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Motivation: Predicting the subcellular location of proteins is an active research area, as a 
protein’s location within the cell provides meaningful cues about its function. Several 
previous experiments in utilizing text for protein subcellular location prediction, varied 
in methods, applicability and performance level. In an earlier work we have used a 
preliminary text classification system and focused on the integration of text features into 
a sequence-based classifier to improve location prediction performance.  
Results: Here the focus shifts to the text-based component itself. We introduce EpiLoc, a 
comprehensive text-based localization system. We provide an in-depth study of text-
feature selection, and study several new ways to associate text with proteins, so that text-
based location prediction can be performed for practically any protein. We show that 
EpiLoc’s performance is comparable to (and may even exceed) that of state-of-the-art 
sequence-based systems. EpiLoc is available at: http://epiloc.cs.queensu.ca. 

1. Introduction 

Knowing the location of proteins within the cell is an important step toward 
understanding their function and their role in biological processes. Several 
experimental methods, such as those based on green fluorescent proteins or on 
immunolocalization, can identify the location of proteins. Such methods are 
accurate, but slow and labour-intensive, and are only effective for proteins that 
can be readily expressed and produced within the cell. 

Given the large number of proteins about which little is known, and that many 
of these proteins may not even be expressed under regular conditions – it is 
important to be able to computationally infer protein location based on readily 
available data (e.g. amino acid sequence). Once effective information is 
computationally elucidated outside the lab, well-targeted lab experiments can be 
judicially performed. For well over a decade many computational location-
prediction methods were suggested and used, typically relying on features 
derived from sequence data7,9,12,13.  

Another type of information that can assist in location prediction is derived 
from text. One option is to explicitly extract location statements from the 
literature6. While this approach offers a way to access pre-existing knowledge, it 
does not support prediction. An alternative predictive approach is to employ 
classifiers using text-features that are derived from literature discussing the 
proteins. These features may not state the location, but their relative frequency in 
the text associated with a certain protein is often correlated with the protein’s 
location. Examples of this approach include work by Nair and Rost11 and by 
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Stapley et al17. They represent proteins using text-features taken from 
annotations11 or from PubMed abstracts in which the protein’s name occur17, and 
train classifiers to distinguish among proteins from different locations. The main 
limitations of this earlier work are:  a) It was not shown to meet or improve upon 
the performance of state-of-the-art systems. b) The systems depended on an 
explicit source of text; in its absence many proteins cannot be localized.  

In an earlier work8,16 we studied the integration of text features into a 
sequence-based classifier9, showing significant improvement over state-of-the-art 
location prediction systems. The text component was a preliminary one, and was 
not studied in detail. Here we provide an in-depth study and description of a new 
and complete text-based system, EpiLoc. We compare several text-feature 
selection methods, and extensively compare the performance of this system to 
other location prediction systems. Moreover, we introduce several alternative 
ways to associate text with proteins, making the system applicable to practically 
any protein, even when text is not available from the preferred primary source. 
Further details about the differences between the preliminary version8,16 and 
EpiLoc are given in the complete report of the work3. 

While our work focuses on protein subcellular localization, the ideas and 
methods, including the study of feature selection and of ways for associating text 
with biological entities, are applicable to other text-related biological enquiries. 

In Section 2 we introduce the methods for associating text with proteins, and 
the way in which text is used to represent proteins. Section 3 focuses on feature 
selection methods, while Sections 4 and 5 describe our experiments and results, 
demonstrating the effectiveness of the proposed methods.   

2. Data and Methods 

EpiLoc is based on the representation of each protein as an N-dimensional vector 
of weighted text features, < pw1 … p

Nw >. Each position in the vector represents a 
term from the literature associated with the proteins. As not all terms are useful 
for predicting subcellular location, and to save time and space, feature selection 
is employed to obtain N terms, as discussed in Section 3. Here we describe our 
primary method for associating text with individual proteins and our term-
weighting scheme. We also present three alternative methods that assign text to 
proteins when the primary method cannot do so.  

