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Several QSAR models have been developed using a linear optimization approach that 

enabled distinguishing metabolic substances isolated from human-, bacterial-, plant- and 

fungal- cells. Seven binary classifiers based on a k-Nearest Neighbors method have been 

created using a variety of ‘inductive’ and traditional QSAR descriptors that allowed up 

to 95% accurate recognition of the studied groups of chemical substances.  

The conducted comparative QSAR analysis based on the above mentioned linear 

optimization approach helped to identify the extent of overlaps between the groups of 

compounds, such as cross-recognition of fungal and bacterial metabolites and 

association between fungal and plant substances. Human metabolites exhibited very 

different QSAR behavior in chemical space and demonstrated no significant overlap 

with bacterial-, fungal-, and plant-derived molecules.  

When the developed QSAR models were applied to collections of conventional human 

therapeutics and antimicrobials, it was observed that the first group of substances 

demonstrate the strongest association with human metabolites, while the second group 

exhibit tendency of ‘bacterial metabolite – like’ behavior. We speculate that the 

established ‘drugs - human metabolites’ and ‘antimicrobials – bacterial metabolites’ 

associations result from strict bioavailability requirements imposed on conventional 

therapeutic substances, which further support their metabolite-like properties.  

It is anticipated that the study may bring additional insight into QSAR determinants for 

human-, bacterial-, fungal- and plant metabolites and may help rationalizing design and 

discovery of novel bioactive substances with improved, metabolite-like properties. 

1. Introduction 

In a series of previous works we reported the use of our own ‘inductive’ and 

conventional 2D and 3D QSAR descriptors for creating binary QSAR models 

capable of recognizing various groups of substances including antimicrobial 
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molecules and peptides [1,2], steroid-like compounds [3], human therapeutics, 

drug-like chemicals [4] as well as bacterial and human metabolites [4,5]. These 

binary QSAR classifiers allowed defining certain structural determinants of the 

studied groups and provided important insights into their positioning in chemical 

space. Thus, the developed QSAR models could demonstrate immanent 

similarity between conventional antimicrobials and native bacterial metabolites 

and have been suggested as prospective tools for ‘in silico’ antibiotic discovery. 

In the current study we applied similar QSAR approach to the broader 

spectra of bacterial-, human-, plant- and fungal metabolites that have been 

explored for mutual overlaps as well as for possible associations with classes of 

conventional human therapeutics, antimicrobials and biologically neutral drug-

like chemicals. 

2. Materials and Methods  

2.1. Molecular Datasets  

The dataset of antimicrobial compounds has been assembled from several 

public resources including ChemIDPlus service [6], the Journal of Antibiotics 

database [7] and from the literature [8-10]. The conventional drug molecules 

covering a broad range of therapeutic activities have all been identified from the 

Merck Index Database [11].  

The structures of bacterial-, plant- and fungal metabolites have been 

obtained from the AnalytiCon-Discovery company [12]. Drug-like substances 

used in the study have been selected from the Assinex Gold collection [13]. 

Structures of human metabolites have been obtained from the Metabolomics 

database [14]. 

The redundancy of the resulting dataset containing 519 Antimicrobials, 958 

Drugs, 1202 Drug-like substances with no known therapeutic effects, together 

with 1102 Human-, 551 Bacterial-, 2351 Plant- and 825 Fungal metabolites has 

been ensured through the SMILES records and by descriptors-based clustering. 

All molecular structures have been further optimized with the MMFF94 force-

field [15] and using MOE modeling package [16].  

2.2. QSAR Descriptors 

The optimized structures of 7508 compounds have been used for calculating 

26 non cross-correlating ‘inductive’ QSAR descriptors [1-5] and 33 

conventional QSAR parameters (the corresponding descriptions can be found in 

Appendix).  

The resulting set of 59 QSAR parameters descriptors computed for 7508 
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studied compounds has been normalized for [0,1] range. The normalized values 

have then been used to generate QSAR models distinguishing all four types of 

natural metabolites under study. 

