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We describe a new publicly available algorithm for identifying absent sequences, and 
demonstrate its use by listing the smallest oligomers not found in the human genome 
(human “nullomers”), and those not found in any reported genome or GenBank sequence 
(“primes”).   These  absent  sequences  define  the  maximum  set  of  potentially  lethal 
oligomers.  They also provide a rational basis for choosing artificial DNA sequences for 
molecular  barcodes,  show  promise  for  species  identification  and  environmental 
characterization  based  on  absence,  and  identify  potential  targets  for  therapeutic 
intervention and suicide markers.

1. Introduction

As large scale DNA sequencing becomes routine, the universal questions that 
can be addressed become more interesting.  Our work focuses on identifying and 
characterizing absent sequences in publicly available databases.  Through this 
we  are  attempting  to  discover  the  constraints  on  natural  DNA  and  protein 
sequences,  and  to  develop  new  tools  for  identification  and  analysis  of 
populations.   We term the  short  sequences  that  do  not  occur  in a  particular 
species  “nullomers,”  and  those  that  have  not  been  found  in  nature  at  all 
“primes.”  The primes are the smallest members of the potential artificial DNA 
lexicon.  This paper reports the results of our initial efforts to determine and map 
sets of nullomer and prime sequences in order to demonstrate the algorithm, and 
explore the utility of absent sequence analysis.

It  is  well  known  that  the  number  of  possible  DNA  sequences  is  an 
exponentially increasing function of sequence length, and is equal to 4n, where n 
is the sequence length.  This means that any attempt to assemble the complete set 
of unused sequences is hopeless.  We have developed an approach that examines 
the  minimum  length  sequences  that  are  absent.   These  absent  oligomers 
(nullomers and primes) occur at the boundary between the sets of natural and 
potentially unused sequences, and in part can be utilized to delineate the two 
sets15.  By identifying the boundary nullomers surrounding the various branches 
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of  the  phylogenetic  tree  of  life,  we hope  to  produce  a  map of  the  negative 
sequence space around each group.   While  the nullomer and prime sets will 
shrink as more sequences are reported, the mechanisms of mutation allow for 
rational  predictions  to  be  made  about  sequence  evolution  based  on  the 
accumulated nullomer data. The excluded sequences can be used for a number of 
purposes including:

1. Molecular bar codes 
2. Species identification
3. Sequence specification for: RNAi, PCR primers, gene chips
4. Database verification and harmonization
5. Drug target identification
6. Suicide targets for recalling or eliminating genetically engineered 

organisms
7. Pesticide/antibiotic development
8. Environmental monitoring
9. Evolution studies

Our ultimate goal in studying nullomers, is to model and predict which bio-
sequences  (DNA,  RNA  and  amino  acid)  are  unlikely  to  be  found  in  the 
biosphere.  If “forbidden” sequences can be identified and confirmed through 
bioassays, this information will be foundational to understanding the basic rules 
governing sequence evolution.  The insights gained could also greatly improve 
the theoretical foundation for comparative genomics, and provide an important 
conceptual framework for genetic engineering using artificial sequences.

2. Background

A naïve assumption of early genomic analysis was that sequence distribution 
over large genomes would approximate randomness.  That is, a 6 base sequence 
would be found on average every 46 or 4096 bases.  These types of assumptions 
were used for such calculations as the number of expected restriction enzyme 
recognition sites in a genome.  But even early studies of genome organization 
using thermal melting and gradient centrifugation8,13 showed that there is great 
non-uniformity in genomic sequences, particularly in warm-blooded vertebrates. 
What  has  emerged from many subsequent  genome studies  is  a  striking non-
random distribution of certain large and short sequence motifs.  Many of the 
described irregularities concern functional units of sequences.  

For example, AGA codons are rare in bacterial genes, and when artificially 
substituted for synonymous codons they often have lethal consequences.  This is 
believed to be due to ribosome stalling and the consequent early termination of 
protein synthesis.  The reason for this effect is that while the codon chart tells us 
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that  AGA is  one  of  the  codons  for  the  amino  acid  arginine,  most  bacteria 
preferentially use CGA to code for arginine.  Even though the bacteria have the 
requisite  tRNAs  to  use  an  AGA  codon,  these  tRNAs  are  in  such  low 
concentration that the ribosome complex is destabilized while waiting for the t-
RNA to load an arginine6.  Examples of such “codon biases” have been seen in 
all species sequenced to date20,  and are a good example of the constraints on 
sequence evolution based on progenitor biases.