Primary Text Source: The literature associated with the whole protein dataset is 
the collection of text related to the individual proteins. For training EpiLoc, text 
per protein is taken from the set of PubMed abstracts referenced by the protein’s 
Swiss-Prot2 entry. Abstracts associated with proteins from three or more 
subcellular locations are excluded, as their terms are unlikely to effectively 
characterize a single location. Each protein is thus associated with a set of 
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authoritative abstracts, as determined by Swiss-Prot curators. As we noted 
before16, the abstracts do not typically discuss localization – but rather are 
authoritative with respect to the protein in general. This choice of text is more 
specific than that of Stapley et al.17, who used all abstracts containing a protein’s 
gene name. Moreover, unlike Nair and Rost11, who used Swiss-Prot annotation 
text rather than referenced abstracts, our choice is general enough to assign text 
to the majority of proteins, allowing the method to be broadly applicable.  

The text in each abstract is tokenized into a set of terms, consisting of 
singletons and pairs of consecutive words; a list of standard stop wordsa is 
removed, and Porter stemming14 is then applied to all the words in this set. Last, 
terms occurring in fewer than three abstracts or in over 60% of all abstracts are 
removed; very rare terms cannot be used to represent the majority of the proteins 
in a dataset, while overly frequent terms are unlikely to have a discriminative 
value. The resulting term set typically contains more than 20,000 terms, and is 
reduced through a feature selection step (see Section 3). The feature-selection 
process produces a set of distinguishing terms for each location, that is, terms 
that are more likely to be associated with proteins within a certain location than 
with proteins from other locations. The combined set of all distinguishing terms 
forms the set of terms that we use to represent proteins, as discussed next. 

Term Weighting: Given the set of N distinguishing terms, each protein p, is 
represented as an N-dimensional weight-vector, where the weight p

itW  at position 
i, (1 ≤ i ≤ N), is the probability of the distinguishing term ti to appear in the set of 
abstracts known to be associated with protein p, denoted Dp. This probability is 
estimated as the total number of occurrences of term ti in Dp divided by the total 
number of occurrences of all distinguishing terms in Dp. Formally p

itW  is 
calculated as: p

itW =(# of times ti occurs in Dp)/Σj(# of times tj occurs in Dp), where the sum 
in the denominator is taken over all terms tj in the set of distinguishing terms TN. 

Once all the proteins in a set have been represented as weighted term vectors, 
the proteins from each subcellular location are partitioned into training and test 
sets, and a classifier is trained to assign each protein to its respective location. 
Our classifier is based on the LIBSVM5 implementation of support vector 
machines (SVMs). LIBSVM supports soft, probabilistic categorization for n-class 
tasks, where each classified item is assigned an n-dimensional vector denoting 
the item’s probability to belong to each of the n classes. Here n is the number of 
subcellular locations.  

Alternative Text Sources: As pointed out by Nair and Rost11, the text needed to 
represent a protein is not always readily available. In our case, some proteins 

                                                 
a Stop words are terms that occur frequently in text but typically do not bear content, such as prepositions. 
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may not have PubMed identifiers in their Swiss-Prot entry, and others – newly 
discovered proteins – may not even have a Swiss-Prot entry. We refer to such 
proteins as textless, and propose three methods to assign them with text. 

HomoLoc – In previous work16, if a textless protein had a homolog with 
associated text, we used the text of the homolog to represent the textless protein. 
Homoloc extends this idea to consider multiple homologs and re-weight terms 
accordingly. A BLAST1 search identifies the set of homologs, and we retain those 
that share at least 40% sequence identity with the textless protein. (This level of 
similarity was chosen based on a study by Brenner et al.4,3). The retained 
homologs are then ranked in ascending order according to their E-value, and the 
set of abstracts associated with the top three homologs are associated with the 
textless protein. To reflect the degree of homology in the term vector 
representation, a modified weighting scheme is used where the number of times 
each term occurs in the abstracts associated with a homolog is multiplied by the 
percent identity between the homolog and the textless protein. Formally, the 
modified weight is calculated as: 
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where h is a homolog, Dh is the set of abstracts associated with h, and a sum is 
taken over all the homologs in the set of homologs H. 

DiaLoc – Proteins are most likely to be textless when they have just recently 
been sequenced/identified, as little information about them exists in databases 
such as PubMed or Swiss-Prot. When no close homologs with assigned text are 
known, HomoLoc cannot be used. The most reliable source of information for 
such proteins (and the one most likely to be interested in their localization) is the 
scientist researching the proteins. A user interface (shown in Fig. 2), allows a 
researcher to type her own short description of the protein based on the current 
state of knowledge. This description is used as the text associated with the 
textless protein. DiaLoc is meant to be used as an interactive tool for researchers 
concerned with individual proteins, and not as a large-scale annotation tool.   

