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As structural genomics efforts succeed in solving protein structures with novel folds, the 
number of proteins with known structures but unknown functions increases. Although 
experimental assays can determine the functions of some of these molecules, they can be 
expensive and time consuming. Computational approaches can assist in identifying 
potential functions of these molecules. Possible functions can be predicted based on 
sequence similarity, genomic context, expression patterns, structure similarity, and 
combinations of these. We investigated whether simulations of protein dynamics can 
expose functional sites that are not apparent to the structure-based function prediction 
methods in static crystal structures. Focusing on Ca2+ binding, we coupled a machine 
learning tool that recognizes functional sites, FEATURE, with Molecular Dynamics 
(MD) simulations. Treating molecules as dynamic entities can improve the ability of 
structure-based function prediction methods to annotate possible functional sites. 

1.   Introduction: 

The problem of function prediction is central to bioinformatics. Recently, 
the number of approaches dealing with solving this problem has increased 
dramatically. Some methods use interaction data collected from genomic and 
microarray experiments [1]. Sequence based approaches use sequence 
conservation through analysis of related sequences [2]. Some methods recognize 
sequence motifs, compiled into databases such as PROSITE [3] and PRINTS 
[4], and analyze their patterns of co-occurrence in the related sequences. There 
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are also aggregate approaches that apply several methods at once to examine a 
given structure [5, 6]. 

Structural genomics efforts specifically attempt to solve the structures of 
proteins with novel folds [7, 8]. As such, there is a pressing need for reliable 
structure-based function prediction methods. These methods rely on conserved 
geometric context of sites of interest. They range from global, identifying 
possible substrate binding pockets, to local, concentrating on the particular 
atoms coordinating ligand binding [9-12]. Because three-dimensional (3D) 
environment is more conserved than sequence, these methods may have more 
success when sequence similarity is too low to detect 1D motifs or even overall 
similarity.  

Methods that identify calcium (Ca2+) binding sites in protein structures have 
had variable success. These methods employed artificial neural networks [13], 
graph theory and geometric similarity [14], bond-valence calculations [15, 16] 
and distribution of distances between Cα atoms of residues [17]. We have 
previously described FEATURE [18], a machine learning algorithm which 
employs Bayesian scoring scheme, and its ability to identify Ca2+ binding sites 
[19]. FEATURE uses models built by examination of local physico-chemical 
environments to predict whether a site of interest has a potential for a particular 
function of interest. The chief advantages of FEATURE are its generality, 
extending to many types of sites [18], and its focus on 3D environments which 
allows it to recognize divergent binding sites, without depending on sequence or 
structure similarity. 

 Until now, FEATURE has only been applied to static structures. However, 
protein molecules are dynamic and examining their behavior over time may 
improve the performance of structure-based function prediction methods. 
Molecular Dynamics (MD) uses physical principles to simulate the motion of 
protein molecules, and has been applied for many purposes, including structure 
refinement, drug docking, protein engineering, and protein folding [8,9]. We 
propose a novel application of MD simulations: generating structural diversity in 
order to improve our ability to detect functional sites. For a single protein, there 
can now be many structural examples that can reveal its functions. In order to 
test this idea, we asked whether MD simulations coupled with FEATURE 
analysis could reproduce and further improve performance of FEATURE alone. 
We present our preliminary results on a single protein, parvalbumin β. 

2.   Methods: 

2.1 Structures: From the Protein Data Bank we obtained two structures for 
parvalbumin β (10) (PDB IDs 1B9A and 1B8C). Since we were only interested 
in the monomeric protein structures and associated ions we used only the 
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coordinates of the structure and Ca2+ atoms for 1B9A (HOLO) and the 
coordinates of the first monomer and associated Mg2+ atom for 1B8C (APO). 
2.2 Molecular Dynamics Simulations: Using software suit GROMACS version 
3.3.1 [20], we set up two simulation systems – one for each structure. In case of 
1B9A, the structure was solvated in 4,411 simple point charge (SPC) [21] water 
molecules. 1B8C structure was solvated in 4,479 SPC water molecules. The 
solvent buffer zone comprised 1nm. Addition of one Na+ atom and three Na+ 
atoms neutralized the 1B9A and 1B8C systems, respectively.  

