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Despite the rapid accumulation of systems-level biological data, understanding the dynamic
nature of cellular activity remains a difficult task. The reason is that most biological data are
static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to
detangle the temporal complexity of biological networks by using compilations of time-series
gene expression profiling data. We define a dynamic network module to be a set of proteins
satisfying two conditions: (1) they form a connected component in the protein-protein inter-
action (PPI) network; and (2) their expression profiles form certain structures in the temporal
domain. We develop an efficient mining algorithm to discover dynamic modules in a temporal
network. Using yeast as a model system, we demonstrate that the majority of the identified
dynamic modules are functionally homogeneous. Additionally, many of them provide insight
into the sequential ordering of molecular events in cellular systems. Finally, we note that the
applicability of our algorithm is not limited to the study of PPI networks, instead it is generally
applicable to the combination of any type of network and time-series data.

1. Introduction

Cellular systems are highly dynamic and responsive to cues from the environment.
Cellular function and response patterns to external stimuli are regulated by a com-
plex web of diverse molecular interactions, such as protein-protein interactions,
protein-DNA interactions, and metabolic processes. Despite the availability of
large-scale biological network data23,15,7,8, gaining a system-level understanding
of thedynamic nature of cellular activity remains a difficult and, until recently, a
much overlooked task. Since there typically is little direct information available on
the temporal dynamics of these network interactions, the majority of molecular-
interaction network modeling and analysis has been solely focused on static prop-
erties. For example, a protein-protein interaction (PPI) network obtained from
yeast two-hybrid experiments can be viewed as a comprehensive graph of the
edges (interactions) that eventually may occur under the set of tested conditions.
However, it is not guaranteed that two adjacent edges would ever occursimul-
taneously or even close in time, and thus, that identified network modules and
motifs will correspond to functionally relevant units. While a series of studies
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have been aimed at identifying modules in PPI networks17,2,19, the networks in
their analysis have all been regarded as static.

In this study, we attempt to detangle thetemporal complexity of biological
networks by identifying dynamic modules, consisting of a set of proteins that
coexist both spatially and temporally. We will use the PPI network as the spa-
tial constraints. We estimate temporal characteristics of a network component by
using compilations of time-series gene expression profiling data, since accurate
temporal parameters are not yet available for PPI systems. A similar approach
has been employed to study the dynamic protein complex formation during the
cell cycle3,12. In order to measure the similarity between two time-series gene-
expression profiles1,18, we have implemented time-warping dynamic program-
ming. A significant advantage of this method is that it identifies the best local
alignment of segments in two time-series profiles. Consequently, it can identify
time-shifted and local similarity patterns which are often overlooked by comput-
ing the Pearson’s correlation of two entire profiles. We represent the local align-
ment of two profiles as a range pair (or interval pair), denoted as[s1, e1]:[s2, e2],
wheres1 ands2 are the starting time points, ande1 ande2 are the end time points
of the alignment. Since two proteins may interact over different time segments in
a long time-series and they may show varying level of cooperativity in those time
segments, we may also consider suboptimal alignments of two profiles. In this
case, the temporal expression similarity of two interacted proteins can be repre-
sented as a list of range pairs. Given a PPI network, we add the local alignment
information from the time-series gene expression data, and refer to the network as
a temporal network.

On a temporal network, we can discover how two proteins’ activities correlate
with each other over time. More importantly, for multiple proteins we can identify
when a dynamic module is activated in the PPI network. We define a dynamic
network module to be a set of proteins which satisfy two conditions: (1) they
form a connected component in the PPI network; and (2) their expression profiles
form certain structures (see below) in the temporal domain. An example dynamic
module satisfying these constraints could consist of all proteins, for which time-
series local alignments overlap over a common time period. That is, all protein
interactions in this example module are synchronized to perform their functions.
Another interesting example corresponds to the case of activity cascades. Here,
a dynamic module is triggered by one or a small number of proteins that activate
their network neighbors. These in turn, may also propagate the signal further
through neighbor activation. Given this, we use a directed edge to represent how
the activity of a protein may invoke that of another protein, and the direction is
determined by the range-pair of their time series alignment, i.e. the beginning
aligned time point of the triggering protein is likely to be earlier than that of the
triggered protein.

