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We describe a novel probabilistic approach to estimating errors in two-hybrid (2H)
experiments. Such experiments are frequently used to elucidate protein-protein
interaction networks in a high-throughput fashion; however, a significant challenge

with these is their relatively high error rate, specifically, a high false-positive rate.
We describe a comprehensive error model for 2H data, accounting for both random

and systematic errors. The latter arise from limitations of the 2H experimental
protocol: in theory, the reporting mechanism of a 2H experiment should be acti-

vated if and only if the two proteins being tested truly interact; in practice, even in
the absence of a true interaction, it may be activated by some proteins – either by
themselves or through promiscuous interaction with other proteins. We describe

a probabilistic relational model that explicitly models the above phenomenon and
use Markov Chain Monte Carlo (MCMC) algorithms to compute both the proba-

bility of an observed 2H interaction being true as well as the probability of indi-
vidual proteins being self-activating/promiscuous. This is the first approach that

explicitly models systematic errors in protein-protein interaction data; in contrast,
previous work on this topic has modeled errors as being independent and random.

By explicitly modeling the sources of noise in 2H systems, we find that we are

better able to make use of the available experimental data. In comparison with

Bader et al.’s method for estimating confidence in 2H predicted interactions, the
proposed method performed 5-10% better overall, and in particular regimes im-

proved prediction accuracy by as much as 76%.
Supplementary Information: http://theory.csail.mit.edu/probmod2H

1. Introduction

The fundamental goal of systems biology is to understand how the vari-

ous components of the cellular machinery interact with each other and the

environment. In pursuit of this goal, experiments for elucidating protein-

protein interactions (PPI) have proven to be one of the most powerful tools

available. Genome-wide, high-throughput PPI experiments have started to
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provide data that has already been used for a variety of tasks: for pre-

dicting the function of uncharacterized proteins; for analyzing the relative

importance of proteins in signaling pathways; for new perspectives in com-

parative genomics, by cross-species comparisons of interaction patterns etc.

Unfortunately, the quality of currently available PPI data is unsatisfactory,

which limits its usefulness to some degree. Thus, techniques that enhance

the availability of high-quality PPI data are of value.

In this paper, we aim to improve the quality of experimentally available

PPI data by identifying erroneous datapoints from PPI experiments. We

attempt to move beyond current one-size-fits-all error models that ignore the

experimental source of a PPI datapoint; instead, we argue that a better error

model will also have components tailored to account for the systematic errors

of specific experimental protocols. This may help achieve higher sensitivity

without sacrificing specificity. This motivated us to design an error model

tailored to one of the most commonly-used PPI experimental protocols.

We specifically focus on data from two hybrid (2H) experiments6,4, which

are one of the most popular high-throughput methods to elucidate protein-

protein interaction. Data from 2H experiments forms the majority of the

known PPI data for many species: D. melanogaster, C. elegans, H. sapi-

ens etc. However, currently available 2H data also has unacceptably high

false-positive rates: von Mering et al. estimate that more than 50% of 2H

interactions are spurious11. These high rates of error seriously hamper the

ability to perform analyses of the PPI data. As such, we believe an error

model that performs better than existing models — even if it is tailored to

2H data — is of significant practical value, and may also serve as an example

for the development of error models for other biological experiments.

Ideally, the reporting mechanism in a 2H experiment is activated if and

only if the pair of proteins being tested truly interact. As in most experi-

mental protocols, there are various sources of random noise. However, there

are also systematic, repeatable errors in the data, originating from limita-

tions in the 2H protocol. In particular, there exist proteins that are dis-

proportionately prone to be part of false-positive observations (Fig. 1). It

is thought that these proteins either activate the reporting mechanism by

themselves or promiscuously bind with many other proteins in the partic-

ular setup (promiscuous binding is an experimental artifact— it does not

imply a true interaction under plausible biological conditions).

