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We introduce a new motif-discovery algorithm, DIMDom, which exploits two additional 

kinds of information not commonly exploited: (a) the characteristic pattern of binding 

site classes, where class is determined based on biological information about 

transcription factor domains and (b) posterior probabilities of these classes. We 

compared the performance of DIMDom with MEME on all the transcription factors of 

Drosophila with at least one known binding site in the TRANSFAC database and found 

that DOMDom outperformed MEME with 2.5 times the number of successes and 1.5 

times in the accuracy in finding binding sties and motifs. 

1. Introduction 

One important problem in bioinformatics is understanding how genes cooperate 

to perform functions. Related to this is the subproblem of discovering motifs. 

The context behind the motif discovering problem is the following. Gene 

expression is the process whereby a gene is decoded to form an mRNA sequence 

which is then used to produce the corresponding protein sequence. In order to 

start the gene expression process, a molecule called a transcription factor will 

bind to a short substring, called a binding site, in the promoter region of the gene. 

A transcription factor can bind to several binding sites in the promoter regions of 

different genes to make these genes co-express, and such binding sites should 

have common patterns. The motif discovering problem is to discover the 

common patterns, or motifs, from a set of promoter regions without knowing the 

positions of the binding sites. However, many motifs in real biological data 

cannot be discovered by existing algorithms because the existing models [3, 8, 

12, 13, 20] that represent motifs might not be able to capture the different pattern 

variations of the binding sites. 

PSSM (Position Specific Scoring Matrix) [2, 4, 6, 7, 10, 11, 14] is the most 

common motif representation. It uses a 4 × l matrix of real numbers to represent 

a length-l motif. The j-th column of 4 numbers gives us the probability, 
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respectively, that symbol ‘A’, ‘C’, ‘G’ or ‘T’ occupies at the j-th position of the 

motif. The goal is to discover the optimal motif matrix which maximizes the 

likelihood of the input sequences being generated according to the matrix.  

Existing algorithms assume the prior probability of each matrix being 

chosen to generate the input sequences is the same. However, this assumption is 

not correct in real biological data. Transcription factors mainly bind to the 

binding sites by substructures called active binding domains (in short, domain), 

e.g. zinc finger [23], leucine zipper [16] and homeodomain [19]. Although the 

binding sites of transcription factors with the same domain do not necessarily 

have the same patterns, they should share some common characteristics [18]. For 

example, binding sites of zinc finger usually contain the nucleotide ‘G’ regularly 

and binding sites of homeodomain usually contain the “TAAT” substring. If we 

know which domains of the transcription factors contact the binding sites, we 

can improve the accuracy of existing motif discovering algorithms by adding 

constraints on the motifs [5, 15, 21]. For some motif classes, it might be possible 

to find the motif by considering only substrings in the DNA sequences with 

certain characteristics as candidates for binding sites. However, we usually do 

not know which transcription factors or, more specifically, which domains of the 

transcription factors contact the binding sites. The approach of searching for 

substrings with characteristics of each possible motif class is not only time-

consuming, but may even fail to find the hidden motif because of the following 

two weaknesses of this approach. Firstly, the number of wrongly predicted 

binding sites might be large, e.g. many substrings in the input sequences with 

pattern [CG] . . [CG] . . [CG] are not binding sites of a motif in Class I (to be 

introduced in Section 2). Secondly, some binding sites of a motif in a particular 

class may not have the corresponding characteristics exactly, e.g. a binding site 

of motif in Class IV may contain the pattern TGA.*TGA instead of TGA.*TCA. 

A natural question is: can we improve the performance of motif discovering 

problem by knowing only the characteristics of each possible motif class? 

Narlikar et al. [17] trained 3847 binding sites in the TRANSFAC database 

and defined three motif classifiers using 1387 features. Each motif classifier can 

represent the common features for binding sites in the corresponding motif class 

precisely. However, the definition of the motif classifiers highly depends on a 

large set of training binding sites and may not capture the real common features 

of binding sites in the motif class. Xing and Karp [24] used a similar method by 

training 271 motif matrices in the TRANSFAC database which represents about 

2000 binding sites 

In this paper, we model the common features of different motif classes by 

much less parameters than the above methods (Section 2). Our algorithm 

DIMDom (Section 3), which stands for DIscovering Motifs with DOMain 
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knowledge, discovers motifs by an EM approach: the expectation step finds 

over-represented patterns in the DNA sequence, while the maximization step, 

based on the motif matrix with the maximum log likelihood, guesses the class of 

the binding site patterns according to posterior probabilities and then modifies 

the motif matrix according to the class guessed. Besides getting more accurate 

motifs, the binding sites with domain knowledge can converge to the real 

solution (motif) more quickly as shown in the experiments (Section 4) on real 

biological data when compared with the popular algorithm MEME. 

