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MALDI-based Imaging Mass Spectrometry (IMS) is an analytical technique that

provides the opportunity to study the spatial distribution of biomolecules including
proteins and peptides in organic tissue. IMS measures a large collection of mass

spectra spread out over an organic tissue section and retains the absolute spatial
location of these measurements for analysis and imaging. The classical approach
to IMS imaging, producing univariate ion images, is not well suited as a first step

in a prospective study where no a priori molecular target mass can be formulated.
The main reasons for this are the size and the multivariate nature of IMS data. In

this paper we describe the use of principal component analysis as a multivariate
pre-analysis tool, to identify the major spatial and mass-related trends in the data
and to guide further analysis downstream. First, a conceptual overview of principal
component analysis for IMS is given. Then, we demonstrate the approach on an
IMS data set collected from a transversal section of the spinal cord of a standard
control rat.
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1. Introduction

Mass spectrometry allows one to very accurately measure the molecular masses
found in an unknown sample. It has become one of the primary analytical
instruments in proteomics and peptidomics research, which is the study of re-
spectively proteins and peptides within the scope of an organism, tissue, cell,
or organel and under a set of known physiological and environmental condi-
tions.1 Most proteomics and peptidomics studies, however, disregard the exact
spatial origin of a sample within tissue, focusing solely on identification and
quantitation. A number of studies2–6 have demonstrated that incorporating
spatial information into the analysis can provide further insight into biological
processes.

The study of the spatial distribution of biomolecules in organic tissue
requires that an explicit link is preserved between proteomics/peptidomics-
oriented mass spectral measurements and their exact spatial origin within an
organic tissue section. For this purpose we employ a relatively new technology,
termed laser-based or MALDI-based imaging mass spectrometry.

1.1. MALDI-based Imaging Mass Spectrometry

MALDI-based Imaging Mass Spectrometry‡‡ (IMS) is a technology that uses
the molecular specificity and sensitivity of normal mass spectrometry to col-
lect a direct spatial mapping of biomolecules (or rather their ions) in tissue
sections. It allows for massive multiplexing of followed molecules (covering an
entire mass range) and does not require complex chemistry or an a priori

target molecule as is the case with complementary technologies such as im-
munochemistry and fluorescence microscopy. IMS has been succesfully used in
a number of pioneering studies that mainly focused on mammalian tissue.3,4

The wet-lab side of the procedure consists of cutting an organic tissue sec-
tion, mounting it on a MALDI target plate, applying an appropriate chemical
matrix solution, and performing a MALDI mass spectral measurement at each
grid point of a virtual array that has been superimposed on the tissue sec-
tion. The result is an array of spots or ‘pixels’ covering the tissue section, with
a mass spectrum linked to each individual pixel. Figure 1 gives a schematic
overview of the wet-lab and in silico steps involved with performing IMS on
the cross-section of spinal cord nerve tissue. Typically, the data generated by
an IMS experiment populates a mathematical space that has two spatial di-
mensions (the x and y-dimension) and the mass-over-charge dimension (m/z).

‡‡MALDI stands for ‘matrix-assisted laser desorption ionization’ and refers to a particular

mass spectrometry ionization method which is well suited for the study of larger biomolecules

such as proteins. It involves firing a controlled laser shot at the sample embedded in a

crystalline chemical matrix solution on the target plate.
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Fig. 1. Overview of the imaging mass spectrometry experiment. The tissue slice creation,

the mounting on the target plate, and the application of an appropriate matrix solution are

wet-lab steps. The mass spectral measurements, the data collection, and the translation into

peaklisted mass spectra take place inside the mass spectrometer. The array of peaklisted

mass spectra forms the starting point for an in silico analysis.

It can be represented as a three-way array or tensor, with an x-, a y-, and a
m/z-dimension.

