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Template-based comparative analysis is a viable approach to the prediction and
annotation of pathways in genomes. Methods based solely on sequence similar-
ity may not be effective enough; functional and structural information such as
protein-DNA interactions and operons can prove useful in improving the predic-
tion accuracy. In this paper, we present a novel approach to predicting pathways
by seeking high overall sequence similarity, functional and structural consistency
between the predicted pathways and their templates. In particular, the prediction
problem is formulated into finding the maximum independent set (MIS) in the
graph constructed based on operon or interaction structures as well as homologous
relationships of the involved genes. On such graphs, the MIS problem is solved ef-
ficiently via non-trivial tree decomposition of the graphs. The developed algorithm
is evaluated based on the annotation of 40 pathways in Escherichia coli (E. coli)
K12 using those in Bacillus subtilis (B. subtilis) 168 as templates. It demonstrates
overall accuracy that outperforms those of the methods based solely on sequence
similarity or using structural information of the genome with integer programming.
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1. Introduction

A challenge in the post-genomic era is the understanding at different lev-
els of the genomes that have been sequenced 12. Many efforts have been
made in gene finding and assigning predicted or determined functionalities
to found genes. However, higher order functional analysis of organisms
from their genomic information remains in demand 14. Assigning a bio-
logical pathway to a set of genes, known as pathway annotation, is one
such analysis, which is essential to understanding cellular processes and
organism behaviors in a larger context 14. Biological pathways could be
determined experimentally but this is usually expensive and laborious. As
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more and more genomes are sequenced and annotated, it is feasible to em-
ploy comparative genomic analysis in pathway prediction and annotation
at the genome scale. Based on an annotated pathway from one genome
as template, a pathway for a target genome can be predicted by identify-
ing a set of orthologues based on sequence similarity to the genes in the
template pathway. A naive approach for orthology assigning is choosing
the best BLAST hit for each gene (BH). A more often used technique is
by reciprocal BLAST search, called bidirectional best-hit (BBH) 8, where
gene pairs are regarded as orthologues if they are the best hits in both di-
rections of the search. However, these and other sequence similarity based
approaches share the same limitation 7: the best hits may not necessarily
be the optimal orthologues, thus compromising the prediction accuracy.

It is observed that homology relationships exist not only at the se-
quence level, but also at functional and structural levels 15, e.g., those
of operon structures and protein-DNA interactions such as transcriptional
regulation patterns of some genes by transcriptional factors (TFs). Re-
cently, substantial operon and transcriptional regulation information have
been curated from the scientific literatures for a number of genomes 6,11.
Computational methods 10,11,15 have also been developed to predict operon
structures and co-regulated genes. The structural information about tran-
scriptional regulation patterns that are needed may be gathered in a num-
ber of ways, although they may not necessarily be complete or extremely
accurate. By considering such high level information among genes along
with the sequence similarity, it becomes possible to improve the pathway
prediction accuracy. However, the optimal prediction of pathways at the
genome scale becomes difficult combinatorial optimization problems if so-
phisticated structural information is incorporated. PMAP 7 is an existing
method that overcomes the difficulty by incorporating partial structural
information (it i.e. structural information of the target genome only) with
integer programing. In this paper, a novel approach is introduced based
on integrating data in sequence similarity, experimentally confirmed or pre-
dicted operons, transcriptional regulations, as well as available functional
information of related genes, in both template pathway and target genome.
The new approach has led to an efficient graph-theoretic algorithm called
TdPATH for pathway prediction.

Algorithm TdPATH predicts a pathway in a target genome based on a
template pathway by identifying an orthologous gene in the target genome
for each gene in the template pathway, such that the overall sequence
and structural similarity between the template and the predicted path-
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ways achieves the highest. In particular, homologes for each gene in the
template pathway are first identified by the BLAST search 1. Functional
information is then used to filter out genes unlikely to be orthologues. The
structural information are used to further constrain the orthology assign-
ment. One of the homologes is eventually chosen to be the ortholog for
the gene. The pathway prediction is formulated into the maximum inde-
pendent set (MIS) problem and the maximum CLIQUE problem by taking
protein-DNA interaction constraints and operon constraints respectively.
Because both problems are computationally intractable, we solve them ef-
ficiently with non-trivial techniques based on tree decompositions of the
graphs constructed from the structural constraints.