2. Our Model 

The input sequences can be broken up into length-l (overlapping) substrings X = 

{X1, X2, … , Xw} and each substring in X either belongs to a background (non-

motif) substring with a prior probability λb or belongs to an instance of the 

hidden motif M with a prior probability 1 – λb. In particular, Z = (Z1, Z2, … , Zw) 

is the missing data that determines whether Xi is generated according to the 

background probability B (Zi = 1) or the hidden matrix M (Zi = 0). The 

likelihood of some particular B, M, λb being the hidden parameters of the finite 

mixture model [2] is defined as  
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The goal of many existing algorithms [2, 4, 10] is to discover the B, M, λb with 

the maximum likelihood (or log likelihood). 

Transcription factors are protein sequences with different three dimensional 

structures. They have different substructures, or domains, for recognizing and 

binding to specific binding sites. The binding affinity of a transcription factor 

depends on whether the binding sites have certain DNA patterns match with the 

domains of the transcription factor. For example, basic helix-loop-helix proteins 

usually bind to strings with the pattern “CA . . TG” [1]. Other examples can be 

found in [16, 19, 23, 25]. 

Narlikar and Hartemink [18] analyzed 3847 published binding sites. They 

found that these binding sites can be classified into six groups with different 

occurrence counts. These counts represent the prior probabilities as shown in 

Table 1. For example, the probability Pm(2) that the hidden matrix is in Class II 

(Cys4) is approximately 734/3847. Based on this observation, we introduce the 

Bayesian Mixture Model to describe these uneven probabilities. 
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Table 1. The six classes of binding sites patterns. 

Class name Characteristics Count 

I. Cys2His2 (zinc-coordinating) G . . G  | G . . G . . G | [CG] . . [CG] . . [CG] 776 

II.  Cys4 (zinc-coordinating) AGGTCA | TGACCT 734 

III.  bHLH (basic domain) CA . . TG 182 

IV. bZip (basic domain) TGA .* TCA 1353 

V. Forkhead (helix-turn-helix) no characteristics 281 

VI. Homeodomain (helix-turn-helix) TAAT | ATTA 621 

 Total 3847 

“ . ” means any nucleotide. “ .* ” means zero or more nucleotides. “ [ ] ” means one of the nucleotides in the bracket. “ | ” means or. 

2.1.Bayesian Mixture Model 

Each substring in X is assumed either generated according to a background 

probability B = (b(A), b(C), b(G), b(T)) or a hidden matrix M. However, the 

prior probability of each matrix being the hidden matrix is not the same. A motif 

class g, g = 1, … , 6 is randomly chosen according to probability distribution Pm 

= {Pm(g)} where 1)(6
1 =∑ =g m gP . Once a motif class is chosen, a probability 

matrix is picked, with equal probability, from the chosen class as the hidden 

matrix. The goal of the motif discovering problem is to discover motif M and 

other parameters with maximum likelihood with respect to the given X and Pm. 

Given the joint distribution of the substring X, the missing data Z, the 

hidden motif M and the motif class g, the likelihood of some particular B, λb, 

Pm being the hidden parameters of the Bayesian mixture model is defined as 
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Therefore, the likelihood L(B, λb, Pm | X, Z, M, g) is equal to L(B, M, λb | X, Z) 

times the term P(M | g)Pm(g) which is the probability of class g being chosen and 

matrix M being picked from class g.  

2.2.Characteristics of the Motif Classes 

Each motif class can be characterized by a regular expression as shown in Table 

1. A matrix for a particular motif class should contain a 4 × l’ sub-matrix M’ 

where l’ ≤ l, which satisfies the restriction stated by the regular expression. Note 

that a probability matrix can belong to more than one motif class. 

Each symbol ‘A’, ‘C’, ‘G’, ‘T’ in the regular expression means the entries 

M’(A,j), M’(C,j), M’(G,j) or M’(T,j) of the corresponding j-th column of the sub-

matrix M’ are larger than some predefined threshold β, 0.25 < β ≤ 1. For 

example, the regular expression “CA . . TG” in Class III means all matrices in 
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Class III must contain a 4 × 6 sub-matrix M’ such that M’(C, 1) ≥ β, M’(A, 2) ≥ 

β, M’(T, 5) ≥ β and M’(G, 6) ≥ β. Since the Class V has no characteristics, we 

assume all matrices belong to Class V, i.e. the regular expression is “.*”. 