PubLocb – Proteins whose Swiss-Prot entries do not contain reference to 
PubMed may still have PubMed abstracts discussing them. To check if such 
abstracts exist, the name of the textless protein and its gene are extracted from 
the Swiss-Prot entry. A query consisting of an OR-delimited list of these names 
is posed to PubMed. The five most recent abstracts returned are used as the 
protein’s text source. This is a simple selection criterion and can be further 
improved upon. 

                                                 
b We thank Annette Höglund for suggesting this name. 
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To select the preferred method for handling textless proteins for large-scale 
annotation, we compared HomoLoc’s and PubLoc’s performance on the 614 
textless proteins of the MultiLoc dataset (see Section 4). A complete discussion 
of these experiments is beyond the scope of this paper and is provided 
elsewhere3; we briefly summarize them here. We trained EpiLoc on all the 
proteins in the MultiLoc dataset that do have associated text. We then 
represented the remaining textless proteins using both PubLoc and HomoLoc, 
and classified them using the trained system. The overall accuracy obtained (for 
these 614 proteins) using HomoLoc is 73% for plant and 76% for animal. Using 
PubLoc the accuracy dropped to 57% and 64%, respectivelyc. As PubLoc is 
clearly less effective than HomoLoc, it is only applied in cases where neither 
HomoLoc nor DiaLoc can be used. HomoLoc is thus our method of choice for 
handling textless proteins, and is further discussed in Section 4. 

3. Feature Selection 

As stated in Section 2, each protein is represented as a weight-vector defined 
with respect to a set of distinguishing terms. Using a set of selected features can 
improve performance (even when SVMs are used) and reduces computational 
time and space. Intuitively, a term t is distinguishing for a location L, if its 
likelihood to occur in text associated with location L is significantly different 
from that of occurring in text associated with all other locations. To compare 
these likelihoods, for each location we assign to each term a score reflecting its 
probability to occur in the abstracts associated with the location. We formalize 
this method, referred to as the Z-Test method, in Section 3.1, and compare it with 
several alternatives in Section 3.2. 

3.1. The Z-Test Method 

Let t be a term, p a protein, and L a location. A protein, p, localized to L, is 
denoted p∈L and has a set of associated abstracts, denoted Dp. The set of all 
proteins known to be localized to L is denoted PL. We denote by DL the set of 
abstracts associated with location L, (i.e. all abstracts associated with the proteins 
localized to L). Formally, this set is defined as: DL=Up∈PL

{d|d∈Dp}, and the 
number of abstracts in this set is denoted |DL|. The probability of term t to be 
associated with location L, denoted Pr(t|L), is defined as the conditional 
probability of t to appear in an abstract d, given that d is associated with location 
L. This probability is expressed as: Pr(t|L)=Pr(t∈d|d∈DL). Its maximum likelihood 
estimate is the proportion of abstracts containing the term t among all abstracts  
associated with L: Pr(t|L)≈ (# of abstracts d∈ DL such that t∈d) / |DL|.   We calculate 

                                                 
c We also tested simpler versions of these methods (including the single-homolog method we tried in 

the past16); these were not as effective as the methods presented here3. 
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the probability Pr(t|L) for each term t and location L. 
Based on the above formulation, a term t is considered distinguishing for 

location L, if and only if its probability to occur in abstracts associated with L, 
Pr(t|L), is significantly different from its probability to occur in abstracts 
associated with any other location L’, Pr(t|L’). To determine the significance of 
the difference between the two probabilities, a statistical test is employed that 
utilizes a Z-score18. The test evaluates the difference between two binomial 
probabilities, Pr(t|L) and Pr(t|L’), by calculating the following statistics:   
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The higher the absolute value t
L,L'Z , the greater is the confidence level that the 

difference between Pr(t|L) and Pr(t|L’) is statistically significant. Therefore, we 
consider a term t as distinguishing for location L if for any other location L’, the 
score t

L,L'Z  is greater than a predetermined threshold. Table 1 shows examples 
of distinguishing terms for several locations; note that the terms do not 
necessarily state the location, but are merely correlated with it. The precise 
threshold selected was based on the experiment described next.  