In eukaryotes too, many genomic features have been identified which skew 
the distribution of very short sequence motifs.  For example, one of the authors 
(GH)  was  involved  in  research  that  examined  the  role  of  GG sequences  in 
oxidative damage to DNA.  It was found that when oxidizing agents captured 
electrons from DNA, the electron holes were transferred along DNA until they 
reached  a  GG  sequence  where  they  induced  strand  breakage12.   Subsequent 
studies have borne out our  hypothesis that GGG stretches are rare in coding 
regions, and other researchers have shown that “sentinel GGG” motifs found in 
non-coding introns serve as sacrificial sinks for oxidative damage11.  Statistical 
studies  using  the  autocorrelation  function  of  Bernaola-Galván  (2002)  have 
shown that the human genome contains areas with GC-rich isochors displaying 
long-range correlations and scale invariance.   Other studies have shown long 
range  correlations  between  sequence  motifs  and  regularly  spaced  structural 
features of the genome such as nucleosome binding sites2,21.  

All of these studies demonstrate what we would expect for a highly ordered 
information  processing  system:  it  is  highly  organized,  non-random,  and 
constrained  by  many  factors,  including  the  architecture  of  its  storage  and 
processing systems.  Thus,  even though DNA is  passed on through dynamic 
evolving systems, there are still limits on its content, and some of these limits 
exist  within  large  species  groups.   For  example,  any  limits  imposed  by 
nucleosomal  organization  are  applicable  to  all  eukaryotic  organisms;  while 
bacteria which lack nucleosomal structure are immune to these constraints.  This 
suggests  one  obvious  use  for  our  nullomer  approach:  the  identification  of 
molecular therapeutic targets that are present in the pathogen and absent in the 
host, or vise versa.  Other constraints may be universal, since all organisms share 
a  presumed  origin,  and  many  components  of  DNA  function  are  highly 
conserved.  By examining universally absent sequences (primes),  we hope to 
discover  insights  into  the  most  conserved  mechanisms of  molecular  biology: 
inviolable rules which preclude these prime sequences.  

Interestingly,  the  vast  majority  of  bio-sequence  analysis  has  ignored  the 
exploration of absent sequences, instead focusing entirely on sequences that are 
either very rare, or very common.  Some work has been done to characterize the 
expected number of missing words in a random text19, however the primary focus 
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of this research was the application of the result to the construction of pseudo-
random  number  generators.   One  group  has  discussed  the  “absence  versus 
presence”  of  short  DNA sequences  for  the  sake of  identifying species10,  and 
another  group has  examined  absent  protein  sequences18;  but  our  approach  is 
unique in that we are studying the set of smallest absent sequences (nullomers 
and primes) in order  to  discover basic  rules of sequence evolution, and then 
apply this understanding for practical purposes such as drug development and 
the development of a DNA tagging system.

Our  research  stems  from  one  of  the  primary  assumptions  of  genomic 
analysis,  that  over  and  under-represented  sequences  are  more  likely  to  be 
interesting.  While our work focuses on the novel area of absent oligomers, the 
general determination of over and under-represented sequences has received a 
great  deal  of  attention3,4,5,14,16,17,22.   For  example,  Nicodeme16 developed  a fast 
statistical  approximation  method  for  determining  motif  probabilities  and 
demonstrated that over and under representation of protein motifs can be a good 
indicator  of functional importance17.   Stefanov22 introduced a computationally 
tractable  approach  for  determining  the  expected  inter-site  distance  between 
pattern  occurrences  in  strings  generated  by a  Markov  model.   Bourdon  and 
Vallee5 and  Flajolet7 extended  techniques  to  determine  the  likelihood  and 
frequency  of  sequence  motifs  to  generalized  patterns,  in  particular  patterns 
where the gap lengths between elements of the pattern in a random text are both 
bounded and unbounded.  Amir et al.1 generalize the notion of string matching 
further, developing statistical analysis techniques for a string matching approach 
they term structural matching.  With this approach, the exact text of the strings is 
not important, rather, two strings are considered to match if some generalized 
relation between the two strings is satisfied.