Since the size of the sample space for each motif class is not the same, the 

likelihood of a particular class g given a matrix M, i.e. P(M | g = k), k = 1, …, 6,  

is not the same for different motif classes. In order to compare (without finding 

their exact values) the likelihood of different motif classes when given a matrix, 

we consider a 4 × 1 column vector CV = (µ(A), µ(C), µ(G), µ(T)) in a probability 

matrix. Since 0 ≤ µ(A), µ(C), µ(G), µ(T) ≤ 1 and µ(A) + µ(C) + µ(G) + µ(T) = 1, 

the sample space of CV can be represented by the set of points in the tetrahedron 

shown in Figure 1 [10]. The four corners of the tetrahedron at (1,0,0,0), (0,1,0,0), 

(0,0,1,0) and (0,0,0,1) represent the four nucleotides A, C, G and T. Without loss 

of generality, let CV be the first column of a 4 × 4 matrix with the pattern 

“TAAT” in motif Class VI (Table 1), in which case µ(T) ≥ β. 

To illustrate the idea, let us consider two classes of motif. In Class V a 

column vector CV’ is randomly picked from all possible column vectors, 

whereas in Class VI, a column vector CV is randomly picked from all column 

vectors with µ(T) ≥ β. As the size of the sample space for column vectors with 

µ(T) ≥ β, i.e. the tetrahedron shown in Figure 2, is (1 – β)
3
 of the size of the 

sample space for arbitrary column vectors, i.e. the whole tetrahedron, conditional 

probability P(CV | g = 6) is 1/(1 – β)
3
 times higher than the conditional 

probability P(CV’ |  g = 5). 

Similarly, we may compare the conditional probability of a particular matrix 

M’ being picked given that it is from Class V (all probability matrices) and the 

conditional probability of another matrix M being picked given that it is from 

one of the remaining classes. For example, assume l = 4 and β = 0.8. The 

conditional probability P(M | g = 6) that a particular 4 × 4 matrix M in Class VI 

is picked from all length-4 matrices in Class VI is 1/(2(1 – 0.8)
3×4

) = 1.2 × 10
8
 

times larger than the conditional probability P(M’ | g = 5) that another matrix M’ 

C 

G 

T 

(0,0,0,1) 

(0,1,0,0) 

(0,0,1,0) 

µ(A) = 0.25 

µ(G) 
µ(C) 

µ(T) A(1,0,0,0) 

(0.25, µ(C), µ(G), µ(T)) 

µ(A) = 0.5 

µ(A) = 0.75 

β 

C 
(0,1,0,0) 

A(1,0,0,0) 

T 

(0,0,0,1) 

G 

(0,0,1,0) 

Figure 1. Graphical representation of all 

possible column vectors (µ(A), µ(C), µ(G), 

µ(T)) of a probability matrix. 

Figure 2. Graphical representation of all 

possible column vectors with µ(T) ≥ β. 
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is picked from all length-4 matrices in Class V. Note that, if M’ does not belong 

to Class VI, P(M’ | g = 6) = 0. 

When the motif length l is not exactly 4, care should be taken not to double 

count those matrices with more than one sub-matrix satisfying the requirement 

(by using the Inclusion and Exclusion Principle). 

3. DIMDom Algorithm 

DIMDOM, which stands for DIscovering Motifs with DOMain knowledge, 

uses the expectation maximization (EM) approach to discover the motif matrix 

from the input sequences. In the expectation step (E-step), based on the current 

estimates of parameters M, B, λb and g, DIMDom algorithm calculates the 

expected log likelihood log L(B, λb, Pm | X, Z, M, g), over the conditional 

probability distribution of the missing data Z from the input sequences X. In the 

maximization step (M-step), DIMDom algorithm calculates a new set of 

parameters M, B, λb and g based on the new estimated Z for maximizing the log 

likelihood. These two steps will be iterated in order to obtain a probability 

matrix with larger log likelihood. In order to discover the probability matrix with 

maximum log likelihood (instead of local maxima), DIMDom algorithm repeats 

the EM steps with different seed matrices. 