Each simulation started with a 200-step energy minimization run using the 
steepest descent algorithm and was followed by a 10 picosecond (ps) simulation 
with harmonic position restraints applied to all protein atoms to allow relaxation 
of the solvent molecules and added ions. The use of LINCS [22] algorithm and 
GROMOS96 [23] force field (GROMOS96 43a1) allowed for a 2 femtosecond 
(fs) integration time step. The systems were coupled to external temperature 
baths [24] of 300K with a coupling constant tauT = 0.1ps separately for the 
protein and the solvent with added ions. Electrostatic and Van der Waals 
interactions and neighborlist cut-offs were set at 1nm. Finally, each of the 
systems underwent free dynamic simulations for 1 nanosecond (ns), at constant 
temperature, as above, and constant pressure, kept at 1 bar by weak coupling to 
pressure baths [24] with tauP = 0.5ps. We obtained snapshots of the simulations 
every 2.5ps, 401 total for each simulation, to examine the generated structures 
further with FEATURE.  

RMS fluctuations per residue were calculated by averaging the atomic RMS 
fluctuations of each residue, as determined by GROMACS.  
2.3 FEATURE Scanning: Using FEATURE [18] version 1.9 and Ca2+ binding 
site model [19] we analyzed original PDB structures and those generated by the 
simulations in two ways: using a 6 x 6 x 6 Å3 grid with point density of 1Å 
(local grid) placed directly over the Ca2+ binding sites, and a grid that 
encompassed the whole protein with point density of 1Å (global grid). The local 
grid was centered on an equivalent atom in each of the structures obtained from 
the simulations, identified as the closest atom to the Ca2+ of interest in the 
HOLO PDB structure file. For both 1B9A and 1B8C structures this atom was 
defined as ASP90 OD1675 for EF loop binding site and PHE57 O407 for CD loop 
binding site. At each grid point, FEATURE generated a score, representing the 
likelihood of there being a potential Ca2+ binding site centered at that point. The 
threshold of the Ca2+ binding model is 50, therefore, any point scoring 50 or 
above is considered a plausible center for a Ca2+ binding site. From the local 
grid scanning, only the coordinates of the highest scoring point were kept for 
further visualization and analysis. Coordinates of all the points scoring above 
model threshold in the global grid scanning were kept for further visualization. 
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For negative controls, local grids were centered on two points located far 
away from the true Ca2+ binding sites in the HOLO structure with the following 
criteria: the atom density of the environment near the points and the distance of 
the points from the surface were comparable to the local grid centers of the true 
Ca2+ binding sites. These points were LEU15 N93 and ASP24 C295. Coordinates 
for the top scoring points were kept, just as in the local grid scanning of Ca2+ 
binding sites.  
2.4 Viewing of the Structures: Visual Molecular Dynamics (VMD) [25] 
allowed visual analysis of simulation trajectories and illustrations of the 
structures and results of FEATURE scanning. Molecular images were generated 
using Tahyon Parallel/Multiprocess Ray Tracer System (Fig. 1,2,4) [26, 27]. 

3.   Results: 

3.1 Molecular Dynamics Simulations: On Dual Core AMD Opteron™ 
Processor 880, 2.4 GHz, MD simulations of the HOLO system took 8.698 hours 
and of the APO system took 8.768 hours. Analysis of potential and kinetic 
energies of the systems over the course of the simulations revealed that both 
systems were stable throughout. Backbone root mean square deviation (RMSD) 
to the original crystal structure continued to increase slowly over the course of 
the simulation for 1B9A, reaching a maximum value of 4.5Å at the end of 1ns. 
In the case of 1B8C, backbone RMSD to the original crystal structure seemed to 
stabilize around 2.5Å towards the end of 1ns. Average RMSD between the 
consecutive structures generated by the simulations every 2.5ps was ~0.5Å for 
both systems, demonstrating that the systems were evolving slowly over time. 
3.2 FEATURE Scanning: On Dual Core AMD Opteron™ Processor 880, 2.4 
GHz, local grid analysis took 7.117 minutes for HOLO and 7.167 minutes for 
APO, while global grid analysis took 3.225 hours for HOLO and 3.942 hours for 
APO. With the local grid scanning approach, points located in the vicinity of the 
Ca2+ binding sites present in the original HOLO and original APO structures, 
respectively, scored above the model threshold of 50. HOLO EF loop and APO 
EF loop binding sites showed persistent Ca2+ binding conformations over the 
course of MD simulation, obtaining scores of 50 or greater at several different 
time points. The local grid scan detected the Ca2+ binding signal in the HOLO 
CD loop binding site in the beginning of the simulation, but over time the signal 
was lost. At numerous time points, some conformations achieved higher scores 
than the original starting structures. Negative controls had scores clustered 
around zero, never exceeding fifteen, while showing similar extent of structural 
diversity and sampling (Fig. 2). 