3.2. Feature Selection Comparison 

To determine the effectiveness of the Z-Test method, we compare it to four 
standard feature selection methods: odds ratio (OR), Chi-squared (χ2), mutual 
information (MI), and information gain (IG)15. We also compare it to the 
Entropy method, used by Nair and Rost11. Each of the four standard methods 
attempts to quantify how well a term represents a location by scoring a term t 
with respect to a location L. The total score for a term is then calculated as a 
combination of its location-specific scores. Following previous evaluations15,20, 
to calculate the total OR and the IG scores we sum the term’s scores over all 
locations, and to calculate the MI and χ2 scores we take the maximum score for 
the term with respect to all locations. The Entropy method11 scores terms with 
respect to locations, based on the difference between their Shannon information 
and the maximum attainable information.  

To compare among the different feature selection methods we calculated the 
overall accuracy achieved by classifiers based on each method, on both plant and 
animal proteins of the MultiLoc dataset. For each of the methods, we used the 
same text pre-processing and partitioning of the data for five-fold cross-
validation. Each of the six methods was evaluated based on its performance over 
a range of possible number of selected terms (ranging from 500 to 4,000).  

Figure 1 shows the overall location prediction accuracy as a function of the 
number of selected terms for plant proteins. Similar results were obtained for

Pacific Symposium on Biocomputing 13:604-615(2008)



  
 

 

a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Average Number of Terms

O
ve

ra
ll 

A
cc

ur
ac

y

χ2
ENTROPY
IG
MI
OR
Z-SCORE

  

 
 

  
 
animal proteins3. The figure demonstrates that the performance of the Z-Test, IG, 
and χ2 methods is almost equivalent, and any of them could have been used by 
our classifier with similar results. We use the Z-Test in our experiments as this 
was our original approach8,16 and it has a simple statistical interpretation. In 
contrast, the performance of the MI, OR, and Entropy methods is not as good. 
MI’s poor performance relative to that of both IG and χ2 was expected, as it has 
been noted in previous research20. The Entropy method was originally developed 
to select features from a relatively small set of potential features compared to the 
set used here; Nair and Rost used only the functional keywords in Swiss-Prot 
annotations of the proteins, whereas we use a much larger number of potential 
features. As such, the relatively poor performance of the Entropy method shown 
here is not surprising. Conversely, we expected better results from OR. Its poor 
performance appears to be the result of its preferential selection of terms that 
occur in the abstracts associated with only a single location, leading to very 
sparse term vector representations for most proteins (a detailed discussion is 
provided elsewhere3). As mentioned above, we used this experiment as a guide 
for setting the threshold on the Z-score. For each dataset, we place a lower bound 
of 1.15 on the threshold, and set it to retain about 2,000 terms, as this number 
attains a balance between a computationally effective feature-space, and 
classification accuracy. As Figure 1 shows, the accuracy of the top methods does 
not significantly improve by including over 2,000 features. Table 2 shows the Z-
score threshold used for each organism in each of the datasets described below. 

4. Experimental Setting 

EpiLoc was extensively evaluated, and compared to three state-of-the-art 
prediction systems – TargetP, PLOC, and MultiLoc – using the respective 
datasets that were used to train and test these systems. HomoLoc’s performance 
is evaluated on the MultiLoc dataset. The datasets and evaluation procedures are 

Dataset Organism Threshold   [Confidence] 
Plant 1.645   [90%] 

TargetP 
Non-Plant 2.576   [99%] 

Plant 1.150   [75%] 
PLOC 

Animal 1.150   [75%] 
Plant 1.282   [80%] MultiLoc 

Animal 1.645   [90%] 

Loc. Example Terms 
nu bind, base pair, chromatin, DNA 
mi acyl coa, cytochrom, electron transport  
go acceptor, galactos, golgi, transferase 
Er chaperon, disulfid isomeras, endoplasm 

Figure 1. Accuracy of the classifiers (for plant 
proteins), based on different feature selection 
methods, as a function of the average number of 
selected terms (features). 

 

Table 2. The threshold (and confidence level) 
chosen for each organism and dataset. 

 

Table 1. Stemmed Distinguishing terms. 
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described throughout this section. 