3. Counting Sequences

We have developed a set of software utilities for counting sequences in a variety 
of sequence data.  The main software package that we have created is SeqCount. 
This  program has  two  primary  functions.   First,  it  counts  the  frequency  of 
occurrence of all possible short sequences up to a user given maximum length in 
a set of sequence data and then writes this frequency count information to a file. 
Second, SeqCount determines the set of sequences that do not occur (nullomers) 
and  writes  these  sequences  to  an  additional  set  of  files,  one  file  for  each 
sequence length being examined.

The  algorithm used  for  counting  sequences  is  shown in  figure  1.   The 
computational complexity of the algorithm is O(mn), where m is the maximum 
sequence length and n is the amount of DNA being processed.  The algorithm 
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can calculate the frequency of DNA sequences up to length 13 for the human 
genome (3 billion bases)  in  approximately 25  minutes  on a single processor 
machine.  The parallel version of the algorithm can process the human genome 
in  less  than  1  minute.    A single  pass  through the  entire  set  of  DNA data 
downloaded from the NCBI web site takes approximately 12 hours.

In addition to SeqCount, we have created a number of secondary support 
tools for manipulating and understanding the data output by SeqCount.  These 
support tools are available in both C and Java versions.  Also, we have created a 
web-based interface to some of the data that we have generated with SeqCount. 
In particular, one can access the sequence counts and nullomer sets for several 
species for sequences up to length 13.  Following is the full list of software 
packages and support tools that are available:

  

1. Set the maximum sequence length under 
consideration (n) and the strand of DNA to 
examine. 

2. Beginning with the 1st position, for each 
position in the strand of DNA being 
examined: 

a. Increment the count for the n-length 
sequence of nucleotides found at 
the current position 

3. After step 2 has finished,  
a. process the initial counts for the n-

length sequences to determine the 
counts for the complementary 
strand,  

b. re-process the final n-length counts 
to determine the counts for all 
sequences of length n-1 through 1. 

 
Figure 1.  Algorithm for counting sequences.

• SeqCount:  Given a set of genomic data in binary format, counts the 
total number of all  sequences up to a user deter-mined length.  The 
counts are saved in a single file.  Additionally, if any sequences within 
the length given are not found, these sequences are output to a set of 
nullomer files (1 file for each nullomer length).

• GBK2Bin:   Given  a  set  of  files  in  Genbank format,  this  pro-gram 
converts the files to a binary format wherein each DNA nucleotide is 
encoded as a 2-bit value.  A single file is created for each contiguous 
sequence  of  DNA  found  in  the  genbank  files,  with  the  file  name 
encoding the location of the sequence.  
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• CountNulls:  Counts the number of nullomers in a nullomer file and 
prints the result.

• Char2Null:  Converts  any set  of  carriage return delimited  sequences 
encoded  in  ascii  format  to  the nullomer  file  format.   This  utility is 
typically used to take the piped output from either DiffNulls, IntNulls, 
UnionNulls, or ViewNulls and convert the ascii-based output of these 
files to binary format.

• DiffNulls:  Takes as input 2 to many nullomer files and prints to the 
screen the set difference of the 1st nullomer file minus the union of the 
rest of the nullomer files.  

• IntNulls:  Takes as input  2  to  many nullomer files and prints to  the 
screen the set intersection of the nullomer files.

• UnionNulls:  Takes as input 2 to many nullomer files and prints to the 
screen the set union of the nullomer files.

• ViewNulls:  Takes as input 1 nullomer file and prints to the screen in 
ascii format the nullomers contained in the file.

SeqCount processes sequence data in a single pass, and has been optimized for 
speed of processing.  SeqCount can be executed in either parallel mode on a 
Beowulf cluster or in sequential mode on a single workstation.  In sequential 
mode the program is limited to counting sequences up to length 13.  When the 
program is executed in parallel mode and the user requests the program to count 
sequences of length greater than 13, the program evenly divides the sequence 
space up amongst the available processors and then each process is responsible 
for counting sequences that occur within its assigned sequence space.  At the end 
of processing the counts from each process are collected and written to a file as 
in  the  sequential  version.   The  software  packages,  documentation,  and  web-
based interface can be freely accessed at:
    http://trac.boisestate.edu/bioinformatics/nullomers.