FEATURE correctly identified all of the Ca2+ binding sites expected in the 
HOLO and APO structures in the global grid scanning analysis approach. Figure 
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4 shows all the points which scored over the model threshold of 50 in the 
structures at all of the examined time points of the simulations. The structures 
from all the time points were aligned globally to minimize the total RMSD 
among them and only the starting structures of the HOLO and APO 1ns 
simulations are shown.  

4.   Discussion: 

Parvalbumin β is a small, 10-12kDa member of EF-hand Ca2+ binding 
proteins. Structurally, it consists of 108 residues, which form six α-helices and 
intermittent loops. There are two Ca2+ binding sites in wild type parvalbumin β: 
one located in the loop between helices C and D (CD loop binding site) and one 
located in the loop between helices E and F (EF loop binding site). Several wild 
type and mutant structures exist for parvalbumin β in the Protein Data Bank 
(PDB). We used two structures taken from PDB entries 1B9A and 1B8C [28]. 
These two structures are not of wild type parvalbumin, but share two mutations: 
F102W and D51A. The first mutation allows experimental monitoring of metal-
ion presence by following the magnitude of tryptophan fluorescence upon metal 
binding. This mutation did not affect metal binding properties of the molecule. 
The second mutation was introduced to study the cooperative effects of the CD 
loop on the EF loop binding site. Interestingly, this mutation did not change the 
binding properties of the EF loop site, but severely decreased Ca2+ affinity for 
the CD loop site. Nevertheless, Ca2+ binding was observed in both of these sites 
in the original 1B9A structure [28].  

There are several differences between the 1B9A and 1B8C structures. 
Firstly, 1B9A crystallized with Ca2+ present in the binding sites (HOLO), while 
1B8C crystallized without Ca2+ in the binding sites (APO). Secondly, the 1B8C 
original structure contains a third mutation, E101D, introduced to study the role 
of the glutamic acid at the last coordinating position of the Ca2+ binding loop. 
This mutation stabilizes EF loop, since the side chain of aspartate is shorter and 
less mobile than the side chain of glutamate. This mutation had similar effects 
on the two Ca2+ binding sites in the molecule, as measured experimentally. The 
Ca2+ affinity of EF loop site was reduced 10-fold. The affinity of the CD loop 
site was also reduced, such that in combination with the D51A mutation, Ca2+ 
binding was no longer observed at this site, even when crystallization media did 
contain Ca2+ [28]. Therefore, while HOLO structure retains the two Ca2+ binding 
sites present in the wild type parvalbumin, only one Ca2+ binding site remains in 
the APO structure. 

MD simulations provided conformations alternative to the original HOLO 
and APO structures, allowing to generate conclusions on the basis of a set of 
snapshot structures for HOLO and APO systems, rather than on a single static 
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structure. The structures generated by the 1ns simulation seemed to be 
sufficiently diverse for the purposes of this study. The backbone RMS 
deviations over 1ns were no more than 4.5 Å, and were sufficient to find 
conformations that achieved a varied range of scores. Figure 1 presents the 
structural diversity sampled by the MD simulations, as given by structures 
created by the simulations at the 401 analyzed time points.  
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Figure 1: Visited structural conformations over the course of the MD simulations for the HOLO and 
APO systems. Grey balls represent the first and the last atoms in each of the chains. Greater 
flexibility of the HOLO structure is noticeable. 
 

FEATURE examines the local environment of functional sites, compares it 
to a set of non-sites, and builds a model to identify the same functional sites in 
other structures. Using a Ca2+ binding site model [19], FEATURE correctly 
identified all of the Ca2+ binding sites present and expected in the original static 
HOLO and APO structures. Although the original training set for this Ca2+ 
binding site model contained other parvalbumin structures, these formed a small 
proportion of the total number of structures used to create the general model. 
Therefore, this model does not specifically bias results towards Ca2+ binding 
sites of parvalbumin. As such, this HOLO-APO pair formed a good test case for 
determining whether simulations of molecular dynamics can be applied to 
structure based function prediction. 