Contributions: The key contribution of this paper is a comprehensive error

model for 2H experiments, accounting for both random as well as systematic

errors, which is guided by insights into the systematic errors of the 2H experi-
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Figure 1: The origin of systematic errors in 2H data. The cartoons shown above

demonstrate the mechanism of 2H experiments. Protein A is fused to the DNA binding do-
main of a particular transcription factor, while protein B is fused to the activation domain
of that transcription factor. If A and B physically interact then the combined influence of
their respective enhancers results in the activation of the reporter gene. Systematic errors

in such experiments may arise: false negatives occur when two proteins which interact
in-vivo fail to activate the reporter gene under experimental conditions. False positives
may occur due to proteins which trigger the reporting mechanism of the system, either by
themselves (self-activation) or by spurious interaction with other proteins (promiscuity).

Spurious interaction can occur when a protein is grossly over-expressed. In the above
figure, protein A in the lower right panel is such a protein: it may either promiscuously

bind with B or activate the reporting mechanism even in the absence of B.

mental protocol. We believe this is the first model to account for both sources

of error in a principled manner; in contrast, previous work on estimating er-

ror in PPI data has assumed that the error in 2H experiments (as in other

experiments) is independent and random. Another contribution of the paper

are estimates of proteins especially likely to be self-activating/promiscuous

(see Supp. Info.). Such estimates of “problem proteins”, may enable the

design of 2H experimental protocols which have lower error rates.

We use the framework of Bayesian networks to encode our assumption

that a 2H interaction is likely to be observed if the corresponding protein pair

truly interacts or if either of the proteins is self-activating/promiscuous. The

Bayesian framework allows us to represent the inherent uncertainty and the

relationship between promiscuity of proteins, true interactions and observed

2H data, while using all the data available to simultaneously learn the model

parameters and predict the interactions. We use a Markov Chain Monte

Carlo (MCMC) algorithm to do approximate probabilistic inference in our

models, jointly inferring both desired sets of quantities: the probability of

interaction, and the propensity of a protein for self-activation/promiscuity.

We show how to integrate our error model into the two most common



probabilistic models used for combining PPI experimental data, and show

that our error model can significantly improve the accuracy of PPI prediction.

Related Work: With data from the first genome-wide 2H experiments (Ito

et al.6, Uetz et al.4), there came the realization that 2H experiments may

have significant systematic errors. Vidalain et al. have identified the presence

of self-activators as one of the sources of such errors, and described some

changes in the experimental setup to reduce the problem10. Our work aims

to provide a parallel, computational model of the problem, allowing post-

facto filtering of data, even if the original experiment retained the errors.

The usefulness of such an approach was recently demonstrated by Sun et

al.2 (to reconstruct transcriptional regulatory networks).

Previous computational methods of modeling systematic errors in PPI

data can be broadly classified into two categories. The first class of

methods5,11,8 exploits the observation that if two very different experimental

setups (e.g. 2H and Co-IP) observe a physical interaction, then the interac-

tion is likely to be true. This is a reasonable assumption to make because

the systematic errors of two different experimental setups are likely to be

independent. However, this approach requires multiple costly and time con-

suming genome-wide PPI experiments, and may still result in missed inter-

actions, since the experiments have high false negative rates. Many of these

approaches also integrate non-PPI functional genomic information, such as

co-expression, co-localization, and Gene Ontology functional annotation.

The second class of methods is based on the topological properties of the

PPI networks. Bader et al.1, in their pioneering work, used the number of

2H interactions per protein as a negative predictor of whether two proteins

truly interact. Since the prior probability of any interaction is small, dis-

proportionately many 2H interactions involving a particular protein could

possibly be explained by it being self-activating or promiscuous. However,

such an approach is unable to make fine-grained distinctions: an interaction

involving a high-degree protein need not be incorrect, especially if there is

support for it from other experiments. Furthermore, the high degree of a

promiscuous protein in one experiment (e.g. Ito et al.’s) should not penal-

ize interactions involving that protein observed in another experiment (e.g.

Uetz et al.’s) if the errors are mostly independent (e.g. they use different

reporters). Our proposed probabilistic models solve all of these problems.

2. Data Sets

One difficulty with validating any PPI prediction method is that we must

have a gold standard from which to say whether two proteins interact or do



not interact. We constructed a gold standard data set of protein-protein in-

teractions in S. cerevisiae (yeast) from which we could validate our methods.