4. Results

We have downloaded the entire sequence database from the NCBI web site and 
used  our  algorithms  to  determine  the  nullomer  sequences  for  several  fully 
sequenced  organisms:  chimpanzee,  human,  etc.   These  results  are  given  in 
section 4.1.  We have also processed all of the data in the entire DNA sequence 
database and determined the “prime” DNA sequences (sequences that do not 
occur in any of the data), and these results are given in section 4.2.  In addition, 
we have processed  the  entire  protein database and also give these results  in 
section 4.2
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4.1. Nullomers – fully sequenced organisms

Table 1 gives the number of DNA nullomers found at lengths 8 through 13 for 
several different organisms.  The results for bacteria, fungi, and yeast are across 
all sequenced organisms.
Table 1.  Number of DNA nullomers at sequence length 8 through 13.

8 9 10 11 12 13
arabid 107 23646 1167012 20237388
bacteria 541 562870
c_elegans 2 7686 1152038 23339534
chicken 2 590 131515 4722702
chimp 136 45938 2426474
cow 96 45060 2432554
dog 40 25217 1868964
fruitfly 206 221616 12399300
human 80 39852 2232448
mouse 178 54383 2625646
rat 50 30708 1933220
zebrafish 2 15561 2469558

Table 2 shows how the nullomer sets of each of the organisms given in table 
1 intersect with each other.  The names of the organisms are listed in the first 
column.  The 2nd through 4th column show the actual size of each intersection for 
lengths 11 through 13.  The 5th through 7th column show the expected size (with 
the assumption that each set was independently and randomly generated), and 
the 8th through 10th column give the ratio of the actual/expected.  For the ratio, 
numbers greater than 1 indicate the degree to which the intersection is larger 
than expected.  The results are sorted in descending order on the ratio value at 
length 12.
Table 2.  Intersection of human nullomers with the nullomers of other organisms.

11 12 13 11 12 13 11 12 13
chimp 28 19581 1521778 0.002594 109.1195 80719.25 10794.16 179.4455 18.85273
dog 0 4963 731372 0.000763 59.89956 62173.08 0 82.85536 11.76348
rat 8 5975 734566 0.000954 72.94269 64310.63 8388.608 81.91363 11.42216
cow 0 7314 886544 0.001831 107.0339 80921.51 0 68.33348 10.9556
mouse 2 8765 927076 0.003395 129.1794 87344.92 589.0876 67.85136 10.61397
chicken 4 10946 1162632 0.011253 312.396 157105.7 355.4495 35.03886 7.400316
zebrafish 0 1080 504532 3.81E-05 36.96304 82152.48 0 29.21837 6.141409
fruitfly 0 2122 761094 0.003929 526.4187 412476 0 4.031012 1.845184
arabid 0 9521 1325550 0.451012 2772.079 673218.3 0 3.434607 1.968975
c_elegans 0 8378 1273344 0.146599 2736.51 776414.5 0 3.061564 1.640031
bacteria 0 0 24242 0 1.285072 18724.47 0 0 1.294669

ratioactual size expected size

Human and chimp have the greatest intersection between their absent 
sequences, and mammals in general show a much stronger intersection with 
human than the other listed organisms.  While this is intuitively satisfying, 
further studies will be required to demonstrate if nullomer sets can be used to 
corroborate phylogenetic relationships among species.
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4.2. Human Genome nullomers

Other  researchers  have  reported  absent  sequences  as  a  part  of  large  scale 
analysis9, however, as far as we know this is the first publication of an actual list 
of human nullomers.  Our results also differ from earlier reports of 44 absent 11-
mers, in that we have found 43 sequences and their compliments which are not 
found in the two published human genomes (Table 3).  Of these sequences, 4 11-
mers and their complements currently have no sequence match in any reported 
human sequence in GenBank as determined by BLAST. 

Table 3.  Human nullomers at length 11.

0 cgctcgacgta 3 cgcgcataata
0 gtccgagcgta 3 cgacggacgta
0 cgacgaacggt 3 cgaatcgcgta
0 ccgatacgtcg 3 cggtcgtacga
1 tacgcgcgaca 3 gcgcgtaccga
1 cgcgacgcata 3 cgcgtaatcga
1 tcggtacgcta 3 cgtcgttcgac
1 tcgcgaccgta 3 ccgtcgaacgc
1 cgatcgtgcga 3 acgcgcgatat
1 cgcgtatcggt 3 cgaacggtcgt
2 cgtcgctcgaa 3 cgcgtaacgcg
2 tcgcgcgaata 3 ccgaatacgcg
2 tcgacgcgata 3 catatcgcgcg
2 atcgtcgacga 4 cgcgacgttaa
2 ctacgcgtcga 4 gcgcgacgtta
2 cgtatacgcga 4 ccgacgatcgt
2 cgattacgcga 4 ccgttacgtcg 
2 cgattcggcga 5 ccgcgcgatat
2 cgacgtaccgt 6 ccgacgatcga
2 cgacgaacgag 7 cgaccgatacg
2 cgcgtaatacg 20 cgaatcgacga
2 cgcgctatacg

