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Gene networks are important tools in studying gene-gene relationships and gene

function. Understanding the relationships within these networks is an important

challenge. Ontologies are a critical tool in helping deal with these data. The use

of the Gene Ontology, for example, has become routine in methods for validation,

discovery, etc. Here we present a novel algorithm that synthesizes an ontology

by considering both extant annotation terms and also the connections between

genes in gene networks. The process is efficient and produces easily inspectable

ontologies. Because the relationships drawn between terms are heavily influenced

by data, we call these “Data-Driven” Ontologies. We apply this algorithm to both

discover new relationships between biological processes and as a tool to compare

sets of genes across microrarray experiments. Supplemental data and source code

are available at: http://www.ddont.org

1. Introduction

Researchers have unprecedented access to biological data organized in com-
munity supported and publicly available repositories; however, leverag-
ing this enormous amount of data is neither routine nor simple.1 Graph-
theoretic and statistical approaches (often termed network approaches) are
among the most popular means of studying complex biological relation-
ships. Specific implementations of networks include, but are not limited to,
coexpression networks,2 protein-protein interaction networks,3,4,5 and in
the form of integrated functional linkage networks.6,7,8 Extracting mean-
ingful information from these networks has now become a challenge.

Ontologies are increasingly being employed to systematically organize
data, thereby facilitating interpretation and exchange of information. The
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purpose of an ontology is, from observing the real world, to identify the
pertinent existing instances and then to codify the relationships that exist
between them.9,10 In the context of biology, the Gene Ontology (GO)11

is a well-known example; however, the GO is one of many potential and
valid ontologies to describe any and all properties of genes. In short, there
is no canonical ontological form. Indeed, multiple ontologies reveal rela-
tionships otherwise absent from a single ontology. Outside the GO, there
are examples of ontologies that relate genes to diseases,a genes to organism
anatomy,b and genes to gene expression data.c

In this study we present an algorithm that constructs an ontology by
taking both gene network relationships and extant annotations on genes
as inputs. We call this a “data-driven ontology” (hereafter abbreviated as
DDOnt) to distinguish the process from building an ontology solely from
human design. The DDOnts are “data-driven” in the sense that the re-
lationships drawn between terms are influenced by the gene network con-
nections. Our motivation is to use DDOnts to reveal potentially novel and
interesting biological relationships that would not arise without the influ-
ence of gene networks. The complete deterministic, recursive algorithm is
presented in Sec. 2.2.

We apply our method to three distinct, biologically motivated applica-
tions. First, given any gene network (e.g. relevance network,2 integrated
functional gene network,7,6) we synthesize a DDOnt to reveal novel re-
lationships between biological processes. Second, given a set of genes of
interest, we use gene network data to construct a DDOnt to find associated
biological processes. Third, given a predefined set of genes, we explore how
their associated biological processes are affected by varying experimental
conditions as measured through microarray gene expression assays.

2. Methods

2.1. Problem Statement

Given a graph G〈V,E〉 and a lexicon L, where lexical element li ∈ L is
mapped to 1 or more vertices of G〈V,E〉, can we synthesize an ontology
O where the relationships between lexical elements in L are determined
through both annotation frequency and the edges in G〈V,E〉?

G〈V,E〉 is a set of genes di ∈ V connected as edges {di, dj} ∈ E that

ahttp://diseaseontology.sourceforge.net/
bhttp://flybase.org/
chttp://www.evocontology.org/
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are determined from a dataset (e.g. coexpression correlation). Throughout
all examples in this study we define the lexicon L as the set of terms in
the GO category “biological process.” When constructing O, we follow
two rules-of-thumb to draw connections between elements in L. 1) Lexical
terms that are annotated to tightly connected genes in G〈V,E〉 should be
closely related in O. 2) The prevalence of li is related to the distance of that
term to a root, i.e. increasing prevalence means nearer to a root, decreasing
prevalence means further from a root. We define a term’s prevalence as a
combination of two properties: (i) the count of genes annotated with li,
and (ii) the connectivity of the genes annotated with li in G〈V,E〉.