Our algorithm TdPATH has been implemented and its effectiveness is
evaluated against BH, BBH and PMAP in the annotation of 40 pathways
of E. coli K12 using the corresponding pathways of B. subtilis 168 as tem-
plates. The results showed that overall, in terms of the accuracy of the pre-
diction, TdPATH outperforms BH and BBH that based solely on sequence
similarity, as well as PMAP that uses partial structural information. In
term of average running time to predict a pathway, it outperforms PMAP.
Algorithm TdPATH is dynamic programing based on tree decomposition
techniques. The running time of the algorithm is dominated by function
2tn, where t is the tree width of the underlying graphs of n vertices con-
structed from the structural constraints. In particular, the statistics on
the tree width of these graphs shows that about 87% of the graphs have
tree width at most 5, while 94% have tree width at most 8. Therefore, the
tree decomposition based algorithm for pathway prediction is both theoreti-
cally and practically efficient than the integer programming based algorithm
PMAP..

2. Methods and Algorithm

2.1. Problem formulation

A pathway is defined as a set of molecules (genes, RNAs, proteins, or small
molecules) connected by links that represent physical or functional inter-
actions. It can be reduced to a set of genes that code related functional
proteins. An operon is a set of genes transcribed under the control of an op-
erator gene. Genes that encode transcriptional factors are called tf genes.
In the work described in this paper, a known pathway in one genome is
used as a template to predict a similar pathway in a target genome. That
is, for every gene in the template pathway, we identify some gene in target
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genome as its ortholog if there is one, under the constraints of protein-DNA
interaction (i.e., transcriptional regulation) and operon information. The
problem of predicting pathways is defined as:

Input: a template pathway model P = 〈AP , RP , OP 〉 and a target genome
T , where AP is a set of genes in P , RP is a set of relationships between tf
genes and genes regulated by corresponding tf gene products, and OP is a
set of operons;

Output: a pathway Q = 〈AQ, RQ, OQ〉 for T and an orthology mapping
π : AQ → AP such that the overall sequence similarity between all genes
in pathway Q and their corresponding orthologues in the template P , as
well as the consistency of the operon and regulation structures between
pathways P and Q are as high as possible.

2.2. The methods

Our approach consists of the following steps:

(1) For every gene in the template pathway P , find a set of homologes
in the target genome T with BLAST;

(2) Remove from the homologes genes unlikely to be orthologues to the
corresponding gene in the template P . This is done based on func-
tional information, e.g., Cluster of Orthologous Groups (COG)16,
which is available. In particular, genes that are unlikely orthologous
would have different COG numbers.

(3) Obtain protein-DNA interactions and operon structures for the ho-
mologous genes in the template pathway and target genome from
related databases 6,11, literatures or computational tools 10,15.

(4) Exactly one of the homologous genes is eventually assigned as the
ortholog for the corresponding gene in the template P . This is
done based on the constraints by the protein-DNA interaction and
operon information (for any gene that is not covered by the struc-
tural information due to the incomplete data or other reasons, we
simply assign the best BLAST hit as the ortholog). Such an or-
thology mapping or assignment essentially should yield a predicted
pathway that has overall high sequence similarity and structural
consistency with the template pathway.

By incorporating sophisticated structural information, the pathway pre-
diction problem may become computationally intractable. We describe in
the following in detail how an efficient algorithm can be obtained to find
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the orthology mapping between the template pathway and the one to be
predicted. We consider in two separate steps structural constraints with
protein-DNA interactions and those with operons.

