The closest approaches to the one presented here are MedGene[6] and [7]. 

MedGene uses published literature to extract gene-disease passages, but then 

does not expand the initial list, ranking the passages using purely statistical 

methods related to co-occurrence in the text, not biological basis. The extraction 

tool uses co-occurrence rather than NLP, and user intervention is limited to 

choosing amongst different statistical ranking formulas. Aside from differences 

discussed in the previous section, the method in [7] uses an initial gene list from 

OMIM expanded with interactions from the Online Predicted Human Interaction 

Database (OPHID). Even though network connectivity is used for showing 

statistical validity of the method, the scoring formula does not account for it.  

5. Conclusion and future work 

The method presented here makes an innovative use of a combination of 

important measures to rank a list of proteins mined from biomedical literature as 

related to a disease, namely, number of interactions and connectivity impact. It 

can be a valuable tool in the analysis and exploration of proteins and pathways 

that relate to a disease. The resulting ranked list of genes and gene products can 

provide the basis for further focused experiments to investigate the genetic 

determinants of diseases, as the atherosclerosis study presented here showed. 
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Focused analysis helps uncover false negatives, and can potentially result in 

calling attention to yet unexplored genetic linkages and descriptive research on 

the disease, such as chromosomal aberrations, specific genetic mutations and 

amplifications that play a role in the disease that can then be investigated 

through wet lab experiments.  

Future work includes improvement of the normalization module to reduce 

duplicates, since this pollutes the connectivity measures by generating 

unnecessary nodes, as well as tuning of the formula and methodology with other 

diseases to potentially incorporate other measures. A web-based interface to 

allow the public to use the tool is in development. 
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