Although many graph algorithms are available to perform network analysis,
including those recent work21,22,4,14 for mining temporal and evolutionary net-
works, to our knowledge, no algorithm has been developed to identify network
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patterns while accounting for the interval-based temporal constraints. In this
study, we take the first step in this direction by developing efficient mining al-
gorithms to discover dynamic modules in a temporal biological network. We have
performed detailed experimental testing using yeast as a model system. In addi-
tion, many of those modules provide insight into the sequential order of molecular
events in cellular systems. Furthermore, a majority of the discovered modules are
not densely connected, yet they comprise functional units. Such modules are very
difficult to identify based on the PPI network alone. We are well aware of the lim-
itation of microarray data in measuring protein activities, and the incompleteness
of protein-protein interaction data. While using those data as an example, we want
to emphasize that our algorithm is generally applicable to combining any types of
network and time-series data.

2. Problem Definition
We represent the PPI network as a graphG = (V, E), where proteins correspond
to the vertex setV , and the protein-protein interactions are recorded as the edge
set E. Each vertex (protein) is associated with a gene expression time-series,
formally Ti = (xi

1, x
i
2, · · · , xi

n).
We use the time-warping dynamic programming algorithm18 to align two

time-series expression profiles, and use a range pair to represent the resulting best
local alignment for each interacted protein pair. The range pair for protein pair
e = (v1, v2) ∈ E is denoted asr(e) = ([i, i′] : [j, j′]), wherei, j are the starting
time points of the aligned interval pair of an interacting protein pair, andi′, j′ are
the end points. We denoter(e)[v1] = [i, i′] andr(e)[v2] = [j, j′]. From the PPI
network we eliminate those edges (the interacted protein pairs) that do not have
any local similar range pairs, and term the resulting range-pair network as the
temporal network.

We also assign directions to the edges in the temporal network. Such assign-
ment is based on the observation that the range pairs in the temporal network
can provide the sequential ordering of activities between edge-connected vertices.
Specifically, if one interval in the range pair appears earlier than the other one, it
could be possible that the activity of the vertex (protein) associated with the first
interval induces the activity of the other vertex. That is, the sequential order ob-
tained could facilitate causal inference, although causal inference requires much
more information and is beyond the scope of this work. In the following, we will
use a directed edge to represent the sequential order between two vertices in the
temporal network. Specifically, let[tA1, tA2] : [tB1, tB2] be the interval pair be-
tween proteinA andB. If tA1 − tB1 ≥ k, we build a directed edge from protein
A to B; if |tA1 − tB1| < k, we build an undirected edge betweenA andB, where
k serves as a smoothing parameter against noise.

As previously mentioned, the module discovery approach in this study is
bound by bothspatial andtemporal constraints. Intuitively, the spatial constraints
refer to the physical interactions between proteins, and the temporal constraints
corresponds to the closeness of range pairs, which can be formalized based on the
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second order subgraph.

Definition 1. (Second Order Graph) The second order graph of the temporal
biological networkG = (V, E) is a graphG′ = (V ′, E′), whereV ′ records each
edgee in E(G) as a unique vertexv′e, and for any two verticesv′e1 andv′e2 in
V (G′) there exists an edge inE′ = E(G′) between them if and only if 1) the two
edgese1 ande2 share a common vertexy, i.e., e1 = (x, y) ande2 = (y, z), or
vice versa; and 2) the temporal constraint:|r(e1)[y] ∩ r(e2)[y]| ≥ d.

To facilitate our discussion, we refer to a vertex in the second order graph
as anedge-vertex. Note that, in the second order graph, two edge-vertices with
a common vertexy (in the original temporal networkG) are neighbors if the
two intervals ofy specified by the corresponding interval-pairs inG overlap an
interval with length no less thand. Further, for a subgraphGs of G (Gs ⊆ G), its
corresponding second order graph,G′

s, is a subgraph ofG′ (G′

s ⊆ G′).
Formally, we define thedynamic module as follows.