Our gold standard test set is an updated version of Bader et al.’s data.

Bader et al.’s data consisted of all published interactions found by 2H exper-

iments; data from experiments by Uetz et al.4 (the Uetz2H data set) and

Ito et al.6 (the Ito2H data set) comprised the bulk of the data set. They

also included as possible protein interactions all protein pairs that were of

distance at most two in the 2H network. Bader et al. then used published

Co-Immunoprecipitation (Co-IP) data to give labels to these purported in-

teractions. When two proteins were found in a bait-hit or hit-hit interaction

in Co-IP, they were labeled as having a true interaction. When two proteins

were very far apart in the Co-IP network (distance larger than three), they

were labeled as not interacting. We updated Bader et al.’s data to include all

published 2H interactions through February 2006, getting our data from the

MIPS7 database. We added, for the purposes of evaluation, recently pub-

lished yeast Co-IP data from Krogan et al.3. This allowed us to significantly

increase the number of labeled true and false interactions in our data set.

Since the goal of our algorithms is to model the systematic errors in large-

scale 2H experiments, we evaluated our models’ performance on the test data

where at least one of Uetz2H or Ito2H indicated an interaction. We were

left with 397 positive examples, 2298 negative examples, and 2366 unlabeled

interactions. We randomly chose 397 of the 2298 negative examples to be

part of our test set. For all of the experiments we performed 4-fold cross

validation on the test set, hiding one fourth of the labels while using the

remaining labeled data during inference.

3. Probabilistic Models

We show how to integrate our model of systematic errors into the two most

common probabilistic models used for PPI prediction. Our first model is

complementary to the relational probabilistic model proposed by Jaimovich

et al.8, and can be easily integrated into their approach. Our second model

is an extension of Bader et al.’s, and will form the basis of our comparison.

Our models also adjust to varying error rates in different experi-

ments. For instance, while we account for random noise and false nega-

tives in our error model for both Uetz2H and Ito2H, we only model self-

activation/promiscuity for Ito2H observations. The Uetz2H data set was

smaller and included only one protein with degree larger than 20; Ito2H had

36 proteins with degree larger than 30, including one with degree as high as

285. Thus, while modeling promiscuity made a big difference for the Ito2H



data, it did not significantly affect our results on the Uetz2H data.

3.1. Generative model

We begin with a simplified model of PPI interaction (Fig. 2). We rep-

resent the uncertainty about a protein interaction as an indicator random

variable Xij , which is 1 if proteins i and j truly interact, and 0 otherwise.

For each experiment, we construct corresponding random variables (RVs)

indicating if i and j have been observed to interact under that experiment.

Thus, Uij is the observeda random variable (RV) representing the observa-

tion from Uetz2H, and Iij is the observed RV representing the observation

from Ito2H. The arrow from Xij to Iij indicates the dependency of Iij on

Xij . The box surrounding the three RVs indicates that this template of three

RVs is repeated for all i, j = 1, . . . , N (i.e. all pairs of proteins), where N is

the number of proteins. In all models of this type, the Iij RVs are assumed

to be independent of one another.

If an experiment provides extra information about each observation, the

model can be correspondingly enriched. For instance, for each of their ob-

served interactions Ito et al. provide the number of times the interaction was

discovered (called the number of IST hits). Rather than making Iij binary,

we have it equal the number of IST hits, or 3 if IST > 3. We will refer to

the portion of Ito2H observations with IST ≥ 3 as ItoCore.

The model is called “generative” because the ground truth about the

interaction, Xij , generates the observations in the 2H experiments, Iij and

Uij . To our knowledge, all previous generative models of experimental inter-

actions made the assumption that Iij depended only on Xij . They allowed

for false positives by saying that Pr(Iij > 0|Xij = 0) = δfp, where δfp is

a parameter of their model. Similarly, they allowed for false negatives by

saying that Pr(Iij = 0|Xij = 1) = δfn, for another parameter δfn. However,

these models are missing much of the picture. For example, many exper-

iments have particular difficulty testing the interactions of proteins along

the membrane. For these proteins, δfn should be significantly higher. In

the 2H experiment, for interactions that involve self-activating/promiscuous

proteins, δfp will be significantly higher.