Human BLAST 
matches Nullomer

Human BLAST 
matches Nullomer

We are presently searching the available single nucleotide polymorphism 
(SNP) databases, to determine which if any of the nullomers are associated with 
known SNPs.

4.3. Primes – all sequence data

We have also used our algorithms to process the entire DNA sequence database 
available from NCBI, and found that length 15 is the shortest length at which 
primes (absent sequences) are found.  At this length there are 60370 primes that 
are  not  found in  any of  the  DNA sequence  data.   These  sequences  can  be 
referenced  through  our  web  site  at 
http://trac.boisestate.edu/bioinformatics/nullomers.
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We have also processed all available protein sequences, and identified 1799 
primes of length 5.  It should be noted that this number is significantly less than 
the 12,080 “zero count pentats” that were reported by Otaki et al. in 200418.  In 
that paper, the researchers cloned 6 of their zero count pentats and showed that 
they  were  not  lethal  when  expressed  in  E.coli.   But  we  found  (using  our 
algorithm) that 5 of the 6 “zero-count” oligomers are actually presently listed in 
GenBank.  This discrepancy is likely due to the addition of new protein data at 
NCBI since the zero count search was performed in September of 2003.  This 
demonstrates the need for continued processing of this data, and the utility of our 
web-available program for conducting immediate absent sequence inventories. 
We believe that the approach taken by Otaki et al.18 is a valuable first step in 
examining the potential lethality of absent sequences.  As the number of such 
sequences shrinks, and large scale expression projects become more routine, the 
fitness effects of nullomers and primes can be studied more systematically. 

The fact that the amino and nucleotide primes both presently represent a 
maximum of 5 amino acids (15 nucleotide bases in the DNA database, and 5 
amino acids in the protein database) is coincidental.  We examined all possible 
coding sequences for the 1799 length-5 protein primes,  and did not find any 
intersection  with  the  DNA  primes  at  length  15.   The  nucleotide  sequences 
include  coding  and  non-coding  DNA,  while  the  protein  database  has  only 
expressed (and hypothetically expressed) sequences.  Thus it is likely that most 
nucleotide sequences representing codons for absent amino acid sequences are 
found only in  non-coding regions of  DNA.  We are  presently exploring the 
intersection of amino acid nullomers, and DNA nullomers in coding regions, and 
will report those results separately.  

On  average,  the  protein  primes  had  about  half  as  many possible  DNA 
coding sequences as expected for peptides of their length, which indicates that 
the set of protein primes is biased towards those protein sequences that have 
fewer DNA coding options.  We found 5 protein primes that have a single DNA 
coding  sequence  –  MWMWW,  MWWWW,  WMMWM,  WMWWW,  and 
WWMMW.  We then performed a BLAST search for short, exact matches to 
each of these DNA coding sequences and examined the results.   Each DNA 
sequence yielded a number of exact matches.  Most of these matches were in 
intron specific  regions,  however,  several  of  the matches occurred in putative 
coding regions.  We are  currently working to  resolve  each of  these  database 
discrepancies.  The identification of apparent discrepancies between protein and 
nucleotide primes in coding regions,  demonstrates the utility of  the nullomer 
approach as tool for harmonizing the various biomolecular databases.  
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5. Conclusion and Discussion

We have  developed  a  series  of  tools  for  the  identification and study of 
absent sequences.  Using these tools we have made publicly available the full set 
of amino acid and nucleotide primes (the shortest sequences not found in their 
respective databases.)   In order to allow creative extensions of our approach, the 
software  packages,  documentation,  and  web-based  interface  can  be  freely 
accessed at: http://trac.boisestate.edu/bioinformatics/nullomers. In this paper we 
demonstrate some of the uses of these tools, and the elegance of the nullomer 
approach.

