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One of the growing challenges in life science research lies in finding useful, descriptive or quantitative 

data about newly reported biomolecules (genes, proteins, metabolites and drugs).  An even greater chal-

lenge is finding information that connects these genes, proteins, drugs or metabolites to each other.  Much 

of this information is scattered through hundreds of different databases, abstracts or books and almost 

none of it is particularly well integrated.  While some efforts are being undertaken at the NCBI and EBI to 

integrate many different databases together, this still falls short of the goal of having some kind of human-

readable synopsis that summarizes the state of knowledge about a given biomolecule – especially small 

molecules.  To address this shortfall, we have developed BioSpider. BioSpider is essentially an automated 

report generator designed specifically to tabulate and summarize data on biomolecules – both large and 

small. Specifically, BioSpider allows users to type in almost any kind of biological or chemical identifier 

(protein/gene name, sequence, accession number, chemical name, brand name, SMILES string, InCHI 

string, CAS number, etc.) and it returns an in-depth synoptic report (~3-30 pages in length) about that 

biomolecule and any other biomolecule it may target.  This summary includes physico-chemical parame-

ters, images, models, data files, descriptions and predictions concerning the query molecule.  BioSpider 

uses a web-crawler to scan through dozens of public databases and employs a variety of specially devel-

oped text mining tools and locally developed prediction tools to find, extract and assemble data for its 

reports. Because of its breadth, depth and comprehensiveness, we believe BioSpider will prove to be a 

particularly valuable tool for researchers in metabolomics. BioSpider is available at: www.biospider.ca 

 

1. Introduction 

Over the past decade we have experienced an explosion in the breadth and depth of 

information available, through the internet, on biomolecules.  From protein data-

bases such as the PDB [1] and Swiss-Prot [18] to small molecule databases such as 

PubChem (http://pubchem.ncbi.nlm.nih.gov/), KEGG [2], and ChEBI 

(http://www.ebi.ac.uk/chebi/), the internet is awash in valuable chemical and bio-

logical data.  Unfortunately, despite the abundance of this data, there is still a need 

for new tools and databases to connect chemical data (small, biologically active 

molecules such as drugs and metabolites) to biological data (biologically active tar-

gets such as proteins, RNA and DNA), and vice versa.  Without this linkage clini-

cally important or pharmaceutically relevant information is often lost.  To address 
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this issue we have developed an integrated cheminformatics/bioinformatics reporting 

system called BioSpider.  Specifically, BioSpider is a web-based search tool that 

was created to scan the web and to automatically find, extract and assemble quantita-

tive data about small molecules (drugs and metabolites) and their large molecule 

targets.  BioSpider can be used as both a research tool or it can be used as a database 

annotation tool to assemble fully integrated drug, metabolites or protein databases. 

 So far as we are aware, BioSpider appears to be a unique application.  It is 

essentially a hybrid of a web-based genome annotation tool, such as BASYS [3] and 

a text mining system such as MedMiner [4].  Text mining tools such as MedMiner, 

iHOP [5], MedGene [6] and LitMiner [7] exploit the information contained within 

the PubMed database.  These web servers also support more sophisticated text and 

phrase searching, phrase selection and relevance filtering using specially built syno-

nym lists and thesauruses.  However, these text mining tools were designed specifi-

cally to extract information only from PubMed abstracts as opposed to other data-

base resources.  In other words MedMiner, MedGene and iHOP do not search, dis-

play, integrate or link to external molecular database information (i.e. GenBank, 

OMIM [8], PDB, SwissProt, PharmGKB [9], DrugBank [10], PubChem, etc.) or to 

other data on the web.  This database or web-based information-extraction feature is 

what is unique about BioSpider. 