2.2.1. Constraints with protein-DNA interactions

We use available protein-DNA interaction information, i.e. the transcrip-
tional regulation information, to constrain the orthology assignment. This
is to identify orthologs with consistent regulation structures to the cor-
responding genes in the template pathway. Think genes as vertices and
relations among the genes as edges, the template pathway and the cor-
responding homologs in target genome can be naturally formed into two
graphs. Thus the problem can be converted to finding the optimal com-
mon subgraph of these two graphs. It is in turn to be formulated into
the maximum independent set (MIS) problem. Details are given below.
For convenience, we call a regulon in this paper to be a gene encoding a
transcription factor and all the genes regulated by the factor.
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Figure 1. Constraints with transcriptional regulations. (a) Regulation graph G1 for
template pathway. A directed edge points from a tf gene to a gene regulated by the
corresponding TF, a solid edge connects two genes regulated by a same TF, a dashed
edge connects two genes belonging to different regulons. (b) Regulation graph G2 for the
homologous genes in the target genome, constructed in similar way to (a). (c) Merged
graph G from G1 and G2. Each node is a pair of homologous genes.

(1) A regulation graph G1 = (V1, E1) is built for the template pathway
P , where vertex set V1 represents all genes in template pathway P ,
and edge set E1 contains three types of edges: an edge of type-1
connects a tf gene and every gene regulated by the corresponding
product; an edge of type-2 connects two genes regulated by the
same tf gene product; and edges of type-3 connect two genes from
different regulons if they are not yet connected (Figure 1(a)).

(2) A regulation graph G2 = (V2, E2) is built for the target genome in
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the similar way, where V2 represents homologous genes in the target
genomes (Figure 1(b)).

(3) Graphs G1 and G2 are merged into a single graph G = (V, E) such
that V contains vertex [i, j] if and only if i ∈ V1 and j ∈ V2 are two
homologous genes. A weight is assigned to vertex [i, j] according to
the BLAST score between genes i and j. Add an edge ([i, j], [i′, j′])
if either (a) i = i′ or j = j′ but not both, or (b) edges (i, i′) ∈ E1

and (j, j′) ∈ E2 are not of the same type (Figure 1(c)).
(4) Then the independent set in the graph G with the maximum weight

should correspond to the desired orthology mapping that achieves
the maximum sequence similarity and regulation consistency. This
assigns one unique orthologous gene in this template pathway to
each gene in the pathway to be predicted, as long as they are covered
by the known protein-DNA interaction structures.

2.2.2. Constraints with operon structures

We now describe how to use confirmed or predicted operon information to
further constrain the orthology assignment. This step applies to the genes
that have not been covered by protein-DNA interaction structures.
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Figure 2. Constraints with operon information. See description for details. A dashed
line connects two homologes. a) Setting weight for an operon. b) A pair of partially
conserved operons in template pathway and target genome. (c) A mapping graph formed
according to (b). (d) An operon only appears in target genome. (e) The mapping graph
formed according to (d).
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We first assign to each gene i with a weight wi. wi is set according to
the average of its BLAST scores with its top m (say, 5) homologes. The
weight of an operon o is set as 0.5(n−1)

∑
i∈o wi/n, where n is the number

of genes in the operon (Figure 2(a)). The factor 0.5 allows an operon in one
genome to only contribute 50% and a conserved operon in the other genome
to contribute the other 50%. We use term n − 1 in the formula since we
want to exclude the operons that have only one gene from consideration,
since they do not introduce structural information.

We then sort the operons according the non-decreasing of their sizes and
then use the following greedy iterative process to constrain the orthology
mapping as long as there is an operon unexamined. Repeat the following
4 steps:

(1) Select the largest unexamined operon and consider the related ho-
mologes in another genome as well as the available operon structures
in them;

(2) Build a mapping graph Gm = (Vm, Em) (Figure 2(b)-(e)), where
Vm contains the following two types of vertices: an operon vertex
presents each of the involved operons and a mapping vertex [i, j]
presents each pair of homologous genes i and j. Edge set Em also
contains three types of edges: an edge connects every pair of map-
ping vertices ([i, j], [k, l]) if i 6= k and j 6= l, an edge connects an
operon node and a mapping node if one of the two genes in the map-
ping node belongs to the operon, and an edge connects every pair
of involved operons between the target genome and the template
pathway;

(3) Find the maximum clique C on Gm;
(4) Remove the template genes appeared in the mapping nodes of C

and their homologes. Remove an operon if all genes in it have been
removed. If only a subset of the genes in an operon have been
removed, leave the remaining genes as a reduced operon. Resort
the remaining operons.