The coupling of FEATURE scanning to structures generated by the MD 
simulations is promising. First, using local grid scanning, we observed local 
structural conformations in the vicinity of Ca2+ binding sites that were both high 
scoring and low scoring for Ca2+ binding (Fig. 2). Such dynamic FEATURE 
score profiles may be useful in assessing the presence, stability and persistence 
of Ca2+ binding sites. For the HOLO structures, local grid scanning revealed that 
EF loop binding site was persistent and stable (Fig. 2a). The scores repeatedly
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Figure 2: FEATURE scores profiles of local grid analysis and associated structures.  
1ns Simulation:                 . Original FEATURE Score:                        . Model Threshold:               . 
a) 1B9A EF loop binding site. b) 1B9A ASP24C295, negative control. c) 1B8C EF loop binding site, 
positive control. d) 1B8C CD loop binding site, which was abolished by mutations. In the structures, 
location of the binding site is made obvious by the close association of oxygens, black balls, whether 
terminal ones from ASPs and GLUs or main-chains ones, near the highest-scoring points, white 
balls. 1) 1B9A EF loop binding site in the original static structure, which scores ~77. 2) 1B9A EF 
loop binding site at 445ps, which scores ~20.  3) 1B8C EF loop binding site at 615ps, which scores 
~112. 4) 1B9A CD loop binding site at 184ps, which scores ~52. 5) 1B8C CD loop binding site, 
abolished by the mutations, at 187.5ps, which scores ~13.5. 6) 1B9A negative control centered on 
ASP24C295 at 805ps, which scores ~13.5.  
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surpassed the model threshold of 50. CD loop showed good Ca2+ binding site 
signal in the beginning of the simulation, but over time that signal was lost, due 
to structural rearrangements within the loop. The APO structures yielded similar 
results. The EF loop binding site exhibited stability and persistence even more 
than in the HOLO case (Fig. 2c). In essence, this result could be considered a 
positive control: an environment created and shown experimentally to be more 
stable obtained higher FEATURE scores. On the other hand, the CD loop 
binding site did not at any point in the simulation attain favorable Ca2+ binding 
conformations (Fig. 2d). This site, in essence, could be considered as a negative 
control, since based on experimental evidence, there was no Ca2+ binding site to 
be found in the CD loop of the APO structure. 

In order to understand how the E101D mutation present in the APO 
molecule stimulates a difference in structural behaviors of the HOLO and APO 
systems, we examined RMS fluctuations per residue over the course of the two 
simulations (Fig. 3). The two grey rectangles on the Residue Number axis mark 
where the two Ca2+ binding sites are in the sequence. The small lightning bolt 
symbol points to the location of the concerned mutation. It is interesting to note 
that the change from glutamine to aspartate at position 101 dampens
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Residue Number 

A
ng

st
ro

m
s2

Figure 3: RMS fluctuations per residue over the course of the simulations for both HOLO and APO 
systems. Grey boxes along the Residue Number axis depict location of CD loop and EF loop Ca2+ 
biding sites. White rectangle in the EF loop grey box as well as the small lightning bolt depict the 
position of the mutation that abolishes CD loop binding site in the APO structure. 
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dramatically not only the flexibility of the EF loop surrounding this residue, as 
expected, but also the flexibility of the CD loop and its immediate upstream 
surroundings. Such a reduction in the possible motion space may be the reason 
why CD loop binding site is abolished in the APO molecule – it may require 
greater structural fluctuations, such as the ones observed in the HOLO case, to 
form properly.  