The following three datasets are used in our comparative study: 
TargetP7 – A total of 3,415 proteins, sorted into four plant (ch, mi, SP, and 

OT) and three non-plant (mi, SP, and OT) locations. The SP (Secretory Pathway) 
class includes proteins from the endoplasmic reticulum (er), extracellular space 
(ex), Golgi apparatus (go), lysosome (ly), plasma membrane (pm), and vacuole 
(va); the OT (Other) class includes cytoplasmic (cy) and nuclear (nu) proteins. 

MultiLoc9 – The MultiLoc dataset consists of 5,959 proteins extracted from 
Swiss-Prot release 42.0. Animal, fungal, and plant proteins with annotated 
subcellular locations were collected and sorted into eleven locations: ch, cy, er, 
ex, go, ly, mi, nu, pe, pm, and va. Proteins with a sequence identity greater than 
80% were excluded from the dataset, as were any proteins whose subcellular 
location annotation included the words by similarity, potential, or probable. 

PLOC13 – This dataset consists of 7,579 proteins with a maximum sequence 
identity of 80%, extracted from Swiss-Prot release 39.0. In addition to the 11 
locations covered by the MultiLoc dataset, proteins from the cytoskeleton (cs) 
are also included. This set is larger than the MultiLoc dataset, due to the 
inclusion of proteins whose subcellular location line in Swiss-Prot included the 
words by similarity, potential, or probable. 

Using these three datasets, we compare the performance of EpiLoc to that of 
TargetP, PLOC, and MultiLoc. Following previous evaluations7,9,13 we use strict, 
stratified, five-fold cross-validation. We do not use the same partitions as used to 
evaluate each of TargetP, PLOC, and MultiLoc, as these partitions include 
textless proteins, which are not included in the evaluation of the primary EpiLoc 
method, (the TargetP, PLOC, and MultiLoc datasets contain 292, 1076, and 614 
textless proteins, respectively). Therefore, for each dataset we perform five sets 
of five-fold cross-validation runs to ensure the robustness of the evaluations. 

The metrics used here for performance evaluation are those used for 
evaluating previous systems7,9,13. For each dataset, and each location, 
performance is measured in terms of sensitivity (Sens), specificity (Spec), and 
Matthew’s Correlation coefficient (MCC)10. These are formally defined as: 
  

( ) ( ) ( ) ( )
,and,

FPTNFNTNFPTPFNTP
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where TP, TN, FP, and FN represent the number of true positives, true negatives, 
false positives, and false negatives, respectively, with respect to a given location. 
We also measure the overall accuracy, Acc = C/N, where C is the total number 
of correctly classified proteins and N is the total number of classified proteins. 
Finally, we calculate the average sensitivity, Avg, over all locations.  

To evaluate HomoLoc’s performance, we conducted an experiment in which 
the text associated with the proteins in each of the five test subsets used for the 
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cross-validation of MultiLoc was removed. Each protein in each test subset was 
then assigned the text of its homologs by HomoLoc, without including the text 
associated with the protein itself. 

5. Results and Discussion 

Tables 3, 4, and 5 show the results of running EpiLoc on the TargetP, PLOC and 
MultiLoc datasets, respectively. For comparison, we also list the results reported 
by the authors of TargetP7, PLOC13, and MultiLoc9 on their corresponding 
datasets, taken from the respective publications. Table 5 also shows earlier 
results of applying our basic text-based system8,16 (denoted here EarlyText) to 
the MultiLoc dataset, demonstrating EpiLoc’s improvement relative to the early 
system. Each table shows the overall accuracy (Acc), average sensitivity (Avg), 
and location-specific results. The highest values for each measure appear in 
bold, and standard deviations (denoted ±) are provided where available. 

The results in Tables 3, 4, and 5 clearly indicate that the EpiLoc classifier 
performs at a level similar to earlier prediction systems. EpiLoc’s overall 
accuracy and average sensitivity slightly exceed those of TargetP (Table 3), 
while each of the two systems scores higher than the other on some of the 
location-specific measures. On the MultiLoc dataset (Table 5), EpiLoc’s overall 
accuracy, average sensitivity, and almost all location-specific scores are higher 
than those of the MultiLoc classifier.  