We have informally typed all directed edges that are drawn between
lexical elements {li, lj} as: is-related-to. These edges are parent-child
relationships where the parent is more prevalent (defined above) than the
child.

2.2. Ontology Construction Algorithm

BuildOntology is a deterministic, recursive algorithm that takes four
inputs and produces an ontology O in the form of a tree.

The first input to BuildOntology is M. Given an annotated graph
GD,L〈V,E〉 two matrices are constructed: one to reflect the relationships
between nodes in the graph and the other to reflect the lexical annota-
tions on the nodes. Matrix MD,D is an adjacency matrix where [ai,j ] = 1
if {di, dj} ∈ E; 0 otherwise. Matrix MD,L is an incidence matrix where
[ai,j ] = 1 if instance di is annotated with lexical term `j ; 0 otherwise. We
then set M ←MD,D MD,L. We note that M captures the degree of con-
nectivity of terms via the network. The second input to BuildOntology

is the set of candidate parent nodes P . This set can also be thought of
as the complete set of leaf nodes in O. Only leaf nodes are considered as
potential parents to terms not added to O, thus ensureing a tree-structured
ontology is synthesized. The third input to BuildOntology is O itself.
On initialization O is empty and thus seeded with an artificial root node,
termed “root,” setting P = {“root”}. Upon completion of BuildOntol-

ogy, O will contain all the lexical terms from GD,L. The fourth input is
the percent value. As the algorithm progresses, the largest value within a
matrix is found (maxval at line 6). Applying percent establishes the range
[(1− percent)×maxval, maxval] and any columns in M that have a value
falling within this range are selected (columns represent lexical terms).
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BuildOntology(M, P, O, percent)

1 p′ ← ∅, C ′ ← ∅, maxval′ ← 0
2 for each p ∈ P

3 do
4 M̂←M/(P/{p})

/*M with all parent nodes in P (except for p) removedd*/
5 M′ ← (M̂> M̂)2

6 maxval← Max(M′/{p})
/*returns the maximum value in M′ without column pd*/

7 C ← FindCloseColumns(M′,maxval, percent)
/*returns columns with a value > (1− percent)×maxval*/

8 if (maxval > maxval′)
9 then

10 maxval′ ← maxval, C ′ ← C, p′ ← p

11 AddChildren(O, p′, C ′)
/*add the set of children C ′ to the parent p′ in ontology O*/

12 P ← (P/{p})
⋃

C ′

13 /*remove p, add children of pd*/
14 M←M/{p′}

/*remove column p′ from Md*/
15 if (all labels have been assigned)
16 then return O
17 else BuildOntology(M, P,O)

The BuildOntology algorithm proceeds by applying the rules-of-
thumb mentioned in Section 2.1 until O is completely constructed. The
algorithm proceeds by choosing the parent p′ with the greatest value and
the associated set of children C ′ (Lines 2 through 10). To do this, we first
remove all potential parents in set P excluding p from M, which produces
M̂(Line 4). Next we calculate M′ by multiplying the transpose of M̂ by
M̂ to get a symmetric matrix, then square M′ to amplify the disparities
among relationships in M′ (Line 5). From M′, we find the maximum value
present and return it as the variable maxval (Line 6). The set of children
C of parent p are selected from M′ if the column in M′ has a value in the
interval [(1− percent)×maxval, maxval] (Line 7). This procedure is done

dWe write set difference as A/B. To denote a similar matrix operation that removes a

set of columns S from matrix X, we write X/S. For example, if X = [1 2 3 4], then
X/{2, 4} = [1 3] (matrices are in bold text).
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for each potential parent in P (Line 2) and the parent p with the great-
est value is carried on through the algorithm (Lines 8 through 10). Upon
completion of this loop, the selected parent p′ and its set of children C ′ are
added to O (Line 11). Once added to O, p′ is then removed from P and the
children in C ′ are promoted to potential parents and appended to P (Line
12). p′ is also removed from matrix M (Line 14). If all of the lexical terms
have been assigned, then O is returned, otherwise we recursively apply this
algorithm until all the terms are exhausted (Lines 7 through 17).