 

2. Application Description 

2.1. Functionality 

Fundamentally, BioSpider is highly sophisticated web spider or web crawler.  Spi-

ders are software tools that browse the web in an automated manner and keep copies 

of the relevant information of the visited pages in their databases.  However, 

BioSpider is more than just a web spider.   It is also an interactive text mining tool 

that contains several predictive bioinformatic and cheminformatic programs, all of 

which are available through a simple and intuitive web interface.  Typically a 

BioSpider session involves a user submitting a query about one or more biological 

molecules of interest through its web interface, waiting a few minutes and then 

viewing the results in a synoptic table.  This hyperlinked table typically contains 

more than 80 data fields covering all aspects of the physico-chemical, biochemical, 

genetic and physiological information about the query compound.  Users may query 

BioSpider with either small molecules (drugs or metabolites) or large molecules 

(human proteins).  The queries can be in almost any form, including chemical 

names, CAS numbers, SMILES strings [11], INCHI identifiers, MOL files or Pub-

chem IDs (for small molecules), or protein names and/or Swiss-Prot IDs (for mac-

romolecules).  In extracting the data and assembling its tabular reports BioSpider 

employs several robust data-gathering techniques based on screen-scraping, text-
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mining, and various modeling or predictive algorithms.  If a BioSpider query is 

made for a small molecule, the program will perform a three-stage search involving: 

1) Compound Annotation; 2) Target Protein/Enzyme Prediction and 3) Target Pro-

tein/Enzyme Annotation (see below for more details).  If a BioSpider query is made 

for a large molecule (a protein), the program will perform a complete protein annota-

tion.  BioSpider always follows a defined search path (outlined in Figure 1, and ex-

plained in detail below), extracting a large variety of different data fields for both 

chemicals and proteins (shown in Table 1).  In addition, BioSpider includes a built-

in referencing application that maintains the source for each piece of data obtained.  

Thus, if BioSpider obtains the Pubchem ID for a compound using KEGG, a refer-

ence “Source: KEGG” is added to the reference table for the Pubchem ID.  
 

Figure 1 - Simplified overview of a BioSpider search 

 

Table 1 - Summary of some of the fields obtained by BioSpider 

Drug or Compound Information Drug Target or Receptor Information 

Generic Name Name 

Brand Names/Synonyms Synonyms 

IUPAC Name Protein Sequence 

Chemical Structure/Sequence Number of Residues 

Chemical Formula Molecular Weight 

PubChem/ChEBI/KEGG Links pI 

SwissProt/GenBank Links Gene Ontology 

FDA/MSDS/RxList Links General Function 

Molecular Weight Specific Function 

Melting Point Pathways 

Water Solubility Reactions 

pKa or pI Pfam Domains 

LogP or Hydrophobicity Signal Sequences 

NMR/Mass Spectra Transmembrane Regions 

MOL/SDF Text Files Essentiality 

Drug Indication Genbank Protein ID 

Drug Pharmacology SwissProt ID 

Drug Mechanism of Action PDB ID 

Drug Biotransformation/Absorption Cellular Location 

Drug Patient/Physician Information DNA Sequence 

Drug Toxicity Chromosome Location 

(1) 

Obtain Chemical Infor-

mation: CAS IUPAC 

Name, Synonyms, Melt-

ing Point, etc. 

(2) 

Predict Drug Targets or 

Metabolizing Enzymes 

(3) 

For each predicted Drug 

Target or Metabolizing En-

zyme, obtain protein infor-

mation including sequence 

information, description, 

SNPs, etc. 
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Step 1: Compound Annotation 

Compound annotation involves extracting or calculating data about small molecule 

compounds (metabolites and drugs).  This includes data such as common names, 

synonyms, chemical descriptions/applications, IUPAC names, chemical formulas, 

chemical taxonomies, molecular weights, solubilities, melting or boiling points, pKa, 