1.2. Ion Images

A common approach taken in IMS-oriented studies3–5 is to generate ion images
from the IMS data tensor. These images are a false color visualisation of the
spatial distribution of peak height for a particular m/z-window. They are called
ion images because they show the spatial spread of a particular peak’s height
over the tissue, and because a mass spectral peak represents the amount of
a particular ion that was measured. This ion can be the molecular ion, or a
charged fragment of the original molecule. From a mathematical standpoint,
an ion image can be seen as a cross-section of the data tensor at a particular
mass (or m/z). Four examples of such ion images are shown in Fig. 2, 3, 4,
and 5, which were generated from the data set of rat spinal cord tissue which
is further discussed in section 2.3.

Ion images are a univariate approach to IMS imaging where one particular
feature per pixel is picked for analysis and visualisation. This is very informa-
tive when the goal is to follow the spatial distribution of a particular molecule
and you know beforehand which particular m/z-value is relevant to the study.
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Fig. 2. Ion image at m/z 5490.52

from the rat spinal cord data set.

Fig. 3. Ion image at m/z 5634.79

from the rat spinal cord data set.

Fig. 4. Ion image at m/z 8565.30

from the rat spinal cord data set.

Fig. 5. Ion image at m/z 9974.26
from the rat spinal cord data set.

However, ion images are much less suited for propective studies where no a

priori hypothesis of a target molecule or mass is formulated. In this kind of
high-throughput discovery use of IMS one can potentially extract from the
IMS tensor as many different ion images as there are m/z-bins available, and
this number can easily run into the thousands (depending on the extent of the
mass range that was scanned by the mass spectrometer). As an example, in
our rat spinal cord data set this means 7451 distinct ion images of which just
four are shown in Fig. 2, 3, 4, and 5. Acquiring an overview and identifying the
ion images that show meaningful spatial variation from this set of thousands
is a nontrivial task, and does not lend itself well to human execution. This is
why we employ multivariate data analysis methods, such as the principal com-
ponent analysis discussed in this paper, to perform a preliminary exploration
of the data tensor in order to identify spatial and mass trends that merit fur-
ther investigation. The insights delivered by such a preliminary multivariate
analysis can serve as a guide for further investigation using more traditional
approaches such as the ion images. As shown in section 2.3, the PCA-results
can even be used to discriminate between biologically relevant chemical zones
in the tissue on the basis of their mass spectral footprint.
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2. Principal Component Analysis (PCA) as a prospective
guide to IMS data

In this section we investigate the use of principal component analysis (PCA)
as a guide for the prospective exploration of data coming out of an IMS experi-
ment. The goal is to use the PCA results as a first stepping stone towards more
elaborate multivariate analysis of IMS data. In section 2.1 we first discuss the
general idea behind the PCA technique, followed by a treatise on the specific
use of PCA in an IMS context in section 2.2. In the case study discussed in
section 2.3, we apply the technique to real data from an IMS experiment where
a rat nerve tissue section was imaged.

2.1. Principal Component Analysis

Principal component analysis is a latent variable∗ data analysis technique,
widely employed in many areas for uses such as dimensionality reduction.7 It
was mentioned in a MALDI-IMS context by McCombie et al.8 for the purpose
of dimensionality reduction and denoising. In this study the method is used
for trend detection in both the mass and the image domain.

Before formulating a definition of PCA, it is necessary to explain some
aspects of the concept of the rank of a matrix. The rank of a matrix M is the
maximum number of linearly independent rows (or columns) of M . This means
that the rank of M is the smallest number of outer products of vectors that
can be used to reproduce the matrix M exactly. Another definition is that the
rank of M is equal to the number of nonzero eigenvalues of MT M . A matrix
of rank 1 can therefore be completely represented as the outer product of two
vectors, while a matrix of rank 5 requires the sum of (at least) five such outer
products for it to be completely reconstructed.