The complexity of this algorithm is O(n3) and performs well on the
datasets tested in this study.

2.3. Data

2.3.1. Microarray Coexpression Data

The following 9 S. cerevisiae microarray datasets were downloaded from
the Stanford Microarray Database (SMD): cell cycle (synchronized us-
ing CDC15 and alpha factor),12 exposure to dithiothrietol (DTT),13 di-
auxic shift,14 exposure to gamma radiation,15 sporulation,16 heat stress,13

starvation,13 and exposure to H2O2.13 All datasets were taken in their nor-
malized form as log-transformed ratios and mapped to a unique yeast ORF
ID. Spots not flagged as being problematic were averaged for both tech-
nical and biological replicates. Gene expression profiles with greater than
25% missing values for one gene across all conditions were removed, and
any remaining expression profiles with missing values were imputed using
KNNimpute.17 For each gene expression profile per experiment, the dif-
ference between the maximum and minimum ratio value was calculated.
Expression profiles that showed a difference less than 0.5 were removed.

The Pearson correlation coefficient was calculated using the expression
profiles of each gene pair over in a given experiment. Significant correlations
were determined through permutation testing, where the gene expression
values within each condition are shuffled between genes. Correlation coef-
ficients were calculated on the shuffled data to produce an empirical null
distribution. The positively correlated gene pairs with a p-value < 0.01
were used and the other gene pairs were removed.

2.3.2. Integrated Yeast Networks

Two integrated yeast networks were used, namely YeastNet 6,18 and
bioPIXIE (biological Process Inference from eXperimental Interaction
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Evidence).19 Both networks were built under a probabilistic framework us-
ing both yeast experimental data (i.e., microarray, genetic interactions,
protein interactions) and GO annotations. The value for a gene pair within
the bioPIXIE network is a posterior probability from the Bayesian frame-
work developed by Troyanskaya et al.,20 while the values within YeastNet
are weighted sums of log-likelihood scores as developed by Lee et al..6,18

The bioPIXIE datae and YeastNetf data were downloaded June 2008.
Any feature in the bioPIXIE or YeastNet integrated networks that did not
match an ORF id in the Saccharomyces Genome Database gene registry
were removed. Edges with values less than 0.3 in the bioPIXIE network
and edges less than 1.0 in the YeastNet network were removed.

3. Results

3.1. Ontology Properties

We first demonstrate that the BuildOntology algorithm performs well
at recapitulating relationships between GO terms. As inputs, the algorithm
takes both gene network data as MD,D and gene annotation data as MD,L.
To test the ability of the algorithm to reconstruct known relationships while
ignoring any influence from a gene network, the initialization of M as input
to BuildOntology was changed from M←MD,D MD,L to M← MD,L.

Using the Cytoscape21 network visualization software and the MCODE
graph clustering plug-in,22 we extracted the top 20 subnetworks from both
the bioPIXIE and YeastNet integrated gene networks. For each of these
clusters, we built an ontology ignoring the gene network data. We consider
a relationship between two terms in an ontology to be reasonably close if
the shortest path length between these terms as defined in the GO is ≤ 3.
This is based on the observation that when the shortest path between all
pairwise GO biological process terms is calculated, more than 98% of the
shortest paths are greater than a length of 3, with the average path length
being ≈ 8.2. Roughly 46% of the GO terms across the tested ontologies
were within a path length of 3 and the average path length between terms
was 4.2 (σ = 2.5). In comparison, we then constructed DDOnts for the
same 20 subnetworks in both the bioPIXIE and YeastNet networks while
including the gene network relationships. For this set of ontologies, roughly
17% of the GO term connections were within a path length of 3 and the

ehttp://pixie.princeton.edu/pixie/
fhttp://www.yeastnet.org/
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Figure 1. Distribution of the shortest path lengths between terms as measured in the

Gene Ontology but assigned as a parent-child relationship in the Data-Driven Ontologies

(DDOnt). All DDOnts were built from a common set of cell cycle related genes. The

thick, black line represents an ontology built without gene network data, while the

rest of the lines represent DDOnts constructed using microarray data. The change in

distributions as compared to the ontology built without any network data was due solely

to the gene-gene relationships in the microarray datasets. The path length cutoff of 3 is

discussed in Section 3.1.

average path length was 5.4 (σ = 2.1). This comparison shows that the
BuildOntology algorithm performed relatively well at recapitulating the
term relationships defined in the GO, while including the network data
places the terms further from their predefined positions in the GO revealing
relationships directly influenced by the gene network data.