By this formulation, an edge in graph Gm denotes a consistent rela-
tionship between two nodes connected by it. A maximum clique denotes a
set of consistent operon and mapping nodes that have the maximum total
weight and thus can infer a optimal mapping. Note that an operon in one
genome could have zero or more, complete or partial conserved operons in
another genome 10. If it has one or more (Figure 2(b)), the constraint can
be obtained from both of the genomes and thus is called a two side con-
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straint. The procedure can find the orthology mapping that maximizes the
sequence similarity and the operon structural consistency. Otherwise, it is
called called an one side constraint (Figure 2(b)). The procedure can find
the orthology mapping that minimizes the number of involved operons.

2.3. Tree decomposition based algorithm

Based on section 2.2, constraining the orthology mapping with protein-
DNA interactions and with operon structures can be reduced to the prob-
lems of maximum independent set (MIS) and maximum clique (CLIQUE)
on graphs formulated from the structural constraints. Both problems
are in general computationally intractable; any naive optimization algo-
rithm would be very inefficient considering the pathway prediction is at the
genome scale.

Our algorithm techniques are based on graph tree decomposition. A
tree decomposition 13 of a graph provides a topological view on the graph
and the tree width measures how much the graph is tree-like. Informally,
in a tree decomposition, vertices from the original graph are grouped into a
number of possibly intersecting bags; the bags topologically form a tree re-
lationship. Shared vertices among intersecting bags form graph separators;
efficient dynamic programming traversal over the graph is possible when
all the bags are (i.e., the tree width is) of small size 3.

In general, the graphs formulated from protein-DNA interactions and
operon structures have small tree width . We employ the standard tree
decomposition-based dynamic programming algorithm 3 to solve MIS and
CLIQUE problems on graphs of small tree width. On graphs with larger
tree width, especially on dense graphs, our approach applies the tree decom-
position algorithm on the complement of the graph instead. The running
time of the algorithms is O(2tn), where t and n are respectively the tree
width and the number of vertices in the graph. Such a running time is scal-
able to larger pathways. Due to the space limitation, we omit the formal
definition of tree decomposition and the dynamic programming algorithm.
Instead, we refer the reader to 3 for details.

We need to point out that finding the optimal tree decomposition (i.e.,
the one with the smallest tree width) is NP-hard 2. We use a simple, fast
approximation algorithm greedy fill-in 4 to produce a tree decomposition
for the given graph. The approximated tree width t may affect the running
time of the pathway prediction but not its accuracy.
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3. Evaluation Results

We evaluated TdPATH against BH, BBH and PMAP by using 40 known
pathways in B. subtilis 168 from KEGG pathway database 5 as templates
(Table 1) to infer corresponding pathways in E. coli K12. For TdPATH,
the operon structures are predicted according to the method used in 10 and
experimentally confirmed transcriptional regulation information is taken
from 6 for B. subtilis 168 and from 11 for E. coli K12. For PMAP, predicted
operon and regulon information is obtained according to the method used
in 7. Both TdPATH and PMAP include the COG filtering.

Table 1. Template pathways of B. subtilis 168, taken from KEGG pathway database.

bsu00040 bsu00100 bsu00130 bsu00190 bsu00193 bsu00401 bsu00430
bsu00471 bsu00480 bsu00511 bsu00530 bsu00531 bsu00602 bsu00604
bsu00660 bsu00720 bsu00730 bsu00750 bsu00760 bsu00900 bsu00903
bsu00930 bsu00950 bsu01031 bsu01032 bsu02040 bsu03020 bsu03030
bsu03060 bsu00220 bsu00450 bsu00770 bsu00780 bsu01053 bsu02030
bsu00520 bsu00920 bsu03010 bsu00240 bsu00400