LogP’s, state(s), MSD sheets, chemical structures (MOL, SDF and PDB files), 

chemical structure images (thumbnail and full-size PNG), SMILES strings, InCHI 

identifiers, MS and NMR spectra, and a variety of database links (PubChem, KEGG, 

ChEBI).  The extraction of this data involves accessing, screen scraping and text 

mining ~30 well known databases (KEGG, PubChem), calling a number of predic-

tive programs (for calculating MW, solubility) and running a number of file conver-

sion scripts and figure generation routines via CORINA [12], Checkmol 

(http://merian.pch.univie.ac.at/~nhaider/cheminf/cmmm.html) and other in-house 

methods.  The methods used to extract and generate these data are designed to be 

called independently but they are also “aware” of certain data dependencies.  For 

instance, if a user only wanted an SDF file for a compound, they would simply call a 

single method: get_value(‘sdf_file’).  There is no need to explicitly call methods that 

might contain the prerequisite information for getting an SDF file. Likewise, if 

BioSpider needs a Pubchem ID to grab an SDF file, it will obtain it automatically, 

and, consequently, if a Pubchem ID requires a KEGG ID, BioSpider will then jump 

ahead to try and get the KEGG ID automatically.  

 

Step 2: Target/Enzyme Prediction 

Target/enzyme prediction involves taking the small-molecule query and identifying 

the enzymes likely to be targeted or involved in the metabolism of that compound.  

This process involves looking for metabolite-protein or drug-protein associations 

from several well-known databases including SwissProt, PubMed, DrugBank and 

KEGG.  The script begins by constructing a collection of query objects from the 

supplied compound information.  Each query object contains the name and syno-

nyms for a single compound, as well any similar but unwanted terms. For example, a 

query object for the small molecule compound “pyridoxal” would contain the term 

“pyridoxal phosphatase” as an unwanted term, since the latter name is for an en-

zyme.  The list of unwanted or excluded terms for small molecule compounds is 

assembled from a list of the names and synonyms of all human proteins.  These un-

wanted terms are identified automatically by testing for cases where one term repre-

sents a subset of another. Users can also include their own “exclusion” terms in 

BioSpider’s advanced search interface. 

The name and synonyms from a query object are then submitted using 

WWW agents or public APIs to a variety of abstract and protein sequence databases, 

including Swiss-Prot, PubMed, and KEGG. The name and synonyms are each sub-
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mitted separately, rather than as a single query, since queries consisting of multiple 

synonyms typically produce many irrelevant results.  The relevance of each of the 

returned records is measured by counting the number of occurrences of the com-

pound name and synonyms, as well as the number of occurrences of the unwanted 

terms. Records containing only the desired terms are given a “good” rating, while 

those containing some unwanted terms are given a “questionable” rating.  Records 

containing only unwanted terms are discarded. The records are then sorted based on 

their qualitative score.  BioSpider supports both automated identification and semi-

automated identification.  For automated identification, only the highest scoring hits 

(no unwanted terms, hits to more than one database) are selected.  In the semi-

automated mode, the results are presented to a curator who must approve of the se-

lection. To assist with the decision, each of the entries in the document is hyper-

linked to the complete database record so that the curator can quickly assess the 

quality of the results.  Note that metabolites and drugs often interact with more than 

one enzyme or protein target. 

 

Step 3: Target/Enzyme Annotation 

Target/Enzyme annotation involves extracting or calculating data about the proteins 

that were identified in Step 2.  This includes data such as protein name, gene name, 

synonyms, protein sequence, gene sequence, GO classifications, general function, 

specific function, PFAM [13] sequences, secondary structure, molecular weight, 

subcellular location, gene locus, SNPs and a variety of database links (SwissProt, 

KEGG, GenBank). Approximately 30 annotation sub-fields are determined for each 

drug target and/or metabolizing enzyme.  The BioSpider protein annotation program 

is based on previously published annotation tools developed in our lab including 

BacMap [14], BASYS and CCDB [15].  The Swiss-Prot and KEGG databases are 

searched initially to retrieve protein and gene names, protein synonyms, protein se-

quences, specific and general functions, signal peptides, transmembrane regions and 

subcellular locations. If any annotation field is not retrieved from the above-

mentioned databases then either alternate databases are searched or internally devel-

oped/installed programs are used.  For example, if transmembrane regions are not 

annotated in the Swiss-Prot entry, then a locally installed transmembrane prediction 

program called TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) is used to 

predict the transmembrane regions. This protein annotation tool also coordinates the 

updating of fields that are calculated from the contents of other fields, such as mo-

lecular weight and isoelectric point.  The program also retrieves chromosome loca-

tion, locus location and SNP information from GeneCards [16] on the basis of the 

gene name. BLAST searches are also performed against the PDB database to iden-

tify structural homologues. Depending upon the sequence similarity between the 

query protein sequence to a sequence represented in the PDB database, a program 
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called HOMODELLER (X. Dong, unpublished data) may generate a homology 

model for the protein sequence.  