As a specific example of how the BuildOntology algorithm performs
in relation to including or excluding network data, we first selected all genes
annotated under the parent term cell cycle (GO:0007049) as listed in the
SGD.g This set consisted of 386 genes annotated with 648 GO biological
process terms. We then constructed an ontology from this set of terms and
genes, while ignoring the network data. Next, we used 9 yeast microar-
ray studies that cover a variety of experimental conditions to build gene
networks (see Section 2 for datasets). Pearson correlation coefficients were
calculated between gene expression profiles for each individual experiment
and connections were drawn between a cell cycle gene pair if their coeffi-
cient was significant (see Section 2). This process results in 9 separate gene
networks, which were used to build 9 DDOnts. The distribution of short-
est path lengths for the 9 DDOnts and the ontology built without any gene
network data are shown in Fig. 1. Including the gene network relationships

gchecked on July, 2008
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has a dramatic affect on the distribution of GO terms in the DDOnts.

3.2. Data-Driven Ontologies for Discovery

The bioPIXIE integrated gene network was used to demonstrate a specific
application of a DDOnt to identify interesting relationships between bio-
logical processes. Using Cytoscape21 with MCODE,22 we extracted a series
of subnetworks from bioPIXIE. An example subnetwork of 73 ORFs con-
nected by 577 edges is shown in Fig. 2 B. Using this gene network and the
241 associated GO biological process annotations, we synthesized a DDOnt
(Fig 2 B). The edge colors in the DDOnt correspond to the length of the
shortest path between two terms within the GO. Edges colored grey are at
a shortest path length of 1, 2, or 3, green 4, 5, or 6, red 7, 8, or 9, and
blue at a length > 10. Areas of interest within the DDOnt consist of several
terms with greater path lengths grouped together, which indicates potential
novel relationships. The highlighted rosette in Fig. 2 B is an example. The
parent node is response to DNA damage stimulus (GO:0006974). There are
several examples of expected child terms, such as double-strand break re-
pair via break-induced replication (GO:0000727), DNA damage checkpoint
(GO:0000077), and heteroduplex formation (GO:0030491). Additionally,
there are many terms that are connected to the parent node, but are lo-
cated at a greater path length in the GO, such as pre-replicative complex
assembly (GO:0006267), regulation of chromatin assembly or disassembly
(GO:0001672), and regulation of heterochromatin formation (GO:0031445).
Though these processes are located far apart in the GO, chromatin as-
sembly and maintenance have long been linked to double-stranded breaks
through recombination and cell cycle.23 The reason these GO terms were
put together in the arranged fashion can be seen from the network used in
constructing the DDOnt. Nodes colored orange in Fig. 2 A are ORFs that
are annotated with any of the GO terms contained in the rosette. These
terms are highly connected and these relationships are taken into account
in the constructing the DDOnt. If an ontology is built using the same algo-
rithm, but excluding the gene network, this rosette is not formed and the
GO terms are scattered throughout the ontology under parent nodes that
are closer in path length.