PCA is a decomposition of a matrix X, of size N ×K and with a certain
rank, into matrices of rank 1, designated Fa:

X =

A∑

a=1

Fa. (1)

Given the definition of rank, it is evident that the smallest value of A for which
this equation still holds is equal to the rank of the matrix X. The matrices Fa

have the same size as X (N ×K), but as they are rank 1 they can be replaced
by the outer product of two vectors sa (N × 1) and la (K × 1) in equation 1:

X =

A∑

a=1

Fa =

A∑

a=1

salTa = SLT . (2)

∗A latent variable is a variable which we do not observe directly, but its existence can be

inferred from the observed variables.
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Fig. 6. Graphical representation of matrix decomposition and reconstruction using principal
component analysis. The upper half shows the decomposition of data matrix X into A
principal components, or the outer product of score matrix S (grouping score vectors s1 to

sA) and loading matrix L (grouping loading vectors l1 to lA). The lower half depicts selecting
the principal components with the largest contribution of variance (or information) in order

to study the uncorrelated trends found in X.

The vectors∗∗ sa are generally called the score vectors of the decomposition,
while vectors la are named loading vectors. Each pair of vectors sa and la
can be designated a principal component of matrix X and has a particular
coefficient connected to it (stemming from the eigenvalue of the underlying
XT X), which indicates the relative amount of variance of X explained by
its particular principal component. By further utilizing matrix notation, PCA
can be written more consicely as the decomposition of the data matrix X into
the single product of a matrix S of size N × A, holding all the score vectors,
and a matrix L of size K × A, holding all the loading vectors. In order to
complete the decomposition with a minimum value for A, the matrices Fa and
their composing vectors sa and la are necessarily maximally uncorrelated. A
schematic overview of these steps is available in Fig. 6. Using the coefficients
(actually eigenvalues) connected to them, one can order the various principal
components according to their contribution in terms of variance of X explained
and information contained. A number of uses follow from this notion such
as dimensionality reduction and denoising,7 but we focus specifically on the

∗∗In this paper we follow the convention of representing a vector as a column vector unless

explicitly transposed.
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use of trend detection, in which the principal components with the largest
contribution characterize the major uncorrelated trends underlying the data.

2.2. PCA Applied to IMS Data

In applying PCA to IMS data, our primary goal is to identify the major uncor-
related trends that can be found in the spatial domain (x and y) as well as in
the mass domain (m/z). These trends, which tell us which pixels or m/z-bins
behave similarly or dissimilarly, can be used as a guide in exploring these often
complex and very large data sets, and to avoid the proverbial ‘drowning in
information’ that can be experienced when classical ion images are employed
without a prior hypthesis of target mass.

As mentioned in section 1, the data measured during an IMS experiment
can be stored as an array of order 3, or tensor, D with two spatial dimensions
(x and y) and one m/z dimension (cfr. the abscissa in a mass spectrum). Each
scalar value dijk in the tensor represents the absolute intensity of a particular
mass peak at a certain x-position i, a certain y-position j, and measured at a
certain m/z-bin k (with i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K).

One way of applying PCA to an IMS tensor D is to refold the tensor into
an array of order 2, or matrix, D to fit the expression shown in equation 2.
This refolding process is done by reordering all discrete spatial positions in the
x- and y-dimensions, or ‘pixels’ if you will, into one long vector holding I.J
elements. The result is a matrix D of size (I.J) ×K, holding all information
contained within the original tensor D. Applying PCA in the manner discussed
in section 2.1 delivers a score matrix S of size (I.J)×A, a loading matrix L of
size K×A, and a vector of eigenvalues λ indicating each principal component’s
variance contribution.

Based on the amount of variance explained, we can now identify and take
a closer look at the most important principal components. A single principal
component is characterized by one score vector or one loading vector. The
score vector is of size (I.J)×1 and does not easily allow for direct exploration.
However, a reordering operation that reverses the effect of the operation per-
formed to go from D to D allows us to refold this vector of size (I.J) × 1 to
the image space defined by the two spatial dimensions x and y, resulting in
an image matrix of size I × J . In their image form the score vectors deliver
a more human-interpretable view on the underlying spatial correlations. This
type of images gives us an idea of which pixels, or laser spots, have a similar
mass spectral footprint when all m/z-bins are taken into account (note the dif-
ference with univariate ion images). The corresponding loading vector of size
K × 1 does not require a refolding operation as it can be expressed directly
in the m/z-domain. A visualisation of the loading vector gives us an indica-
tion of which m/z-bins behave similarly within the context of one principal
component.
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It is necessary to mention here that the above linkup of score vectors with
the image domain and loading vectors with the mass domain is based on the
assumption that PCA is performed on a data matrix where the rows represent
pixels and the columns represent m/z-bins. This assumption would be in line
with the convention of an objects × features data matrix used in most PCA
literature. However, when there are more features available than objects, which
is usually the case for IMS (e.g. 7451 versus 1302 in the spinal cord data
set), it is more computationally efficient to use the transpose of D instead.7