In Fig. 3, we propose a novel probabilistic model in which the self-

activating/promiscuous tendencies of particular proteins are explicitly mod-

eled. The latent Bernoulli RV Fk is 1 if protein k is believed to be promis-

cuous or self-activating. In the context of our data set, this RV applies

specifically to the Ito2H data; if self-activation/promiscuity in multiple ex-

aClear nodes are unobserved (latent) RVs, and shaded nodes are observed RVs.
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Figure 2: Generative model.
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Figure 3: Generative model, with
noise variables.

periments is to be modeled, we may introduce multiple such variables F H
k

(for protein k and experiment H). The Iij RV thus depends on Fi and Fj .

Intuitively, Iij will be > 0 if either Xij = 1 or Fk = 1. As we show later in

the Results section, this model of noise is significantly more powerful than

the earlier model, because it allows for the “explaining away” of false pos-

itives in Ito2H. Furthermore, it allows evidence from data sets other than

Ito2H to influence (through the Xij RVs) the determination of the Fk RVs.

We also added the latent variables OU
ij and OI

ij , which will be 1 if the Uetz

et al. and Ito et al. experiments, respectively, have the capacity to observe a

possible interaction between proteins i and j. These RVs act to explain away

the false negatives in Uetz2H and Ito2H. We believe that these RVs will

be particularly useful for species where we have relatively little PPI data.

The distributions in these models all have Dirichlet priors (θ) with associated

hyperparameters α (see Supp. Info. for more details).

There are many advantages to using the generative model described in

this section. First, it can easily handle missing data without adding com-

plexity to the inference procedure. This is important for when integrating

additional experimental data into the model. Suppose, for example, that

we use gene expression correlation as an additional signal of protein inter-

action, by introducing new RVs Eij (indicating coexpression of genes i and

j) and corresponding edges Xij → Eij . If, for a pair of proteins, the coex-

pression data is unavailable, we simply omit the corresponding Eij from this

model. In Bader et al.’s model, and the second model that we propose below,

we would need to integrate over possible values of the missing datapoint, a

potentially complicated task. Second, this generative model can be easily

extended: e.g., we could easily combine this model with Jaimovich et al.’s in

order to model the common occurrence of transitive closure in PPIs.
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3.2. Bayesian logistic model

In Fig. 4 we show Bader et al.’s model (BaderLR); it includes three

new variables in addition to the RVs already mentioned, whose values are

pre-calculated using the 2H network. Two of these encode topological infor-

mation: variable Aij is the number of adjacent proteins in common between

i and j, and variable Dij is ln(di + 1) + ln(dj + 1), where di is the degree

of protein i. Variable Lij is an indicator variable for whether this protein

interaction has been observed in any low-throughput experiments. In Bader

et al.’s model, IC
ij is an indicator variable representing whether the interac-

tion between proteins i and j was in the ItoCore data set (IST ≥ 3). Xij ’s

conditional distribution is given by the logistic function:

p(Xij = 1) =
1

1 + exp (woffset + UijwU + IC
ijwI + LijwL + AijwA + DijwD)

.

The weights w are discriminatively learned using the Iterative Re-weighted

Least Squares (IRLS) algorithm, which requires that all of the above quan-

tities are observed in the training data.

In Fig. 5 we propose a new model (BayesLR), with two significant dif-

ferences. First, we no longer use the two proteins’ degree, Dij , and instead

integrate our noise model in the form of the Fk random variables. Second, in-

stead of learning the model using IRLS, we assign the weights uninformative

priors and do inference via Markov Chain Monte Carlo (MCMC). This will

be necessary because Xij will have an unobserved parent, IT
ij . The new RV

IT
ij will be 1 when the Ito et al. experiment should be considered for predict-

ing Xij . Intuitively, its value should be (Iij > 0)
∧

¬(Fi

∨
Fj). However, to

allow greater flexibility, we give the conditional distribution for IT
ij a Dirich-



let prior, resulting in a noisy version of the above logical expression. The

RVs Oij are not needed in this logistic model because the parameterization

of the Xij conditional distribution induces a type of noisy OR distribution

in the posterior. Thus, logistic models can easily handle false negatives.