We also applied the DDOnt to discover relationships from a set of pre-
defined genes. We selected the 6 yeast ORFs annotated under the GO
term glucose transport (GO:0015758). Next, we identified the immediate
neighbor ORFs in the bioPIXIE network with an edge value > 0.5 and
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Figure 2. An example of a Data-Driven Ontology (DDOnt). The network of yeast genes

(A) selected as a subnetwork of the bioPIXIE integrated gene network is used along with

the Gene Ontology biological process annotations to synthesize the DDOnt (B) using

the BuildOntology algorithm. The edge colors in B are discussed in Section 3.2. The

root node in the ontology is designated by the teal arrow. The orange nodes in A are

the genes that have been annotated with the rosette of terms in B designated by the

red arrow. This rosette of terms are potentially novel relationships between biological

processes where the parent node is response to DNA damage stimulus (GO:0006974).

constructed a network from this set of ORFs. This resulted in a gene
network with 54 genes connected by 182 edges. This network and the as-
sociated GO terms were used to synthesize a DDOnt. Interestingly, the
terms proteolysis (GO:0006508), ubiquitin cycle (GO:0006512), phosphory-
lation (GO:0016310), and cell cycle phase (GO:0022403) were placed under
the parent term monosaccharide transport (GO:0015749). In the GO, these
terms are located far apart, but their connections in the DDOnt reveal the
links between cell cycle, proteolysis, phosphorylation, and glucose regula-
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tion. Of the set of six glucose transport (GO:0015758) annotated genes –
RGT1, SKS1, MTH1, HXK2, HXK1, and GLK1 – four are kinases, thus
supporting the relationship of phosphorylation. Of the immediate neigh-
boring genes, GRR1, RSP5, and CDC34 are involved in ubiquitin-mediated
protein degradation and RPN5 is a regulatory subunit of the 26S protea-
some lid, thus supporting the proteolysis relationships. Lastly, several other
immediate neighboring genes, CLN1 CLN2, CDC24, and GRR1 are all cell
cycle related genes, thus supporting the cell cycle relationships. This is
another example of how the construction of a DDOnt places GO terms to-
gether only because of the connections in a gene network. Although the
relationships discussed are known, this example shows how potentially novel
relationships can be discovered.

3.3. Data-Driven Ontologies for Microarray Analysis

Fluctuations in the behavior of sets of expressed genes under different ex-
perimental conditions is an underlying phenomenon studied through mi-
croarray experiments. Disentangling these effects is a major area of study.
One property of DDOnts is to place terms closer to the root if they have
high values. A term gets a high value from either being highly annotated or
from the genes annotated with the term being highly connected. If a set of
genes are fixed, thus fixing the GO term counts, and a DDOnt is built using
two distinct gene networks, any differences between the two DDOnts is a
result of the relationships in the gene networks exclusively. We can then
find terms that are placed closer or farther from the root node to iden-
tify biological processes that are being affected through the relationships in
gene networks.

We selected the 115 verified ORFs defined by the SGD to be involved
in sporulationg. These 115 ORFs are annotated with 302 GO biological
process terms. We first constructed a reference ontology using only the GO
terms and ignoring any network data. Next, we constructed DDOnts for
all 9 microarray datasets listed in Section 2. We then directly compared
the 9 DDOnts to the reference ontology by measuring the distance of a
GO term to the root. The GO terms where the distance from the root
fluctuated most across the DDOnts were identified. Interestingly, mitosis,
as represented by the terms regulation of mitotic cell cycle (GO:0007346),
chromosome segregation (GO:0007059), and mitosis (GO:0007059), were

gchecked on July, 2008
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placed closer to the root node across all microarray DDOnts as compared
to the reference ontology. An example of a general biological process that
consistently moved farther from the root was conjugation; namely, conju-
gation (GO:0000746), conjugation with cellular fusion (GO:0000747), and
cellular morphogenesis during conjugation (GO:0000767). In the reference
ontology, these GO terms were all placed at a path length of 3 from the
root, but when the microarray data were considered, these terms were con-
sistently placed at a path length of 4 and 5 from the root. Both of these
examples show that the relationships derived from gene expression profiles
influence how a DDOnt is built, which reflects how biological processes are
related in the experimental data.

4. Discussion

In this study we have demonstrated that ontologies (DDOnts) can be syn-
thesized automatically from a gene network and a set of associated an-
notations. The presented algorithm is tractable and has been shown to
effectively run on moderately sized data sets.