On the PLOC dataset (Table 4) PLOC’s overall accuracy is higher than 
EpiLoc’s, while EpiLoc’s average sensitivity is much higher than PLOC’s. 
EpiLoc’s sensitivity is actually higher for most locations. Whereas PLOC works 
well primarily on over-represented locations for which a large number of 
proteins are known (ex, cy, pm, nu, all have at least 860 proteins), EpiLoc 
performs well even for locations with relatively few associated proteins (pe, er, 
ly, cs, go, all with at most 125 proteins). These results all demonstrate that 
EpiLoc’s performance is comparable to state-of-the-art prediction systems. 

We note that EpiLoc’s performance on both the TargetP and the MultiLoc 
datasets is better than it is on the PLOC set. As the criteria used for selecting 
proteins for the MultiLoc and TargetP datasets were stricter than those employed 
for the PLOC dataset (see Section 4), the resulting protein distribution among 
locations, and thus the distribution of associated text, is quite different among 
the datasets. As such, a lower Z-score threshold, as shown in Table 2, was 
needed to select a sufficient number of features (only about 1,250 actually 
chosen) for the PLOC set. As these terms are fewer and less distinguishing, using 
them to represent the PLOC dataset results in EpiLoc’s lower performance. 

As stated in Section 4, our evaluation of EpiLoc does not include the textless 
proteins from each of the three datasets. Consequently, when applied to the 
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Table 3. Prediction performance of TargetP and EpiLoc on the TargetP dataset, for both plant 
and non-plant proteins.  

Loc. TargetP EpiLoc TargetP EpiLoc 
  Plant (Sens Spec MCC) Non-Plant (Sens Spec MCC) 

ch 0.85  0.69  0.72 0.92  0.53  0.68 N/A 
mi 0.82  0.90  0.77 0.89  0.81  0.82 0.89  0.67  0.73 0.92  0.84  0.86 
SP 0.91  0.95  0.90 0.89  0.84  0.80 0.96  0.92  0.92 0.93  0.86  0.84 
OT 0.85  0.78  0.77 0.84  0.95  0.78 0.88  0.97  0.82 0.88  0.95  0.81 
Acc 0.853 (±0.035)  0.862 (±0.004)  0.900 (±0.007) 0.901 (±0.006)  
Avg 0.856 (n/a)  0.883 (±0.001)  0.907 (n/a)  0.908 (±0.003)  

Table 4. Prediction performance of PLOC and EpiLoc on the animal proteins of the PLOC 
dataset. Specificity and MCC values were not available for PLOC, hence only its sensitivity is 
listed and compared with our sensitivity values.  

  PLOC Dataset (Animal)  
 Loc. go  cs ly er pe Mi ex cy pm nu Acc/Avg 

PLOC (Sens) 0.15 0.59 0.62 0.47 0.25 0.57 0.78 0.72 0.92 0.90 0.796 (± 0.009)/ 
0.579 (± 0.021) 

(Sens) 0.76 0.84 0.89 0.72 0.85 0.79 0.74 0.53 0.79 0.81 
(Spec) 0.51 0.32 0.32 0.30 0.55 0.85 0.68 0.63 0.85 0.90 EpiLoc 
(MCC) 0.62 0.51 0.53 0.45 0.68 0.80 0.66 0.50 0.78 0.80 

0.743 (±0.002)/ 
0.773 (±0.0012) 

Table 5. Prediction performance of MultiLoc, EarlyText (our basic text-based system used in 
earlier work8,16), EpiLoc and HomoLoc on the animald proteins of the MultiLoc dataset.  

  MultiLoc Dataset (Animal) 
Loc. MultiLoc EarlyText EpiLoc HomoLoc 

  (Sens Spec MCC) 
go 0.71 0.43 0.53 0.86  0.40  0.57 0.88  0.62  0.73 0.90  0.72  0.80 
ly 0.69 0.36 0.48 0.75  0.32  0.47 0.86  0.39  0.57 0.85  0.49  0.63 
er 0.68 0.56 0.60 0.74  0.48  0.58 0.74  0.59  0.65 0.77  0.67  0.71 
pe 0.71 0.31 0.44 0.93  0.60  0.74 0.90  0.77  0.82 0.80  0.69  0.74 
mi 0.88 0.82 0.83 0.80  0.79  0.77 0.82  0.82  0.80 0.79  0.84  0.80 
ex 0.79 0.83 0.77 0.76  0.78  0.72 0.80  0.82  0.77 0.83  0.83  0.79 
cy 0.67 0.85 0.68 0.51  0.77  0.53 0.68  0.79  0.65 0.72  0.80  0.67 
pm 0.73 0.90 0.76 0.80  0.91  0.81 0.85  0.90  0.84 0.89  0.91  0.87 
nu 0.82 0.73 0.73 0.84  0.71  0.73 0.84  0.81  0.80 0.87  0.84  0.83 