3.1.Expectation step 

Given a fixed probability matrix M
(0)

, the background probability B
(0)

, prior 

probability λb
(0)

 and the motif class g
(0)

, the expected log likelihood is 
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where )0(

iZ  = E(Zi | X, M
(0)

, B
(0)

, λb
(0)

) which can be calculated as follows 
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Therefore, we can calculate the expected log likelihood and the expected Z
(0)

 

from X, M
(0)

, B
(0)

,λb
(0)

 and g
(0)

 by Equations (4) and (5). 

3.2.Maximization step 

Based on Equation (4), we can calculate the parameters M
(1)

, B
(1)

,λb
(1)

 and g
(1)

 to 

maximize the expected log likelihood. λb
(1)

 is involved in the last term in 

Equation (4) only and the expected log likelihood will be maximized when 

∑= =
w
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 is involved in the first term in Equation (4) which will 

be maximized when 
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where α can be A, C, G or T, and I(s) = 1 if and only if the proposition s is true 

and I(s) = 0 otherwise. 

M
(1)

 and g
(1)

 are involved in the second term in Equation (4). In order to find 

the probability matrix M
(1)

 and the motif class g
(1)

, we assign M
(1)

 and g
(1)

 to be 

the probability matrix for each motif class that maximizes the expected log 

likelihood. Consider g
(1)

 = 5, Equation (4) will be maximized (by considering a 

Lagrange Multiplier of each column vector of M’) when  
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When g
(1)

 = 1, 2, 3, 4 or 6, the matrix M’ calculated in Equation (6) will 

maximize the log likelihood if M’ belongs to the corresponding class. However, 

when M’ does not belong to the corresponding class, we have to test all the 

boundary matrices (by considering a Lagrange Multiplier of each column vector 

of M’ for the boundary e.g. M’(A,j) = β) in each class, which are closest to M’. 

For example, when we are considering g
(1)

 = 6 (Class VI) and the matrix M’ 

does not contain any 4 × 4 sub-matrix satisfying either TAAT or ATTA, we 

consider the 2(l – 4 + 1) boundary matrices of M’
 
in Class VI as follows. For 
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each starting position j = 1, … , l – 4 + 1, consider the 4 × 4 sub-matrix Msub of 

M’ formed by columns j to j + 4 – 1 of M’. If Msub does not satisfy ATTA 

because some entries in Msub are less than β, we set these entries to β and 

decrease the values of the rest entries proportionally. When β = 0.8, we will 

modify the following sub-matrix Msub 

















 0.8  2.0  0  9.0 
 0.05 1.0  1.0  04.0 
 0.05  4.0  1.0  03.0 

 0.1  3.0  8.0  03.0 

 to 
















×
×
×

 0.8  7.0/2.02.0  0  9.0 
 0.05 7.0/2.01.0  1.0  04.0 
 0.05  7.0/2.04.0  1.0  03.0 

 0.1  8.0  8.0  03.0 

 

to form a boundary matrix of M’. We can prove that either matrix M’ or one of 

its boundary matrices in each motif class can maximize the expected log 

likelihood when )0(

iZ  is fixed. Thus, we can set M
(1)

 to be the matrix with the 

largest expected log likelihood. 

We can repeat the E-step and M-step for a fixed number (10 is used in our 

experiments) of times to find the motif matrix with maximum expected log 

likelihood locally. 

3.3.Seed Matrices 

In order to initiate the EM-step, we should have a set of seed matrices M
(0)

, 

background probability B
(0)

, prior probability λb
(0)

 and motif class g
(0)

. Similar to 

Bailey and Elkan [2], when the motif length l is short, we convert each length-l 

DNA sequence S into a seed matrix M
(0)

 by setting 


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However, when the motif length l is long, as the number of seeds increases 

exponentially with l, it is impossible to try all seeds. Fortunately, real biological 

motifs usually contain a conserved region in the center (column vector with one 

or two entries having high probabilities) or conserved regions at two ends. 

Instead of considering all 4
l
 seeds, we consider all length-l’ seeds where l’ < l 

and extend these length-l’ seeds to length-l by adding column vectors with all 

entries equal to 0.25 at both ends to represent motifs with a conserved region in 

the center. Similarly, we construct a seed with all entries equal to 0.25 at the 

center to represent motifs with conserved regions at both ends. 