We evaluated the accuracy of the algorithms. The accuracy was mea-
sured as the arithmetic mean of sensitivity and specificity. Let K be the
real target pathway, H be the homologous genes searched by BLAST ac-
cording to the corresponding template pathway. Let R be the size of K∩H,
i.e. the number of genes common in both the real target pathway and the
candidate orthologues. We use this number as the number of real genes to
calculate sensitivity and specificity because that is the maximum number of
genes a sequence based method can predict correctly. Since BH (or BBH)
can be considered a subroutine of PMAP and TdPATH, we only evaluated
efficiency for PMAP and TdPATH. Running times from reading inputs to
output the predicted pathway were collected. For TdPATH, we also col-
lected the data on tree width of the tree decompositions on the constructed
graphs or their complement graphs. For all of the algorithms, program
NCBI blastp 1 was used for BLAST search and the E-value threshold was
set to 10−6. The experiments ran on a PC with 2.8 GHz Intel(R) Pentium
4 processor and 1-GB RAM, running RedHat Enterprise Linux version 4
AS. Running times were measured using the ”time” function. The testing
results are summarized in Table 2.

On average, TdPATH has accuracy of 0.88, which is better than those
of other algorithms. We give two examples here to show the improvement
is good for small as well as large pathways. One is the nicotinate and
nicotinamide metabolism, which has 13 genes in B. subtilis 168 while 16
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genes in E. coli K12. The prediction accuracy of TdPATH is 0.9, better
than 0.79, 0.83 and 0.79 of BH, BBH and PMAP respectively. Another is
the pyrimidine metabolism pathway, which has 53 genes in B. subtilis 168
and 58 in E. coli K12. TdPATH has prediction accuracy of 0.82, better than
0.79, 0.80, 0.79 of BH, BBH and PMAP respectively. PMAP has second
highest accuracy, which means prediction accuracy could be improved even
by incorporating structural information partially.

Table 2. Evaluation results. T: time (in seconds),
A: accuracy ((sensitivity+specificity)/2).

BH BBH PMAP TdPATH

A A A T A T

min 0.33 0.45 0.33 12.8 0.50 1.2
max 1.00 1.00 1.00 27.3 1.00 33.3
ave 0.84 0.85 0.86 16.4 0.88 11.5

For efficiency, TdPATH has average of 11.5 seconds for predicting a
pathway, which is slightly better than 16.4 seconds of PMAP. The tree
width distribution is shown in Figure 3. On average, tree width of the tree
decompositions on the constructed graphs or their complement graphs is
3. 87% of them have tree width at most 5 while 94% at most 8. Since
theoretically the running time to find the maximum independent set by the
tree decomposition based method is O(2tn) (where t is the tree width), we
can conclude that most of the time our algorithm is efficient based on the
statistics of the tree width.
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Figure 3. Distribution of the tree width of the tree decompositions on the constructed
graphs or their complement graphs.
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4. Discussion and Conclusion

We have shown our work in utilizing functional information and structural
information including protein-DNA interactions and operon structures in
comparative analysis based pathway prediction and annotation. The struc-
tural information used to constrain the orthology assignment between the
template pathway and the one to be predicted appears to be critical for
prediction accuracy improvement. It was to seek the sequence similar-
ity and the structural consistency between the template and the predicted
pathways as high as possible. Technically, the problem was formulated as
finding the maximum independent set problem on the graphs constructed
based on the structure constraints. Our algorithm, based on the non-trivial
tree decomposition, coped with the computational intractability issue well
and ran very efficiently. Evaluations on real pathway prediction for E coli
also showed the effectiveness of this approach. It could also utilize incom-
plete data and tolerate some noise in the data.

Tree decomposition based algorithm is sophisticated yet practically ef-
ficient. Simpler algorithms are possible if only functional information and
sequence similarity are considered. However, computationally incorporat-
ing structure information such as protein-DNA interactions and operons in
optimal pathway prediction appears to be inherently difficult. Naive opti-
mization algorithms may not be scalable to larger pathway at the genome
scale. In addition to the computational efficiency, our graph-theoretic ap-
proach also makes it possible to incorporate more information such as gene
fusion and protein-protein interactions 12 to further improve the accuracy
simply because such information may be represented as graphs as well.

On the other hand, when a template pathway is not well conserved in
the target genome, the method may fail to predict the pathway correctly.
Multiple templates could be used to rescue this problem since the conserved
information could be compensated with each other. We are trying to build
profiles from multiple template pathways and use them to do the pathway
prediction.
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