2.3. Mathematical Approach 

For the purpose of distinguishing four types of the studied metabolite 

substances based on descriptors we have utilized the k-Nearest Neighbors (k-

NN) classification approach. This method requires the definition of distance 

D(S, R) between any pair of molecules S and R in d-dimensional descriptors 

space. According to QSAR formalism, such a distance measure should reflect 

functional association and/or chemical similarity between the molecules. Thus, 

the k-NN approach allows descriptors-based clustering of chemical compounds 

according to already known biological activity and can be used to classify an 

untested chemical substance by its proximity to established clusters. Given a 

distance function D( ), searching for the k-Nearest Neighbors of untested 

chemical substance requires comparing its distance with tested compounds 

which is computationally costly. The efficiency of the classification process can 

be improved by efficient data-structures developed for metric spaces. Thus, a 

metric distance function is used for our clustering of tested compounds.   A 

distance measure D( ) forms a metric if the following conditions are satisfied.  

 

D(S, S) = 0: a point has distance 0 to itself.  

D(S, R) = D(R, S): distance is symmetric.  

D(S, R) ≤ D(S, Q) + D (Q, R):  distance satisfies the triangle inequality. 

 

The distance measures satisfying the above conditions include Hamming 

Distance (i.e. L1): 
∑
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( 0, ≥∀ ii σσ ) that allows differentiating relevance of various QSAR 

descriptors for a given activity. Weighted Hamming Distance representations 

allows establishing optimal σi values that maximize separation of active TA = 
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We utilized the Linear Programming approach to minimize the function, 
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σ , where C - is a used-defined constant.  

The aim of the clustering is determining best descriptor space where the 

average distance among compounds reflexes the functional similarity. Although 

the sensitivity and specificity can be improved using more restricting constraints, 

the optimization may end up with an infeasible or over-trained solution. In order 

to avoid infeasible solutions and overtraining, the average distance constraints 

are used.   

Another important factor for the clustering is the size of training data. The 

accuracy of the clustering is going to improve logarithmically with the increasing 

size of training data. According to our observations, the ideal training dataset is 

90% of the whole dataset.   

More details on the adopted k-NN procedure can be found in [5, 17]. It 

should be outlined that the described mathematical procedure not only 

maximizes the average distance between active and inactive elements of the 

training set, but also aims to minimize the average within-the-class distance and, 

therefore, tends to condense activity-clusters.  

3. Results and Discussion 

 The defined clusters of chemical compounds of interest in d-dimensions 

can then be used to characterize unknown entries (molecules) by projecting their 

QSAR parameters into descriptors space (Figure 1).  
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Figure 1. Projection of unknown compound (green point) onto chemical space where active 

compounds (red points) have been separated from inactive ones (blue) using k-NN algorithm. 

In particular, an untested compound (green point on Figure 1) can be 

associated to a certain pre-defined activity cluster by considering affiliations of 

its k-nearest neighbors. In the current study we considered assigning the tested 

compound to the cluster of its nearest neighbor.  

The linear optimization instance for determining the distance function is 

obtained from the input compound dataset as described above and represented 

using the MPS format. This linear programming instance is solved using the 

open-source linear programming solver CPLEX [18]. The data structure for 

searching the nearest neighbor of a query point was SC-Vantage Point Tree that 

we developed earlier [19]. All programs are implemented using the standard 

C/C++ libraries on UNIX environment.  

We tested applicability of the above-described approach for creating binary 

QSAR classifiers that operate by 59 ‘inductive’ and conventional QSAR 

variables. The combined molecular dataset consisting of 1202 drug-like 

chemicals, 958 conventional drugs of various types, 519 specific antimicrobials, 

as well as 551 Bacterial-, 2351 Plant-, 825 Fungal- and 1102 Human Metabolites 

(with 59 normalized QSAR descriptors assigned to each entry) has been used to 

create k-NN based QSAR models. Although 7 new QSAR models are developed 

(one for each type of chemical compounds) based on our combined dataset, we 

only concentrate on the following categories. 