Definition 2. (Dynamic Module) Given a temporal networkG = (V, E) and its
second order networkG′ = (V ′, E′), a dynamic module is a subgraphGs of G

such that 1)Gs is connected (we refer to this condition as the spatial constraint);
and 2) its corresponding second order subgraphG′

s is also connected (we refer to
this condition as the temporal constraint).

Figure 1. A dynamic moduleGs and its corresponding second order graphG′

s

Figure 1(a) lists an example of a dynamic module with the choice of tempo-
ral constraint parameterd = 2. Note that the range pairs on the outside of the
subgraphs represent the local similarity alignment. The direction of edges for the
dynamic module is added with the smoothing parameterk = 2. Figure 1 (b)
shows the second order graph of the3-vertex dynamic module in Figure 1(a).

However, to enumerate all dynamic modules is computationally very expen-
sive. In this paper, in order to reduce the enumeration complexity, we enumerate
only theedge-maximal dynamic modules.

Definition 3. (Edge-Maximal Dynamic Module) Given a temporal network
G = (V, E) and its second order networkG′ = (V ′, E′), an edge-maximal dy-
namic module is a dynamic moduleGs ⊆ G, and there is no any other dynamic
moduleGs′ ⊆ G, such thatV (Gs) = V (Gs′) andE(Gs) ⊂ E(Gs′).
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3. Algorithm for Edge-Maximal Dynamic Module Discovery
The definition of dynamic modules requires to find the subgraphGs which is
connected (the spatial constraint) and its corresponding second order subgraphG′

s

is also connected (the temporal constraint). An efficient enumeration algorithm
thus should aggressively employ these two constraints to prune the search space.
In particular, these two constraints have an interesting relationship, which will
form the basis of our enumeration algorithm.

Lemma 1. Let Gs and G′

s be the corresponding subgraph and second order sub-
graph. If G′

s is connected (the temporal constraint holds), then its corresponding
subgraph Gs is also connected (the spatial constraint is true). However, if Gs is
connected, its second order subgraph may not be connected.

For simplicity, the proof is omitted. What this lemma suggests is that these
two constraints are notsymmetric, and one of the constraints can be easily satisfied
without explicit tests. This lemma also relates to an important property, theanti-
monotone property, which is the key for many efficient mining and enumeration
algorithms.

Lemma 2. Let Gs and its corresponding second order subgraph G′

s form a dy-
namic module. All the connected subgraphs of the second order subgraph G′

s

always form dynamic modules.

From the enumeration purpose,G′

s has the follow properties. LetG′

s∪{v′} be
a new connected second order subgraph by adding a new vertexv′ and associated
edges toG′

s. Then, the new subgraph corresponding to the new second order
subgraph will always form adynamic module. However, this property does not
hold for Gs. Adding a new vertexv and associated edges toGs may produce a
new second order subgraph which is not connected. Thus, if we try to enumerate
all the (edge-maximal) dynamic modules from the first order graph, we do not
have the anti-monotone property.

Given this, we will try to enumerate edge-maximal dynamic module directly
by utilizing the second order graph. Simply speaking, we will try to recursively
enumerate all the connected subsets of edge-vertices in the second order graph,
and each of such subsets corresponds to a unique dynamic module. However, the
issue is that how we can identify the edge-maximal ones efficiently. Clearly it is
too computationally expensive to first enumerateall dynamic modules and then
identify the edge-maximal ones. Note that the number of dynamic modules can
be exponentially larger than the number of edge-maximal modules.

In the following, we introduce a novel approach which uncovers all the edge-
maximal dynamic modules by coupling the original temporal network and its sec-
ond order graph. It directly generates edge-maximal dynamic modules without
any redundancy. Algorithm 1 provides the backbone of our approach. Concep-
tually, this algorithm enumerates all the edge-maximal dynamic modules in two
stages. In the first stage, it tries to find a new dynamic module, which corresponds
to a connected edge-vertex set in the second order graph. Then in the second
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Algorithm 1 DyModSearch(Set P, Set N, Set Ex)

Parameter: P {the set of edge-vertices inG′ currently in the module}
Parameter: N {the set of edge-vertices inG′ that can join to the current module}
Parameter: Ex {the set of edge-vertices inG′ that have been previously expanded}