 

2.2. Implementation 

The BioSpider backend is a fully objected-oriented Perl application, making it robust  

and portable.  The frontend (website, shown in Figure 2) utilizes Perl CGI scripts 

which generate valid XHMTL and CSS.  BioSpider uses a relational database 

(MySQL 5) to store data as it runs.  As BioSpider identifies and extracts different 

pieces of information, it stores the data in the database.  To facilitate this storage 

process, a module called a “DataBean” is used to store and retrieve the desired in-

formation from/to the database. This approach was chosen for 3 reasons: 1) it pro-

vides an “audit-trail” in terms of the results obtained, 2) it provides a complete 

search result history, enabling the easy addition of “saved-searches” to the website, 

and 3) it reduces memory load as the application is running.  A screenshot of the 

BioSpider website is shown in Figure 2. 

 
Figure 2 – A screen shot montage of BioSpider 
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3. Validation, Comparison and Limitations 

Text mining and data extraction tools can be prone to a variety of problems, many of 

which may lead to nonsensical results.  To avoid these problems BioSpider performs 

a number of self-validation or “sanity checks” on specific data extracted from the 

web.  For example, when searching for compound synonym names, BioSpider will 

check that the PubChem substance page related to that synonym contains the origi-

nal search name or original CAS number within the HTML for that page.  This sim-

ple validation procedure can often remove bogus synonyms obtained from different 

websites.  Other forms of such small-scale validation or sanity-checks includes a 

CAS number validation method, whereby the CAS number check-digit is used to 

validate the entire CAS number (CAS numbers use a checksum, whereby the check-

sum is calculated by taking the last digit times 1, the next digit times 2, the next digit 

times 3 etc., adding all these up and computing the sum modulo 10).   

Since the majority of the information obtained by BioSpider is screen-

scraped from several websites, it is also important to validate the accessibility of 

these websites as well as the HTML formatting.  Since screen-scraping requires one 

to parse the HTML, BioSpider must assume the HTML from a given website fol-

lows a specific format.  Unfortunately, this HTML formatting is not static, and 

changes over time as websites add new features, or alter the design layout.  For this 

reason, BioSpider contains an HTML validator application, designed to detect 

changes in the HTML formatting for all the web-resources that BioSpider searches.  

To achieve this, an initial search was performed and saved using BioSpider for 10 

pre-selected compounds, whereby the results from each of the fields were manually 

validated.  This validation-application performs a search on these 10 pre-selected 

compounds weekly (as a cron job).  The results of this weekly search are compared 

to the original results, and if there is any difference, a full report is generated and 

emailed to the BioSpider administrator. 

The assessment of any text mining or report generating program is difficult.  

Typically one must assess these kinds of tools using three criteria: 1) accuracy; 2) 

completeness and 2) time savings.   In terms of accuracy, the results produced are 

heavily dependent on the quality of the resources being accessed.  Obviously if the 

reference data are flawed or contradictory, the results from a BioSpider search will 

be flawed or contradictory.  To avoid these problems every effort has been made to 

use only high-accuracy, well curated databases as BioSpider’s primary reference 

sources (KEGG, SwissProt, PubChem, DrugBank, Wikipedia, etc).  As a result, per-

haps the most common “detectable” errors made by BioSpider pertain to text parsing 

issues (with compound descriptions), but these appear to be relatively minor.  The 

second most common error pertains to errors of omission (missing data that could be 

found by a human expert looking through the web or other references).  In addition 

to these potential programmatic errors, the performance of BioSpider can be com-
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promised by incorrect human input, such as a mis-spelled compound name, SMILES 