3.1. Plant Metabolites  

To create a binary QSAR model accurately distinguishing plant metabolites 

from other types of chemical substances, we considered a set of 2351 natural 

compounds characterized from plant isolates by AnalytiCon-Discovery Company 

[12]. As the negative control for such model we considered a combination 1477 

conventional human therapeutic substances (including 519 antibacterials), 1202 

biologically inactive chemicals (that nonetheless justify the ‘Lipinski’s’ drug-

likeness rule) and 2478 metabolic substances participating in human, bacterial 

and fungal biological pathways. We included drugs and drug-like molecules into 

negative control to ensure that the desired QSAR model for plant-metabolites 

won’t be simply biased toward drug-like structures. On another hand, the 

presence of other types of native metabolites in a negative control aimed to 

ensure that the QSAR approach won’t be generally recognizing any metabolic 

substances. 

To develop the k-NN based QSAR binary model (yes/no) for plant 

metabolites we assigned a bioactivity value of 1.0 (dependent variable) to 2351 

plant substances and treated them as actives. All the remaining 5157 molecules 
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have been assigned null activities as k-NN algorithm attempted separating them 

from plant metabolites.  

3.2. Fungal Metabolites  

In this case, four k-NN QSAR models have been trained to separate 825 

fungal metabolites (assigned 1.0 activity values) from the rest of the compounds 

that have been considered as inactive, with assigned 0.0 dependent variables.  

3.3. Bacterial Metabolites  

To study this system, 551 bacterial metabolites from the AnalytiCon-

Discovery collection have been assigned 1.0 activity value and remaining 6957 

general drugs, drug-likes, antimicrobials, fungal, plant and human metabolites all 

have been considered as a negative control and assigned to null dependent 

variable.  

3.4. Human Metabolites  

The dataset of 1102 chemical substances involved with chemical reactions 

taking place in human body have recently been catalogued by the group of Prof. 

Wishart at the University of Alberta. These molecules have been incorporated to 

the larger metabolomics database and have been made available through the 

web: http://www.metabolomics.ca/. Thus, we attempted developing ‘Human-

Metabolite-Likeness’ QSAR model hoping that the corresponding QSAR 

classifiers may become useful tools for assessing potential human therapeutics. 

We trained the k-NN approach to recognize 1104 human metabolites among 

7508 compounds under study.  

3.5. QSAR Modeling 

All four classification systems 3.1–3.4 have been investigated using 10 fold 

cross-validation approach. In particular, within four classification systems for 

Bacterial-, Fungal-, Plant- and Human metabolites, all 7508 substances have 

been separated into active and inactive components, according to the protocols 

described above, and then have been separated into ten 90%-10% 

training/testing sets (where the training sets do not overlap), and keeping the 

ratio of active and inactive entries constant.   

At the next step 59 normalized QSAR descriptors have been used as 

independent variables to train k-NN based models. 

Four classification systems 3.1-3.4 have been independently processed 

within the k-NN training procedure, as described in the previous section and the 

performance of the resulting QSAR models has been assessed by the combined 
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True Positive (TP), False Positive (FP), True Negative (TN) and False Negative 

(FN) predictions on the testing sets. The corresponding parameters have then 

been transformed into Sensitivity, Specificity and Accuracy values that can be 

found in Table 1. 

 
Table 1. Cross-validation confusion matrices and accuracy parameters 

for the developed binary QSAR classifiers for Bacterial-, human-, 

Fungal-, and Plant metabolites. 