1: for eachn ∈ N do
2: P ′ ← Reach(n, G′

s[cover(P ∪{n})]) {the edge-vertices that can be reached from
vertexn in the second order subgraphG′

s[cover(P ∪ {n})]}
3: if (P ′\P ) ∩ Ex = ∅ then {no edge-vertex inP ′\P has been visited earlier}
4: Output the maximal dynamic moduleGP ′ {GP ′ is the subgraph corresponding

to the vertex-setP ′ in the second order graph}
5: if |cover(P ′)| < T then{T : user-specified size for maximal dynamic modules}
6: Ex′ ← Ex ∪ P ′

7: N ′ ← (N ∪ Neighbor(P ′\P ))\Ex {Except for initialization (|P ′| = 1):
N ← Neighbor(P ′)\Ex}

8: DyModSearch(P ′, N ′, Ex′)
9: end if

10: end if
11: v ← cover({n})\cover(P ) {the new vertex in the original network being intro-

duced by the new edgen}
12: Pv ← {v

′|v′ ∈ (P ′\P ) ∧ v′ covers v}
13: Ex← Ex ∪ Pv {addPv to the exclusion setE}
14: N ← N\Ex

15: end for

stage, it tries to quickly expand this dynamic module into an edge-maximal dy-
namic module.

Algorithm 1 performs a DFS (depth-first search) style enumeration utilizing
three setsP , N andEx. SetP records all the edge-vertices of the second order
graph which represents the current edge-maximal dynamic module. SetN records
all the edge-vertices that are neighbors ofP , and can be appended to produce new
dynamic modules. SetEx records all the edge-vertices which can no longer be
used to generate any new edge-maximal dynamic modules. At each invocation of
the algorithm, we will produce an edge-maximal dynamic module, represented by
setP .

To make the algorithm efficient, we need specifically address the following
three issues. 1) How can we transform a dynamic module into an edge-maximal
dynamic module? Specifically, how can we pick up edge-maximal dynamic mod-
ules quickly without enumerating other non-edge-maximal ones? 2) How can we
avoid generating an edge-maximal dynamic module more than once? In other
words, how can we ensure that each edge-maximal dynamic module is only gen-
erated once? 3) How can we aggressively prune the search space to ensure that
we remove as early as possible the dynamic modules that will not grow into edge-
maixmal dynamic modules?

The first issue is taken care of by Line2: simply speaking, after we generate a
new dynamic moduleP ∪ {n} by combining the edge-maximal moduleP with a
new edge-vertexn, we will immediately expand it to make it edge-maximal. This
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can be done quickly by utilizing the following property:each newly added edge-
vertex n will cover a new vertex v in the original temporal network G, except that
the first edge-vertex inP will cover two new vertices inG. This property comes
from the fact thatP is an edge-maximal dynamic module. Basically, it already
contains all the edges which can be connected for the existing vertices to form a
dynamic module. Thus, any new dynamic moduleP ∪ {n} (P 6= ∅) must involve
a new vertexv. However, we need to note that those additional edge-vertices
which can help make the new dynamic moduleP ∪ {n} edge-maximal do not
necessarily links tov directly, since they may be connected through other newly
introduced edge- vertices. Given this, we will applycover(P ∪ {n}) to map the
edge-vertices in setP ∪{n} to their corresponding vertices in the original network
G, and then extract its induced subgraphGs[cover(P ∪ {n})], and eventually the
corresponding second order subgraphG′

s[cover(P ∪{n})]. Finally, the connected
component in this induced subgraph containingn is our desired edge-maximal
dynamic module forP ∪ {n} (this is achieved by Line2: searching all the edge-
vertices that can be reached from edge-vertexn in the second order subgraph
G′[cover(P ∪ {n})]).

The second issue is resolved by a simple test in Line3. Basically, if the newly
added edge-vertices had been previously visited, i.e.,(P ′\P ) ∩ Ex 6= ∅ (Line 3),
then, we would know that the newly generated edge-maximal dynamic module
had already been enumerated. In other words, we will only select the modules
when(P ′\P ) ∩ Ex = ∅ (Line 4).