string or CAS number or the submission of an erroneous MOL or SDF file.  It can 

also be compromised by errors or omissions in the databases and websites that it 

searches.  Some consistency or quality control checks are employed by the program 

to look for nomenclature or physical property disagreements, but these may not al-

ways work.  BioSpider will fail to produce results for newly discovered compounds 

as well as compounds that lack any substantive electronic or web-accessible annota-

tion. During real world tests with up to 15 BioSpider users working simultaneously 

for 5-7 hours at a time, we typically find fewer than two or three errors being re-

ported.  This would translate to 1 error for every 15,000 annotation fields, depending 

on the type of query used.  The number of errors returned is highest when searching 

using a name or synonym, as it is difficult to ascertain correctness.  Errors are much 

less likely when using a search that permits a direct mapping between a compound 

and the source websites used by BioSpider.  It is thus recommended that users 

search by structure (InChI, SDF/MOL, SMILES) or unique database ID (pubchem 

ID, KEGG ID) first, resorting to CAS number or name only when necessary.  De-

spite this high level of accuracy, we strongly suggest that every BioSpider annota-

tion should be looked over quickly to see if any non-sensical or inconsistent infor-

mation has been collected in its annotation process.  Usually these errors are quite 

obvious.  In terms of errors of omission, typically a human expert can almost always 

find data for 1 or 2 fields that were not annotated by BioSpider – however this 

search may take 30 to 45 minutes of intensive manual searching or reading.  

During the annotation of the HMDB and DrugBank, BioSpider was used to 

annotate thousands of metabolites, food additives and drugs.  During this process, it 

was noted that BioSpider was able to obtain at least some information about query 

compounds 91% of the time.  The cases where no information was returned from 

BioSpider often involved compounds whereby a simple web search for that com-

pound would return no results.  This again spotlights one of the limitations of the 

BioSpider approach – its performance is directly proportional to the “web-presence” 

of the query compound. 

Perhaps the most important contribution for Biospider for annotation lies in 

the time savings it offers.  Comparisons between BioSpider and skilled human anno-

tators indicate that BioSpider can accelerate annotations by a factor of 40 to 50 X 

over what is done by skilled human annotators.  In order to test this time-saving fac-

tor, 3 skilled volunteers were used.  Each volunteer was given 3 compounds to anno-

tate (2-Ketobutyric acid, Chenodeoxycholic acid disulfate and alpha-D-glucose) and 

the fields to fill-in for that compound.  Each volunteer was asked to search for all 

associated enzymes, but only asked to annotate a single enzyme by hand.  The data 

obtained by the volunteers were then compared to the results produced by BioSpi-

der.  These tests indicated that the time taken to annotate the chemical fields aver-

ages 40 minutes and 45 minutes for the biological fields, with a range between 22 
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and 64 minutes.  The time taken by Biospider was typically 5 minutes.  In other 

words, to fill out a complete set of BioSpider data on a given small molecule (say 

biotin) using manual typing and manual searches typically takes a skilled individual 

approximately 3 hours.  Using BioSpider this can take as little as 2 minutes.  Addi-

tionally, the quality of data gathered by BioSpider matched the human annotation for 

almost all of the fields.  Indeed, it was often the case that the volunteer would give 

up on certain fields (pubchem substance IDs, OMIM IDs, etc.) long before comple-

tion. 
In terms of real-world experience, BioSpider has been used in several pro-

jects, including DrugBank and HMDB (www.hmdb.ca).  It has undergone full stress 

testing during several “annotation workshops” with up to 50 instances of BioSpider 

running concurrently.  BioSpider has also been recently integrated into a LIMS sys-

tem (MetaboLIMS – http://www.hmdb.ca/labm/). This allows users to produce a 

side-by-side comparison on the data obtained using BioSpider and the data collected 

manually by a team of expert curators.  Overall, BioSpider has undergone hundreds 

of hours of real-life testing, making it stable and relatively bug-free.  