Model TP FP TN FN SEN SPE ACC 

Bacterial Metabolites 298 303 6654 253 0.541 0.956 0.926 

Human Metabolites 856 291 6115 246 0.777 0.955 0.928 

Fungal Metabolites 498 322 6361 327 0.604 0.952 0.914 

Plant Metabolites 2179 211 4946 172 0.927 0.959 0.949 

The data in Table 1 illustrates, that the method of k-Nearest Neighbors 

allowed generally accurate separation of actives and inactives in all four systems 

3.1-3.4. Thus, the use of 59 ‘inductive’ and conventional QSAR descriptors 

allowed almost 95% accurate recognition of plant metabolites, followed by 

92.8%, 92.6% and 91.4% accuracy estimated for Human-, Bacterial- and 

Fungal- metabolites respectively.  

These results confirm good predictive power of ‘inductive’ QSAR 

descriptors that has been previously attributed to the fact that they cover a broad 

range of proprieties of bound atoms and molecules related to their size, 

polarizability, electronegativity, electronic and steric interactions and, thus, can 

adequately capture structural determinants of intra- and inter-molecular 

interactions [1-5]. 

3.6. Cross recognition and Similarity between Metabolites, Antibiotics, 

Drugs and Drug-like Substances.  

Notably, with the exception of the model for classification of plant 

metabolites, all other QSAR approaches produced non-dismissible number of 

false positive predictions (see Table 1) determined by overlaps between the 

studied groups of compounds.  

To further investigate the extend of cross-recognition between four groups 

of native metabolites we re-trained 3-NN models 3.1-3.4 leaving one of the 

activity groups out of consideration and then applied the developed models to 

the excluded set. The resulting numbers of positive predictions have been 

collected into Table 2 and transformed into the corresponding fractions of 

antimicrobials, Drugs, Drug-likes, Bacterial–, Plant-, Fungal- and Human-

metabolites that have been recognized by the ‘non-self’ QSAR models.  
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Table 2. Fractions of the studied groups of compounds recognized as 

false positive predictions by the developed four QSAR models  

 

Bacterial 

Metabolites 

Human 

Metabolites 

Fungi 

Metabolites 

Plant 

Metabolites 

Antibacterials 3.5 1.7 3.1 2.9 

Drugs 2.0 2.2 0.4 1.4 

Chemicals  0.5 0.6 0.8 0.4 

 

Bacterial Metabolites  0.7 31.4 0.9 

Human Metabolites 1.4  7.4 8.0 

Fungi Metabolites 22.1 3.8  11.3 

Plant Metabolites 0.3 1.4 6.0  

These numbers reflect a profound similarity between Fungal and Bacterial 

metabolites as well as between Fungal and Plant metabolites (interestingly, no 

significant overlaps have been established for Plant and Bacterial substances). 

Human metabolites demonstrated no significant cross-recognition with other 

natural compounds which confirms the previously reported stand-alone nature of 

this class of substances.  

When the developed QSAR ‘metabolite-likeness’ models have been applied 

to the groups of conventional human therapeutics, antibacterials and inactive 

drug-like chemicals, some interesting overlaps have been found between 

antibacterials and bacterial metabolites as well as between drugs and human 

metabolites (see the upper part of Table 2). More detailed analysis of substances 

recognized by the ‘human metabolite-likeness’ classifier demonstrate, that the 

largest portion of the corresponding false positive predictions originated by the 

fungal metabolite substances (likely reflecting strongest resemblance between 

fungal and human cellular composition), followed by natural molecules of plant 

origin and bacterial metabolites (as illustrated by Figure 2).  

 

 

 

 

 

 

 

 

 
 

Figure 2. Composition of false positives produced by the QSAR model for Human metabolites. 