Acc 0.746 (± 0.01) 0.725 (±0.007) 0.792 (±0.008) 0.812 (± 0.010) 
Avg 0.741 (± 0.025) 0.775 (±0.015) 0.818 (±0.005) 0.822 (± 0.005) 

 TargetP, PLOC, and MultiLoc datasets, EpiLoc predicts the location of 91.4%, 
85.8%, and 89.7% of the proteins, respectively. We note that if HomoLoc (as 
described in Section 2) is used to assign text to the textless proteins, EpiLoc  

predicts the location of 100% of the proteins, while maintaining its high 
accuracy (e.g. overall accuracy of 0.81 on the MultiLoc dataset).  

Table 5 shows the performance of HomoLoc on the MultiLoc dataset. 
HomoLoc’s overall accuracy actually exceeds EpiLoc’s, and its average 
sensitivity is at least as high. Moreover, HomoLoc produces many of the highest 
location-specific results. HomoLoc’s improved performance on the MultiLoc 

                                                 
d Similar results were obtained for plant and fungus proteins. 
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dataset is most likely the result of the large amount of text that it associates with 
each protein. Having more abstracts, originating from the three close homologs, 
provides a larger sample of representative terms for the protein than the single 
set of abstracts referenced by the protein’s single Swiss-Prot entry.  

HomoLoc’s performance on the MultiLoc dataset clearly demonstrates its 
utility for handling textless proteins. These results strongly support the idea that 
in the absence of curated text for a protein, using the text of its homologs to 
represent the protein yields a very good prediction. 

Finally, we demonstrate by example the use of the DiaLoc method. Its proper 
evaluation requires a study over a prolonged period of time, in which researchers 
will use the web-interface to enter text and assess the results. Thus no formal 
evaluation is given here. Our example is the histone H1, a nuclear protein 
involved in the structure of DNA. For the “expert” text describing the protein, 
we use the description of H1 given by Wikipedia19. This choice of example is 
reasonable as it provides the high-level description we expect to obtain from an 
expert who has some knowledge of the protein, but is still searching for more 
details. Any word starting with the letters nucle, which might be viewed as a hint 
for a nuclear protein, was removed from the text. The resulting text is the input 
to the DiaLoc web server (Fig. 2), and the output is a location prediction. DiaLoc 
correctly assigns H1 to the nucleus with a probability of 0.5661, (a high value 
within a multinomial distribution over 9 possible locations). Although this 
example clearly does not test DiaLoc’s overall 
predictive ability, it demonstrates DiaLoc as a 
working tool. As the prediction engine used by 
DiaLoc is the same one used by EpiLoc, given the 
same PubMed abstracts as were used for testing 
EpiLoc, DiaLoc’s performance is the same as 
EpiLoc’s. DiaLoc’s strength lies in its ability to 
serve as an interactive tool for researchers. 

 

6. Conclusion and Future Directions 

The work presented here clearly demonstrates that EpiLoc can predict the 
subcellular location of proteins as reliably as other state-of-the-art systems. 
Moreover, we have demonstrated that the HomoLoc method is an effective way 
to represent proteins for location prediction. By using HomoLoc, PubLoc and 
DiaLoc, our system can associate text with practically any protein, and predict its 
location. DiaLoc is expected to be a useful tool for lab scientists, while EpiLoc 
and HomoLoc are primarily large-scale annotation tools.  

In an earlier study8,16 we showed that the integration of a relatively basic text-
based system with the sequence-based MultiLoc system9 produced a much 

Figure 2. User interface for DiaLoc. 
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improved prediction performance with respect to the state-of-the-art. While the 
work presented here focuses on EpiLoc as a text based system, we expect that its 
integration with MultiLoc will further improve the overall performance. We plan 
to study such integration in the near future. Other future directions include a 
thorough evaluation of DiaLoc, and the extension of EpiLoc to predict sub-
subcellular locations of proteins. EpiLoc and DiaLoc are available online at: 
http://epiloc.cs.queensu.ca  and  http:// epiloc.cs.queensu.ca/DiaLoc.html. 
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