In order to explore further the potential of MD simulations coupled with 
FEATURE analysis to discern true positive Ca2+ binding sites, we performed 
local grid scanning analysis centered on two other points in the HOLO structure. 
These points were chosen to contain in their environment the same number of 
atoms as FEATURE sees at the centers of the local grids in the true Ca2+ binding 
sites in HOLO and APO structures. Additionally, these points resided as close to 
the surface of the protein, as the centers of the grids chosen for the true Ca2+ 
binding sites, and far away from the true Ca2+ binding sites, to avoid aberrant 
influences. FEATURE score profiles of these negative sites showed that the 
frequency and magnitude of the structural changes distinguished by FEATURE 
were comparable to the magnitude observed in the true Ca2+ binding sites. 
However, the scores at these sites were much lower (Fig. 2b). The scores 
observed for LEU15 N93 site were even lower than the ones observed for ASP24 
C295. As such, the FEATURE scores profiles of the negative controls 
underscored the lack of Ca2+ binding site in the CD loop of 1B8C (Fig. 2d).  
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Figure 4: Structures of 1B9A, HOLO, and 1B8C, APO, analyzed by global grid scanning. All of the 
structures generated by the simulations were aligned for each molecule, and global backbone RMSD 
was minimized. Shown are the initial structures used in the 1ns simulation in a backbone cartoon 
representation, as well all of the points that scored over 50 during the simulation as grey balls. 
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Global grid analysis confirmed further the results observed with the local 
grid scanning (Fig. 4). Over the course of the simulations, FEATURE 
recognized only the points in the vicinity of the true sites as favorable centers for 
Ca2+ binding. Thus, EF loop and CD loop of 1B9A and EF loop of 1B8C were 
correctly identified as Ca2+ binding sites. Since only the points at the true Ca2+ 
binding sites scored over the model threshold, the rest of the points 
encompassing the whole protein could be thought of as correctly predicted 
negative controls. 

The profiles of FEATURE scores obtained by local grid analysis revealed 
that some of the conformations generated during the simulations achieved scores 
that were higher than in the original crystal structures. These structures offer 
intriguing alternative local conformations that the protein may adopt in order to 
facilitate Ca2+ binding. These conformations may be worth studying to 
investigate shared features that contribute to the details of Ca2+ binding. In 
addition, the ability of MD to create alternative conformations, in which the 
score at the Ca2+ binding site is significantly different from the score of the 
crystal structure, indicates that it should be able to discover Ca2+ binding sites in 
simulations of proteins whose Ca2+ sites happen not to be sufficiently well-
formed in their crystalline state.  In fact, even if FEATURE were not to 
recognize Ca2+ binding sites in the original structures, correct assignment of 
Ca2+ binding sites would have been possible for parvalbumin β based on the 
HOLO and APO conformations and associated FEATURE score distributions 
generated by the simulations. Furthermore, using the global grid approach, it 
was possible to identify de novo potential Ca2+ binding sites, when a structure of 
the molecule without bound Ca2+ was used. Lacking knowledge of the HOLO 
structure, APO structure would have been correctly annotated to have one Ca2+ 
binding site based on our results.  

It is interesting to note that the FEATURE scores change significantly even 
across relatively small time steps, thus indicating that it is very sensitive to the 
detailed position of atoms during the simulation. This is a good sign that 
FEATURE will be sensitive to small conformational changes that might affect 
the ability to bind calcium. Based on this, we are optimistic that MD will be able 
to sample conformational diversity sufficiently to improve performance of 
FEATURE when it misses false negative sites in crystal structures that are 
within 2 – 4Å of local atom RMSD from conformations that show the missed 
function. This estimate is based on the amount of conformational change seen in 
our simulations and the associated variation in the FEATURE scores. It is also 
reassuring that the true negative control sites never achieved scores close to the 
range sampled by the true positives.  
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An intriguing question emerges from our results: is there a correlation 
between the frequency of high scores and binding affinity of the site? A study 
involving a larger set of diverse Ca2+ binding proteins is necessary to pursue the 
answer to this. In addition, we only simulated protein dynamics for 1ns. It is 
likely that with longer simulations, other conformations would be visited that 
would broaden the distribution of scores to reach both higher and lower than the 
scores of the conformations sampled in 1ns. We are keen to explore the 
conformational diversity at different lengths of MD simulations and to asses the 
value of longer simulations for function recognition purposes.  

The results of this study are limited to a single protein and a single function, 
and thus they can not be generalized to all proteins and functions. Experiments 
are underway to explore further the potential of MD to improve FEATURE 
predictions of Ca2+ binding sites using more HOLO – APO pairs. These include 
examples of sites that FEATURE can not identify by itself as Ca2+ binding. 
Furthermore, we plan to examine functions other than Ca2+ binding, as well as 
couple together different methods to sample conformational space and to 
identify functional sites in 3D structures, that are less expensive computationally 
and thus can be applied to larger datasets..   

Coupling MD simulations with FEATURE showed potential in being able 
to allow better annotation of novel structures with unknown function and of 
structures where functions have been already assigned.  
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