Nonetheless, general overlap of Human metabolites with other studied 

groups of molecules is very limited. To illustrate positioning of Human 

metabolites against other groups in the chemical space we projected the 

Composition of False Positives when 

Predicting Human Metabolites

Drugs

Bacterial Metabolies

Fungi Metabolites

Plant Metabolites

Pacific Symposium on Biocomputing 12:133-144(2007) 



 9 

corresponding entries onto three Principal Components derived from 59 used 

QSAR descriptors (Figure 3)  

 

 
 
Figure 3. Separation of Human metabolites (Green) from other groups of the studied compounds in 

three dimensional space formed by 3 Principal Components derived from 59 used QSAR 

descriptors. The color coding of points corresponds to the following scheme: Red: Plant 

Metabolites, Orange: Fungal Metabolites, Pink: Bacterial Metabolites, Blue: Drugs.  

The chart demonstrates that descriptors computed for human metabolites 

determine certain overlap between Human metabolites and other substances, but 

their overall positioning in the chemical space is quite distinguished and rather 

sparse compared to other cluster that are much more compact. This, likely, can 

be attributed to the most diverse nature of substances involved in the human 

chemical pathways. 
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4. Conclusions 

To summarize the results of the previous sections, it is possible to conclude 

that antimicrobials, conventional therapeutics, inactive chemicals, as well as 

plant, fungal and bacterial metabolites are organized into rather compact as 

distinguished clusters in QSAR descriptors space what makes it possible to 

distinguish these types of chemicals with binary SA models. Fungal metabolites 

demonstrate rather significant mutual overlap with Bacterial substances and 

some degree of resemblance with Plant derivatives. When we utilized the k-

Nearest Neighbors, algorithm for the purpose of recognizing four groups of 

metabolic substances it allowed their generally acceptable separation.  

When the developed four ‘metabolite-likeness’ models have been applied to 

conventional human therapeutics and specific antimicrobial substances the 

formers demonstrated strongest association with human metabolites, while the 

later demonstrated tendency of ‘bacterial metabolite – like’ behavior. It is 

possible to speculate that the established ‘drugs-human metabolites’ and 

‘antimicrobials–bacterial metabolites’ associations result from strict 

bioavailability requirements imposed on therapeutics which, in a way, enforce 

their metabolite-like properties.  

The overall results of the conducted comparative QSAR analysis bring more 

insight into the nature and structural dominants of the studied classes of 

chemicals substances and, if necessary, can help rationalizing the design and 

discovery of novel antimicrobials and human therapeutics with metabolite-like 

chemical profiles. 
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Appendix 

‘Inductive’ (from 1 to 26) and conventional QSAR parameters (from 27 to 59) 

used for creating binary QSAR models 3.1-3.4.  

 

Average_EO_Neg, Average_EO_Pos, Average_Hardness, 

Average_Neg_Charge, Average_Neg_Hardness, Average_Pos_Charge, 

Average_Softness, EO_Equalized, Global_Softness, Hardness_of_Most_Neg, 

Hardness_of_Most_Pos, Largest_Neg_Hardness, Largest_Neg_Softness, 

Largest_Pos_Hardness, Largest_Rs_i_mol, Most_Neg_Rs_mol_i, 

Most_Neg_Sigma_i_mol, Most_Neg_Sigma_mol_i, Most_Pos_Charge, 

Most_Pos_Rs_i_mol, Most_Pos_Sigma_i_mol, Most_Pos_Sigma_mol_i, 
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Softness_of_Most_Pos, Sum_Hardness, Sum_Neg_Hardness, 

Total_Neg_Softness,  

 

b_double, b_rotN, b_rotR, b_triple, chiral, rings, a_nN, a_nO, a_nS, FCharge, 

lip_don, KierFlex, a_base, vsa_acc, vsa_acid, vsa_base, vsa_don, density, 

logP(o/w), a_ICM, chi1v_C, chiral_u, balabanJ, logS, ASA, ASA+, ASA-, 

ASA_H, ASA_P, CASA+, CASA-, DASA, DCASA 

 

For more details on ‘inductive’ parameters see references [1-5], while the used 

conventional QSAR parameters can be accessed through the MOE program [16]. 
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