It  should be noted that  nullomer searches  have corollaries  in the natural 
world, most notably in the development of the human immune system.  During 
embryonic  development  a  large  variety  of  antigen  recognizing  cells  are 
generated  by  the  random  rearrangement  of  DNA  cassettes  coding  for  the 
“variable” segments of antibody producing cells.  This DNA shuffling results in 
the incredible diversity of immune cells which produce molecular soldiers that 
each recognize a single small oligomer (peptides, lipids, sugars or nucleotide). 
This  army is  reduced  by a  colossal  “deselection”  in  the  embryonic  thymus. 
Here,  any immune cell  which finds  its  target  among the “self”  molecules  is 
culled from the army.  In essence, what is left is a sentinel army of nullomer 
hunters.  They recognize and destroy only absent oligomer sequences.  When an 
adult immune cell detects its particular nullomer, it is stimulated to reproduce, 
and sometimes to hypermutate in order to recognize related nullomers.  Thus the 
natural  defense  system of  the  body  is  based  on  recognizing  nullomers,  and 
anticipating oligomers that may arise from them.  This type of approach would 
be  useful  in  any  intelligent  response  to  novel  biological  threats,  natural  or 
manmade.   For  example,  nullomer detection in environmental  samples could 
indicate  the  introduction  of  novel  natural  or  engineered  species.   The  rapid 
response to such a potential threat should include the generation of agents to 
detect and possibly incapacitate related novel molecules.

The absent sequences that we report here represent the largest possible set 
of artificial oligomers.  Within this dynamic, shrinking set will be found all lethal 
oligomers,  if  any  exist.   These  small  molecules  may prove  to  be  powerful 
bioactive compounds which act in a species-specific or group-specific manner. 
Within the set of primes, there is even the possibility of a pan-lethal agent which 
could  function  as  a  sterilant,  or  suicide  gene  for  therapeutic  and  biocontrol 
applications.

We  have  also  shown that  nullomer  searches  can  be  used  to  assess  the 
harmony  of  molecular  databases  (nucleotide  and  protein),  and  to  identify 
potential therapeutic targets that exist in a pathogenic species but not its host. 
The nullomer approach may also be useful for studying genome relationships, in 
that the absent oligomers (nullomers) are more similar in closely related species, 
than in those more distantly related. 

Finally, it is easy to construct artificial tags of DNA or amino acids that 
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have not been reported in GenBank.  But identifying the smallest oligomers that 
have not been found in a species or group of species, provides the first rational 
basis for the construction of an artificial DNA lexicon.  By devising tags based 
on nullomers and primes, more efficient and elegant artificial sequences can be 
constructed.  These sequences can be used to identify artificial constructs, tag 
them with identifying characteristics, or even code for suicide genes in order to 
“recall” a genetically engineered product.  

Acknowledgements:  The authors wish to thank the following people for 
their help: Dr. Amit Jain and Ben Noland for assistance with the Beowulf cluster 
and initial algorithms; Barry Hall, Jim Smith and Ken Cornell for comments and 
criticism about the nullomer approach; Jim Munger for his encouragement and 
support; and the anonymous reviewers who provided valuable feedback.

References

1. Amir,  A.,  Cole,  R.,  Hariharan,  R.,  Lewenstein,  M.,  & Porat,  E.  (2003). 
Overlap Matching.  Inf. Comput. 181(1), 57-74.

2. Audit B, Vaillant C, Arneodo A, d'Aubenton-Carafa Y, Thermes C. (2002) 
Long-range  correlations  between  DNA  bending  sites:  relation  to  the 
structure  and  dynamics  of  nucleosomes.  J  Mol  Biol.  2002  Mar 
1;316(4):903-18.

3. Apostolico, A., M. Bock., and S. Lonardi.  (2002).  Monotony of Surprise 
and Large-Scale Quest for Unusual Words.  Proceedings of the sixth annual 
international conference on Computational biology, pp22-3.

4. Apostolico, A., Gong, F., and Lonardi, S.  "Verbumculus and the Discovery 
of Unusual Words", Journal of Computer and Science Technology, vol.19, 
no.1, pp.22-41, 2004.

5. Bourdon, J. & Vallee, B. (2002).   Generalized Pattern Matching Statistics. 
In Mathematics and Computer Science, II Versailles, 249-265.