4. Conclusion 

BioSpider is a unique application, designed to fill in the gap between chemical 

(small-molecule) and biological (target/enzyme) information.  It contains many ad-

vanced predictive algorithms and screen-scraping tools made interactively accessible 

via an easy-to-use web front-end.  As mentioned previously, we have already reaped 

significant benefits from earlier versions of BioSpider in our efforts to prepare and 

validate a number of large chemical or metabolite databases such as DrugBank and 

HMDB.  It is our hope that by offering the latest version of BioSpider to the public 

(and the metabolomics community in particular) its utility may be enjoyed by others 

as well. 

 

5. Acknowledgments  

The Human Metabolome Project is supported by Genome Alberta, in part through 

Genome Canada.  

 

 

 

References 

 

Pacific Symposium on Biocomputing 12:145-156(2007) 



1. Sussman, JL, Lin, D, Jiang, J, Manning, NO, Prilusky, J, Ritter, O & Abola, 

EE. Protein data bank (PDB): a database of 3D structural information of bio-

logical macromolecules. Acta Cryst. 1998. D54:1078-1084. 

2. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. 2004. The 

KEGG resource for deciphering the genome. Nucleic Acids Res. 32(Database 

issue):D277-280. 

3. Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, Lu 

P, Szafron D, Greiner R, Wishart DS. 2005. BASys: a web server for auto-

mated bacterial genome annotation. Nucleic Acids. Res. 1;33(Web Server is-

sue):W455-9. 

4. Tanabe, L., Scherf, U., Smith, L.H., Lee, J.K., Hunter, L. and Weinstein, J.N.  

MedMiner: an Internet text-mining tool for biomedical information, with appli-

cation to gene expression profiling. Biotechniques 1999. 27:1210-1217.  

5. Hoffmann, R. and Valencia, A. Implementing the iHOP concept for navigation 

of biomedical literature. Bioinformatics 2005. 21 Suppl 2:ii252-ii258. 

6. Hu Y., Hines L.M., Weng H., Zuo D., Rivera M., Richardson A. and LaBaer J: 

Analysis of genomic and proteomic data using advanced literature mining. J 

Proteome Res. 2003. Jul-Aug;2(4):405-12. 

7. Maier H., Dohr S., Grote K., O’Keeffe S., Werner T., Hrabe de Angelis M. and 

Schneider R: LitMiner and WikiGene: identifying problem-related key players 

of gene regulation using publication abstracts. Nucleic Acids Res. 2005. Jul 

1;33(Web Server issue):W779-82. 

8. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A. and McKusick, V.A. 

2005. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of hu-

man genes and genetic disorders. Nucleic Acids Res. 33(Database issue):D514-

517. 

9. Hewett, M., Oliver, D.E., Rubin, D.L., Easton, K.L., Stuart, J.M., Altman, R.B. 

and Klein, T.E. 2002. PharmGKB: the Pharmacogenetics Knowledge Base. 

Nucleic Acids Res. 30:163-165. 

10. Wishart, D.S., Knox, C., Guo, A., Shrivastava, S., Hassanali, M., Stothard, P. 

and Woolsey, J. 2006. DrugBank: A comprehensive resource for in silico drug 

discovery and exploration. Nucleic Acids. Res. 34(Database issue):D668-672. 

11. Weininger, D. 1988. SMILES 1. Introduction and Encoding Rules.  J. Chem. 

Inf. Comput. Sci. 28:31-38. 

12. Gasteiger J, Sadowski J, Schuur J, Selzer P, Steinhauer L, Steinhauer V: 

Chemical information in 3D-space. J Chem Inf Comput Sci 36: 1030-1037, 

1996. 

13. Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., 

Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., 

Yeats, C. and Eddy, S.R. 2004.  The Pfam protein families database. Nucleic 

Acids Res. 32:D138–141. 

Pacific Symposium on Biocomputing 12:145-156(2007) 



14. Stothard P, Van Domselaar G, Shrivastava S, Guo A, O'Neill B, Cruz J, Ellison 

M, Wishart DS. BacMap: an interactive picture atlas of annotated bacterial ge-

nomes. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D317-20. 