Because we wanted to highlight the advantages of modeling the exper-

imental noise, we omitted Aij (one-hop) from both the models, BayesLR

and BaderLR. The one-hop signal, gene expression, co-localization, etc.

can be easily added to any of the models to improve their prediction ability.

3.3. Inference

As is common in probabilistic relational models, the parameters for the con-

ditional distributions of each RV are shared across all of their instances. For

example, in the generative model, the prior probability Pr(Xij = 1) is the

same for all i and j. With the exception of Xij in BayesLR, we gave all the

distributions a Dirichlet prior. In BayesLR, the conditional distribution of

Xij is the logistic function, and its weights are given Gaussian priors with

mean µX = 0 and variance σ2

X = .01. Note that by specifying these hyper-

parameters (e.g. µX , σ2

X), we never need to do learning of the parameters

(i.e., weights). Given the relational nature of our data, and the relatively

small amount of it, we think that this Bayesian approach is well-suited. We

prevent the models from growing too large by only including protein pairs

where at least one experiment hinted at an interaction.

We used BUGS9 to do inference via Gibbs sampling. We ran 12 MCMC

chains for 6000 samples each, from which we computed the desired marginal

posterior probabilities. The process is simple enough that someone with-

out much knowledge of machine learning could take our probabilistic models

(which we provide in the Supplementary Information) and use them to in-

terpret the results of their 2H experiments. We also tried using loopy belief

propagation instead of MCMC to do approximate inference in the generative

model of Fig. 3. These results (see Supp. Info.) were very similar, show-

ing that we are likely not being hurt by our choice of approximate inference

method. Furthermore, our implementation of the inference algorithm (in

Java) takes only seconds to run, and would easily scale to larger problems.

4. Results

We compared the proposed Bayesian logistic model (BayesLR) with the

model based on Bader et al.’s work (BaderLR). Both models were trained

and tested on the new, updated version of Bader et al.’s gold standard data

set. We show in Fig. 6 that BayesLR achieves 5-10% higher accuracy



at most points along the ROC curve. We then checked to see that the

improvement was really coming from the noise model, and not just from

our use of unlabeled data and MCMC. We tried using a modified BayesLR

model (called Bayesian Bader) which has Dij RVs instead of the noise model,

and which uses ItoCore instead of Ito2H. As expected, it performed the

same as BaderLR. We also tried modifying this model to use Ito2H, and

found that the resulting performance was much worse.

Investigating this further, we found that the average maximum a poste-

riori (MAP) weights for BayesLR were {wU = −2.32, wL = −10.85, wI =

−4.26, and woffset = 7.34}. The weight corresponding to Ito2H is almost

double the weight for Uetz2H. Interestingly, this is a similar ratio of weights

as would be learned had we only used the ItoCore data set, as in BaderLR.

In the last of the above-mentioned experiments, the MAP weight for Ito2H

was far smaller than the weight for Uetz2H, which indicates that Uetz2H

was a stronger signal than Ito2H. Overall, these experiments demonstrate

that we can get significantly better performance using data with many false

positives (Ito2H) and a statistical model of the noise than by using pre-

filtered data (ItoCore) and no noise model.

In all regimes of the ROC curve, BayesLR performs at least as well

as BaderLR; in some, it performs significantly better (Fig. 8). The ex-

amples that follow demonstrate the weaknesses inherent in BaderLR and

show how the proposed model BayesLR solves these problems. When IRLS

learns the weight for the degree variable (in BaderLR), it must trade off

having too high a weight, which would cause other features to be ignored,

and having too low a weight, which would insufficiently penalize the false

positives caused by self-activation/promiscuity. In BaderLR, a high de-

gree Dij penalizes positive predictors from all the experiments (Uij , Iij , Lij).