Apart from M
(0)

, we set the background probability B
(0)

 to be the occurrence 

probability of each nucleotide in the input sequence =)()0( αB  

)/())][I(( 1 1 wljXw
i

l
j i∑ ∑ == = α . We also set the prior probability 1 – λb

(0)
 of a 

substring being an instance of the motif to be the number of input sequences over 

w (we assume each input sequence contains one instance of the motif) and set the 
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motif class g
(0)

 = 5, which means that there is no restriction on the motif matrix 

M
(0)

. 
 

Table 2. Experimental results on real biological data for transcription factors of Drosophila for 

output with 1 and 30(in brackets) predicted motif(s) per data set. 

Factor 

Name 
l g 

Predicted 

g 

DIMDom  

(class V only) 
DIMDom MEME 

Ac 8 III III (III) 0 (0.6667) 0.6667 (0.6667) 0 (0.5) 

adf-1 11 V II (II) 0.2 (0.1667) 0.2 (0.33) 0.1111 (0.1111) 

AP-1 9 - - (IV) 0 (0.25) 0 (1) 0 (0.5) 

AS-CT3 6 III III (III) 0.5 (0.5) 0.5 (0.5) 0.3333 (0.3333) 

Bcd 8 VI VI (VI) 0 (0.3333) 0.2308 (0.3529) 0.0227 (0.2) 

Bfactor 4 - - (VI) 0 (0) 0 (0) 0 (0.2222) 

CF1 9 II - (II) 0 (0.3333) 0 (1) 0 (0.5) 

Ci 9 - II (I) 0.1667 (0.2) 0.1429 (0.2143) 0.25 (0.5) 

D_MEF2 10 - - (III) 0 (0.3333) 0 (0.3333) 0 (0) 

D1 11 - IV (IV) 0 (0.1818) 0 (0.2857) 0.0476 (0.0870) 

DREF 14 - - (VI) 0 (0.1429) 0 (0.3333) 0 (0.1429) 

Dri 10 - IV (IV) 0 (0.25) 0.5 (0.5) 0 (0.5) 

DTF-1 6 - I (I) 0.5 0.1667 (0.1667) 0.125 (0.5) 

E74A 17 V IV (IV) 0.3077 (0.375) 0.3333 (0.6667) 0.1818 (0.4) 

EcR 7 II III (IV) 0 (0.5) 0.3333 (0.5) 0 (0.3333) 

Elf-1 8 - I (I) 0 (0.2222) 0 (0.6667) 0.1 (0.4444) 

En 7 VI - (I) 0 (0.25) 0 (0.25) 0 (0.1) 

Exd 20 VI IV (II) 0.3333 (0.3333) 0.3333 (0.6667) 0.2 (0.4) 

Ftz 12 VI VI (VI) 0 (0.2813) 0.1429 (0.25) 0.1471 (0.1875) 

FTZ-F1 7 II II (II) 0 (0) 0.5 (0.5) 0 (0) 

GAGA 11 I I (I) 0.0476 (0.2941) 0.1579 (0.1579) 0 (0.1818) 

GCM 13 - III (IV) 0.0588 (0.2307) 0.3333 (0.3333) 0 (0.25) 

H 10 III - (III) 0 (0.3333) 0 (1) 0 (0.3333) 

Hb 10 I III (IV) 0 (0.1333) 0 (0.2142) 0.1667 (0.25) 

HSTF 15 VI VI (VI) 0.0909 (0.2222) 0.1111 (0.25) 0.1429 (0.1667) 

Kr 10 I II (VI) 0 (0.2857) 0.0833 (0.2667) 0 (0.25) 

Sc 8 III III (III) 0 (0.6667) 0.6667 (0.6667) 0 (0.5) 

Sn 13 I IV (IV) 0 (0.2727) 0.2857 (0.5) 0.0667 (0.3333) 

Su_Hw 12 I - (IV) 0 (0.25) 0 (1) 0 (0.5) 

TAB 15 - - (II) 0 (0.2857) 0 (0.5) 0 (0.3333) 

TBP 7 - - (I) 0 (0.2) 0 (0.25) 0 (0.25) 

TII 8 II I (VI) 0 (0.1111) 0.1176 (0.1176) 0.0526 (0.1667) 

Ttk69k 8 I IV (I) 0.0909 (0.3333) 0 (0.4286) 0.2143 (0.2143) 

Ubx_a 19 VI II (II) 0.25 (0.25) 1 (1) 1 (1) 

Zen-1 8 VI IV (VI) 0 (0.1818) 0 (0.2222) 0.0435 (0.2353) 