6. Cruz-Vera LR, Magos-Castro MA, Zamora-Romo E, Guarneros G (2004) 
Ribosome stalling and peptidyl-tRNA drop-off during translational delay at 
AGA codons.  Nucleic Acids Res. 2004 Aug 18;32(15):4462-8.

7. Flajolet, P., Guivarc'h, Y., Szpankowski, W., & Vallée, B. (2001).  Hidden 
Pattern Statistics.  ICALP 2001, 152-165.

8. Filipski,  J.  (1987).  Correlation  between  molecular  clock  ticking,  codon 
usage  fidelity  of  DNA  repair,  chromosome  banding  and  chromatin 
compactness in germline cells. FEBS Lett. 217: 184-186.

9. Fofanov Y, Luo Y, Katili C, Wang J, Y. B, Powdrill T, Fofanov V, Li T-B, 
Chumakov S, Pettitt BM (2003) How independent are the appearances of n-
mers in different genomes?  Bioinformatics, vol. 20, no. 15, pp2421-2428.

10. Fofanov V., Fofanov Y., Pettitt B. (2002).  Counting array algorithms for 
the problem of finding appearances of all possible patterns of size n in a 
sequence.   In  The  2002  Bioinformatics  Symposium,  Keck/GCC 

Pacific Symposium on Biocomputing 12:355-366(2007) 



Bioinformatics Consortium, p 14. W.M. Keck Center for Computational and 
Structural Biology, Houston Texas.

11. Friedman K, Heller A (2001) On the Non-Uniform Distribution of Guanine 
in Introns of Human Genes: Possible Protection of Exons against Oxidation 
by Proximal Intron Poly-G Sequences.  J. Phys. Chem. B, 105 (47), 11859 
-11865, 2001. 10.1021/jp012043n S1089-5647(01)02043-0.

12. Henderson P.T.,  Jones D.,  Hampikian G.,  Kan Y.,  Schuster G.B. (1999) 
Long distance charge transport  in DNA: the phonon-assisted polaron-like 
hopping mechanism. Proc. Natl Acad. Sci. USA.  1999;96:8353–8358.

13. Inman,  R.B.  (1966).  A denaturation map of  the  l  phage  DNA molecule 
determined by electron microscopy. J. Mol. Biol. 18: 464-476.

14. Leung,  M.  Y.,  Marsh,  G.  M.,  and  Speed,  T.  P.  (1996).   Over  and 
underrepresentation  of  short  DNA  words  in  herpesvirus  genomes.  J. 
Comput. Bio. 3, 345-360.

15. Mitchell, T.  (1997) Machine Learning.  New York: McGraw Hill.
16. Nicodeme,  P.  (2001).   Fast  approximate  motif  statistics.   Journal  of 

Computational Biology, 8(3), 234-248.
17. Nicodème, P., Doerks, T., & Vingron, M. (2002).  Proteome Analysis Based 

on Motif Statistics.  Bioinformatics, vol. 18, 161—171.
18. Otaki J, Ienaka S, Gotoh T, and Yamamoto H. (2005) Availability of short 

amino acid sequences in proteins.  Protein Science, 14:617-625.
19. Rahmann, S. & Rivals, E. (2000).  Exact and Efficient Computation of the 

Expected Number of Missing and Common Words in Random Texts.  CPM 
2000,  375-387.

20. Reis,  M.,  Savva, R. & Wernisch, L. (2004)  Solving the riddle of  codon 
usage preferences: a test for translational selection. Nucleic Acids Res. 32: 
5036-5044.

21. Segal,  E.,  Y. Fondufe-Mittendorf,  L.  Chen, A. Thastrom, Y. Field,  I.  K. 
Moore, J. Z. Wang, J. Widom.  (2006) A Genomic Code for Nucleosome 
Positioning.  Nature, 2006 July, 442(7104):772-8.

22. Stefanov, V. (2003).   The intersite distances between pattern occurrences in 
strings  generated  by  general  discrete  and  continuous-time  models:  an 
algorithmic approach.  Journal of Applied Probability.  40, no. 4, 881–892.

Pacific Symposium on Biocomputing 12:355-366(2007) 


	1.Introduction
	2.Background
	3.Counting Sequences
	4.Results
	4.1.Nullomers – fully sequenced organisms
	4.2.Human Genome nullomers
	4.3.Primes – all sequence data

	5.Conclusion and Discussion