The results of this more ‘economic’ PCA are identical to the ones from the
procedure described earlier, with the only difference being that the loading
vectors are now linked to the image domain and the score vectors to the mass
domain. This economized PCA was used in the case study of section 2.3.

2.3. Case Study: Rat Spinal Cord Nerve Tissue

In this section we demonstrate the use of PCA in an IMS context by applying
it to the IMS measurement of rat nerve tissue. For reference, Fig. 7 shows a
microscopic image of a nerve tissue section taken from the same animal as the
one used in this case study. Figure 7’s tissue slice has undergone histological
staining to bring out the gray/white tissue differentiation which is not visually
apparent in untreated samples, but which does show up in the PCA analysis
performed in this section.

Materials and methods The tissue section (15 micrometers thick) was
taken from a transversal section of the spinal cord of a standard control rat.
The recorded mass range extended from m/z 5000 to 12000 and alpha-cyano-
4-hydroxy cinnamic acid (7 mg/ml, in acetonitrile 50%, 0.05% TFA) was used
as a chemical matrix. A MALDI mass spectral measurement was performed
on each grid point of a virtual raster of size 31×42 that was superimposed
on the tissue section with an interspot distance of 100 micrometers in both
the x and y-directions. The mass spectrometer that was used is the ABI 4800
MALDI TOF/TOF Analyzer from Applied Biosystems Inc in linear mode.
The data collection in the mass spectrometer was guided by the 4000 Series

Imaging module, available at http://www.maldi-msi.org. Processing was done
using in-house developed software.

Preprocessing As Fig. 2, 3, 4, and 5 show, the IMS raster was slightly
off center with regards to the tissue section, resulting in a tissue-free area in
the bottom right corner (shown in purple). To avoid these empty measure-
ments consuming variance and influencing the PCA-results, we disregarded
them when their total ion current fell below a 10% threshold.

Analysis Results We applied PCA via singular value decomposition of the
covariance matrix of the data matrix, using the economized version of PCA
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Fig. 7. Microscopic image of a
transversal section of rat spinal cord,
histologically stained to show the
butterfly-shaped central area known
as the Substantia grisea (grey matter),

surrounded by white matter nerve tis-
sue.
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mentioned in section 2.2. This means that the loading vectors are represented in
the image domain, while the score vectors are shown in the mass domain. When
interpreting these visualisations, the relative differences in value are important,
not the absolute value or sign (e.g. see first score vector in Fig. 10). In the image
domain (Fig. 9) low valued areas in blue are discriminated from high valued
pixels in red, indicating zones within which the mass spectral footprint (and
the underlying chemical composition) is similar. In the mass domain (Fig.10)
m/z-bins carrying similar values correlate strongly in behavior across the tissue
(the peaks vary together), and can be discriminated from bins with dissimilar
values.

The bar plot in Fig. 8 shows us the relative amount of information con-
tained in each principal component (PC) (above a 0.1% cut-off). It is apparent
that the first PC is very prominent with more than 90% variance explained.
This means that the spatial and mass-related correlations connected to the
first PC can be considered as the primary structure found in the chemical
composition of the tissue slice. Secondary and tertiary uncorrelated trends are
also apparent as the second and third PC still hold a non-negligible amount of
information. However, from the fourth PC onwards the contributions become
less influential, tending towards noise in the data. Therefore, we will focus on
the first three loading and score vectors shown in Fig. 9 and 10. The strong
reduction in complexity indicates a large amount of correlation in the spatial
domain (indicating region formation) and the mass domain (indicating ions, or
m/z-bins, behaving similarly; e.g. by coming from the same parent molecule).