Zen-2 8 VI VI (VI) 0.1429 (0.375) 0.1 (0.5) 0.05 (0.1667) 

Zeste 11 V IV (I) 0.0192 (0.1224) 0.05 (0.2) 0.4222 (0.4222) 

Zeste_b 11 - IV (I) 0.0192 (0.1224) 0.05 (0.2) 0.4222 (0.4222) 

Average score 0.0998 (0.2761) 0.2501 (0.4471) 0.1925 (0.3141) 

 

4. Experimental Results 

We have implemented DIMDom using C++ and have compared its performance 
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with that of the popular motif discovery algorithm MEME [2], which is also 

based on an EM approach, on real biological motif from the TRANSFAC 

database (http://www.gene-regulation.com). For each transcription factor with at 

least one known binding site in fruit fly (Drosophila), we searched for all genes 

regulated by that transcription factor and used the 450 bp (base pairs) upstream 

and 50 bp downstream of the transcriptional start site of these genes as the input 

sequences.  

We set l’ = 8 when constructing seed matrices and considered a substring Xi 

as a binding site if 1 – Zi ≥ 0.9 for a 90% confidence. Higher thresholds, such as 

0.95 and 0.99, failed to give satisfactory results as the number of predicted 

binding sites decreased sharply to almost zero.  

A score for each predicted motif is defined as: 

sites published  sites predicted

sites published  sites predicted
score

∪

∩
=  

A published binding site is correctly predicted if that binding site overlaps with 

at least one predicted binding site. The score is in the range of [0,1]. When all 

the published binding sites are correctly predicted without any mis-prediction, 

score = 1. When no published binding site is predicted correctly, score = 0.  

The value of the threshold β used in calculating probability P(M | g) was 

determined by performing tests on another set of real data from the SCPD 

database (http://rulai.cshl.edu/SCPD/) for yeast (Saccharomyces cerevisiae). 

DIMDom had the highest average score when β = 0.9. A smaller value of β did 

not give better performance because the values of log(P(M | g)) were similar for 

different motif classes. As a result, DIMDom could not take much advantage of 

different motif classes and motifs from class V were predicted most of the time. 

Table 2 shows the performance of MEME [2] and DIMDom on two types of 

output, only one predicted motif and 30 predicted motifs (from now on, all 

results related to outputs with 30 predicted motifs will be parenthesised). In 

order to have a fair comparison with our experiments, we have ignored the 

known prior probabilities of different motif classes and set them all equal. We 

have also performed experiments on a version of DIMDom which considers only 

the class V (basic EM-algorithm) so as to illustrate the improvement in 

performance by introducing the knowledge of different motif classes. It is not 

surprising to find that MEME (with average score 0.1925 (0.3141)) performed 

better than the basic EM-algorithm (with average score 0.0998 (0.2761)). 

However, after introducing the five motif classes, DIMDom (with average score 

0.2501 (0.4471)) outperformed MEME when the same set of parameters were 
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used. Note that DIMDom was about 1.5 times more accurate than MEME when 

30 predicted motifs could be outputted. 

Among the 47 data sets, both DIMDom and MEME failed to predict any 

published binding sites in 19 (9) data sets and DIMDom had a better 

performance (higher score) for 17.5 (27.5) data sets while MEME had a better 

performance for 10.5 (10.5) data sets only. When the output has 30 predicted 

motifs, DIMDom outperformed MEME with 2.5 times in the number of 

successes. In 5.5 out of 10.5 cases for which MEME could do better than 

DIMDom, MEME predicted only 1 or 2 out of many not-so-similar binding sites 

because of the high threshold (0.9) used by DIMDom. 

Even with a simple description of motif classes, DIMDom can correctly 

predict the motif classes in 9 (12) out of 21 (25) instances. We expect better 

prediction results if more parameters are used to describe motif classes [17]. 

However, more training data are needed for tuning these parameters. 

5. Conclusion 

We have incorporated biological information, in terms of prior probabilities and 

pattern characteristics of possible motif classes, into the EM algorithm for 

discovering motifs and binding sites of transcription factors. Our algorithm 

DIMDom was shown to have better performance than the popular software 

MEME. DIMDom will have potentially even better performance if more motif 

classes are known and included in the algorithm. Like many motif discovery 

algorithms, DIMDom will work without the length of the motif being given. 

When the length of the motif is specified, DIMDom will certainly have better 

performance than when the length is not given and the likelihoods of motifs of 

different lengths must be compared. 
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