15. Sundararaj S, Guo A, Habibi-Nazhad B, Rouani M, Stothard P, Ellison M, 

Wishart DS. BacMap: an interactive picture atlas of annotated bacterial ge-

nomes. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D317-20. 

16. Rebhan, M., Chalifa-Caspi, V., Prilusky, J. and Lancet, D. 1998. GeneCards: a 

novel functional genomics compendium with automated data mining and query 

reformulation support. Bioinformatics 14:656-664. 

17. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. 

and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of 

protein database search programs. Nucleic Acids Res. 25:3389-3402. 

18. Bairoch, A., Apweiler. R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., 

Gasteiger, E., Huang, H., Lopez, R., Magrane, M. et al. 2005. The Universal 

Protein Resource (UniProt). Nucleic Acids Res. 33(Database issue):D154-159. 

19. Brooksbank, C., Cameron, G. and Thornton, J. 2005. The European Bioinfor-

matics Institute's data resources: towards systems biology. Nucleic Acids Res. 

33 (Database issue):D46-53. 

20. Chen, X., Ji, Z.L. and Chen, Y.Z. 2002. TTD: Therapeutic Target Database. 

Nucleic Acids Res. 30:412-415. 

21. Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, 

W.T. and Banks, J.L.  2004. Glide: a new approach for rapid, accurate docking 

and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 

47:1750-1709. 

22. Hatfield, C.L., May, S.K. and Markoff, J.S. 1999. Quality of consumer drug 

information provided by four Web sites. Am. J. Health Syst. Pharm. 56:2308-

2311. 

23. Hulo, N., Sigrist, C.J., Le Saux, V., Langendijk-Genevaux, P.S., Bordoli, L., 

Gattiker, A., De Castro, E., Bucher, P. and Bairoch, A. 2004. Recent 

improvements to the PROSITE database. Nucleic Acids Res. 32:D134–137. 

24. Kramer, B., Rarey, M. and Lengauer, T. 1997. CASP2 experiences with dock-

ing flexible ligands using FlexX. Proteins Suppl 1:221-225 

25. Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E.L. 2001. Predicting 

transmembrane protein topology with a hidden Markov model: application to 

complete genomes. J. Mol. Biol. 305:567-580. 

26. McGuffin, L.J., Bryson, K. and Jones, D.T. 2000. The PSIPRED protein 

structure prediction server. Bioinformatics 16:404–405. 

27. Montgomerie, S., Sundararaj, S., Gallin, W.J. and Wishart, D.S. 2006. 

Improving the accuracy of protein secondary structure prediction using 

structural alignment. BMC Bioinformatics 7:301-312. 

Pacific Symposium on Biocomputing 12:145-156(2007) 



28. Orth, A.P., Batalov, S., Perrone, M. and Chanda, S.K.  2004. The promise of 

genomics to identify novel therapeutic targets. Expert Opin. Ther. Targets. 

8:587-596. 

29. Sadowski, J. and Gasteiger J. 1993. From atoms to bonds to three-dimensional 

atomic coordinates: automatic model builders. Chem. Rev. 93: 2567-2581. 

30. Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Church, 

D.M., DiCuccio, M., Edgar, R., Federhen, S., Helmberg, W., Kenton, D.L., 

Khovayko, O., Lipman, D.J., Madden, T.L., Maglott, D.R., Ostell, J., Pontius, 

J.U., Pruitt, K.D., Schuler, G.D., Schriml, L.M., Sequeira, E., Sherry, S.T., Si-

rotkin, K., Starchenko, G., Suzek, T.O., Tatusov, R., Tatusova, T.A., Wagner, 

L. and Yaschenko, E. 2005. Database resources of the National Center for Bio-

technology Information. Nucleic Acids Res. 33(Database issue):D39-45. 

31. Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R.F., Sykes, B.D. and 

Wishart, D.S. 2003. VADAR: a web server for quantitative evaluation of 

protein structure quality. Nucleic Acids Res. 31:3316–3319. 

 

 

 

Pacific Symposium on Biocomputing 12:145-156(2007) 