The scope of a constructed DDOnt is dependent on the input lexicon L

and gene network. In this study we restricted L to be GO “biological pro-
cess” terms, therefore the constructed DDOnts reflect biological processes.
Similarly, the structure of a DDOnt is dependent on the input gene network.
In the extreme cases where the network is either completely or sparsely con-
nected, the gene network will have little effect on a DDOnt. The ideal input
to the BuildOntology algorithm is a well annotated gene network with
connections between genes forming function specific clusters.

The results of constructing DDOnts from informative input data demon-
strate that gene networks do have a major effect on DDOnt construction
and edges between terms not closely related in the GO may represent in-
teresting or even novel relationships. We also show that DDOnts con-
structed from different gene networks yield different perspectives. In sum-
mary, DDOnts appears to be useful tools in discovering and understanding
biological relationships. Future work will include refining the algorithm, in-
corporating edge type information, and relaxing structural constraints (i.e.
expanding directed acyclic graphs beyond the current tree structure).

All results and DDOnt source code can be found at: http://www.ddont.org

Pacific Symposium on Biocomputing 14:15-26 (2009)



September 19, 2008 16:47 Proceedings Trim Size: 9in x 6in costello

Acknowledgments

We thank the Center for Genomics and Bioinformatics for computer sup-
port, and H. Tang, P. Radivojac, B. Eads, and S. Beason for comments.

References

1. A. Lesk, Ed., Database Annotation in Molecular Biology: Principles and
Practice, (John Wiley & Sons, LTD, 2005).

2. A. J. Butte, I. S. Kohane, Pac. Symp. Biocomput., 418 (2000).
3. L. Giot, J. S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, Y. L. Hao,

C. E. Ooi, B. Godwin, E. Vitols, et al., Science 302, 1727 (2003).
4. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, et al, PNAS USA 98,

2001 (4569-4574).
5. P. Uetz, L. Giot, G. Cagney, T. Mansfield, R. Judson, et al., Nature 403,

623 (2000).
6. I. Lee, S. V. Date, A. T. Adai, E. M. Marcotte, Science 306, 1555 (2004).
7. C. L. Myers, D. Robson, A. Wible, M. A. Hibbs, C. Chiriac, C. L. Theesfeld,

K. Dolinski, O. G. Troyanskaya, Genome Biol. 6, R114 (2005).
8. I. Lee, B. Lehner, C. Crombie, W. Wong, A. Fraser, E. Marcotte, Nat. Genet.

40, 181 (2008).
9. P. Simons, Parts: A Study in Ontology (new edition), (Oxford University

Press, USA, 2000).
10. S. Nirenburg, V. Raskin, Ontological Semantics, (MIT Press, 2004).
11. Gene Ontology Consortium, Genome Res. 11, 1425 (2001).
12. P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, et al., Mol.

Biol. Cell 9, 3273 (1998).
13. A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, et

al., Mol. Biol. Cell 11, 4241 (2000).
14. M. J. Brauer, A. J. Saldanha, K. Dolinski, D. Botstein, Mol. Biol. Cell 16,

2503 (2005).
15. A. P. Gasch, M. Huang, S. Metzner, D. Botstein, S. J. Elledge, P. O. Brown,

Mol. Biol. Cell 12, 2987 (2001).
16. S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, et al., Science 282,

699 (1998).
17. O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,

D. Botstein, R. Altman, Bioinformatics 17, 520 (2001).
18. I. Lee, Z. Li, E. M. Marcotte, PLoS ONE 2, e988 (2007).
19. C. Myers, D. Robson, A. Wible, M. Hibbs, C. Chiriac, C. Theesfeld, K. Dolin-

ski, O. Troyanskaya, Genome Biology 6, R114 (2005).
20. O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, D. Botstein,

PNAS USA 100, 8348 (2003).
21. P. Shannon, A. Markiel, O. Ozier, N. Baliga, J. Wang, D. Ramage, N. Amin,

B. Schwikowski, T. Ideker, Genome Research 13, 2498 (2003).
22. G. Bader, C. Hogue, BMC Bioinformatics 4, 2 (2003).
23. F. Paques, J. E. Haber, Microbiol. Mol. Biol. Rev. 63, 349 (1999).

Pacific Symposium on Biocomputing 14:15-26 (2009)