The primary trend, characterized by the first loading vector in Fig. 9 and
the first score vector in Fig. 10, shows that a butterfly-shaped region in the cen-
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Fig. 9. The first four loading vectors. Folded back into the image domain, they show cor-
relations at the pixel level.

ter of the tissue has a dissimilar chemical composition from the areas surround-
ing it (blue vs. red). This area correlates strongly in location and shape with
the anatomical region called the Substantia grisea (grey matter), surrounded
by white matter nerve tissue (also visible in Fig. 7). The first score vector
shows that all m/z-bins have negative values with differing relative amounts,
indicating that the spatial discrimination between the grey and white matter
areas is mainly explained through quantitative differences in the chemistry,
rather than qualitative ions showing up or disappearing. Also notice the two
characteristic peaks at m/z 5484 and 8564, that show up consistently across
the nerve tissue but whose relative quantity can be employed as a mass marker
for grey matter.

The second trend differentiates the blue region of tissue at the top of the
raster from the red/yellow area at the center. When studying the second score
vector it becomes clear that the differences between these areas are mainly
caused by the dense peak area between m/z 5000 and m/z 8000 showing up
more prominently while the peaks at m/z 5484 and 8564 lose intensity. One
has to bear in mind that this secondary trend only accounts for some 4% of
the chemical variation across the slice.

With a contribution coefficient of 1 to 2%, the third loading vector dif-
ferentiates between a ventral and dorsal area in the tissue. This third trend
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Fig. 10. The first four score vectors. Represented in the mass domain, they show correlations
between m/z-bins.

correlates strongly with the biochemical differences in ventral/dorsal cellular
composition of the spinal cord. In the mass domain of the third score vector we
see that this ventral/dorsal difference is mainly due to the 5484-peak showing
up and the 8564-peak diminishing in one area while the reverse happens in the
other area. In the primary and secondary trends the differences were mainly
quantitative in nature. However, in this third trend we see an example of a
more qualitative difference with the presence of a particular ion characterizing
a particular area in the tissue. The fourth loading and score vectors are shown
for completeness, but it is evident that spatially the correlations are less local-
ized and structured, tending towards spread-out noise. In the mass domain we
see differentiation between m/z-bins which are close together. This is rather
unlikely to be structured given that there are isotopic and other ties between
m/z-values this close together, which further seems to indicate that from this
trend onwards we are dealing with modeled noise.

In summary, the PCA-results tell us that in this particular IMS data set the
chemical composition is dominated by the difference between grey matter nerve
tissue and white matter, and two quantitative ion markers for these areas are
observed at m/z 5484 and 8564. In addition to that, a ventral/dorsal difference
was measured which can be related to known ventral/dorsal differences in the
spinal cord.
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3. Conclusions

We described a procedure for using PCA in an IMS context as an intrument for
guiding prospective analysis of the chemical tissue composition. In the spatial
domain it can show the human observer which regions have a particular mass
spectral footprint, and it can differentiate these from other areas in the tissue
slice without the need to perform invasive chemistry on the sample as is the
case with e.g. histological staining. In the mass domain, specific molecular
masses responsible for these differences (in m/z-form) are identified, and lend
themselves for further downstream analysis using, for example, ion images.
The case study on rat nerve tissue demonstrated these uses by delineating
grey matter from white matter and by identifying two mass markers that can
be used to differentiate between these zones. It also illustrates how, in addition
to the visual aspect of differentiating zones in the tissue, IMS as a technology
permits a direct measurement of the chemical reality responsible for these
differing areas, in the form of molecular masses.

The use of PCA as described in this paper is but a first step towards a
more insightful interrogation of IMS data. A thorough investigation of the
influence of factors such as preprocessing of the data and robustness of the
method will be required before it can be established as a firm first analysis step.
Also, comparisons with other multivariate techniques, such as independent
component analysis, are currently under way and will prove to be an interesting
research avenue.
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