However, the degree of a protein in a particular experiment (say, Ito et al.’s)

only gives information about self-activation/promiscuity of the protein in

that experiment. Thus, if a protein has a high degree in one experiment,

even if that experiment did not predict an interaction (involving some other

protein), the degree will negatively affect any predictions made by other ex-

periments on that protein. Our proposed models solve this problem by giving

every experiment a different noise model, and by having each noise model be

conditionally independent given the Xij variables. Thus, we get the desired

property that noise in one experiment should not affect the influence of other

experiments on the Xij variables.

Fig. 8(a) illustrates this by showing the prediction accuracy for the test

points where Dij > 4 and Uij = 1 or Lij = 1 (called the ‘medium’ degree
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Figure 8: Examples of regimes where the noise model is particularly helpful.

In parentheses we give the number of test cases that fall into each category.

range). When the degree of a protein is very high, BaderLR will always

classify interactions involving it as false positives. Fig. 8(b) shows the setting

of Dij > 6b. With a false positive rate of less than 1%, BaderLR detects
bRecall that Dij is on a log-scale, and is the sum for both proteins.



42% of the true interactions, while BayesLR detects 74% of the true in-

teractions, a 76% improvement. Bader et al. found that they got better

performance by using only a subset (where IST ≥ 3) of the interactions in

Ito2H. Our noise model allows us to make use of all of the predicted interac-

tions, without hurting our overall results. As a result, our predictions for the

proteins pairs where Bader et al.’s model ignored Ito2H’s interactions (i.e.

IST < 3) are highly more accurate. This is illustrated in Fig. 8(c). Finally,

we show in Fig. 8(d) that at the very extreme when neither ItoCore, nor

the low-throughput 2H experiments (Lit), nor Uetz2H showed an interac-

tion, we can still make meaningful predictions, using a combination of the

noise model and the observed interactions in Ito et al. where IST < 3.

We next compared the various generative models, with the results shown

in Fig. 7. Naively implementing the generative model of Fig. 2, using an

indicator variable for whether the interaction was observed in Ito2H, results

in the worst performance. Changing the indicator variable to a discretized

IST count significantly improves performance. Using our noise model (i.e.

the model from Fig. 3) provides further improvements, especially in the

lower left corner, where the previous two had performed poorly. However,

if we remove the noise model and instead pre-filter the data as Bader et al.

did, using an indicator variable for whether IST ≥ 3 in Ito2H, we can get

almost as good performance using the simple generative model of Fig. 2.

The noise model still does better in the upper half of the ROC curve, which

is arguably where it matters the most. It is also interesting that our noise

model is able to recover the accuracy of the hand-filtered IST≥ 3 criterion.

We then applied the BayesLR model to the full data set to identify

proteins in the Ito2H data which are likely to be self-activating/promiscuous

(see Supplementary Information). As expected, most proteins with high

degree in Ito2H (e.g. YPR086W, degree 99) had a high probability of being

self-activating/promiscuous. However, three of the proteins with high degree

(YER022W, degree 98; YGL127C, degree 68; and YGR218W, degree 34)

had very low probabilities. These differences in promiscuity estimates make

sense: for example, there were no positive labeled 2H examples involving

YPR086W, while there were five involving YER022W. This propagation of

information is precisely what we hoped to capture by using our Bayesian

framework. When applying this model to new species where no labeled data

is available, the inclusion of additional signals (e.g. co-expression) should

result in the same effect. (Note that when no labeled data is available, it

might be helpful to fix the model parameters to their MAP values from

experiments on related species.)



5. Conclusion

In this paper, we have presented a principled approach to modeling the ran-

dom and systematic sources of error in two-hybrid experiments, and showed

how to integrate our noise models into the two most common probabilistic

models for integrating PPI data. Comparisons with previous work demon-

strate that explicit modeling of the sources of error can improve protein-

protein interaction prediction, making better use of experimental data.

Future work could involve discriminative training of the generative mod-

els, investigation of systematic sources of noise in other biological experi-

ments such as Co-IP, and applying noise models to the Markov networks of

Jaimovich et al. and possibly even in a first-order probabilistic model, where

more intricate properties of proteins can be described and jointly predicted.
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