Finally, the third issue is addressed by exploiting the coupling between the
original graph and the second order graph, and by maintaining the setsN andEx

(Lines6-7 and Lines11-14). The setN contains edge-vertices that could be the
valid extension of the current dynamic module, and the setEx contains the edge-
vertices that are invalid for extensions. Here, we will again apply the property that
each newly added edge-vertexn will cover a new vertexv in the original temporal
networkG (whenP 6= ∅). For the newly added vertexv, we identify all of its
adjacent edges in the original temporal network, and further identify the subset
that are connected toP in the second-order graph (Pv, Line 12). This subset (Pv)
is then appended toEx and removed fromN (Line 13 − 14). Such coupling
between the two graphs helps to narrow down the search space, and the removal
of edge-vertices allows the effective pruning of the search space.

4. Results

4.1. Data source and alignment of time-series expression data

We collected 36066 distinct protein-protein interactions ofS. cerevisiae from The
BioGrid databases20, the MIPS database9, and other sources25,10. As is cus-
tomary, self interactions representing autoregulation or protein homodimerization
were not included in the analysis. We collected a total of 11 microarray gene
expression time-series forS. cerevisiae. These datasets include from 10 to 25
time points of various temporal scales (e.g. minutes and hours) and measure
gene-regulation under very different biological conditions, such as the cell cycle,
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filamentous-form growth, fermentation, carbon source perturbation, and thiolutin
treatment.

To analyze these time-series, we implemented local similarity analysis18,
which is a variant of the time-warping algorithm, to identify the local align-
ment between two time series. Since most of the collected time-series expres-
sion datasets are short, here we only identify the best local alignment for each
protein pair and do not consider suboptimal alignments. For each gene pair with
an identified protein-protein interaction, we performed a normal score transfor-
mation11 for their expression profiles before analyzing their local alignment by
dynamic programming. We define the local similarity score as the maximal sum
of the product of the corresponding entries of all the subsequences of the two
time-series within a predefined time delayD. D can be chosen to fit to individual
situations. Without losing generality, we chooseD = 5 in our analysis. To de-
termine the significance threshold (P < 0.025) of the computed local similarity
score, we carried out the local similarity analysis on 1,000,000 pairs of random
expression profiles with a normal distribution. We assigned an edge between all
gene pairs with a known protein interaction if we also uncovered a significant
local expression similarity score between the two genes.

From protein interaction data and the 11 expression time series, we obtain 11
graphs, ranging from 1872 to 13298 edges. Interestingly, the terminal genes of
32% of those edges have Pearson’s correlations with P-value higher than0.05.
Consequently, the local alignments are either shifted or are short for all of these
edges and, thus, can not be captured by standard correlation analysis.

4.2. Dynamic network modules are more biologically meaningful than
static modules

We implemented Algorithm1 and applied it to obtain edge-maximal dynamic
modules with different time interval overlap parameterd = 3, 4, 5, 6, 7, 8 and
with node size from5 to 8 a This constraints collects the set of edge-maximal dy-
namic modules Using the cell cycle dataset (GDS2347) as an example, atd = 8,
we identified7574 modules of node size5 to 8. To assess whether the tempo-
ral information improves our ability to discover biologically meaningful modules,
we compared the functional homogeneity of the dynamic modules with that of the
static modules determined based only on the protein interaction data. That is, for
each of the edge-maximal dynamic modules, we identify the connected compo-
nent of the PPI network with the same size, and compare the homogeneity of their
biological functions. We used the Gene Ontology (GO) biological process anno-
tation and defined specific functions to be those associated with GO nodes con-
taining less than 200 genes. A module is considered functionally homogeneous
if its variation in functional classification, as modeled by the hypergeometric dis-
tribution, has aP < 10−6 (P stands for P-value). Our results showed that38%

aDue to the very large number of dynamic modules within each temporal network, we apply anoverlap
constraint in Algorithm2 to prune the edge-maximal dynamic modules which share more thank nodes
with an already identified edge-maximal dynamic module in the resulting set. Here, we choosek = 2.
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of dynamic modules are functionally homogenous, while on average (from 100
randomizations), only27% of static modules are functionally homogenous. This
highlights the usage of temporal information in uncovering biologically mean-
ingful gene constellations that are hidden by a static network representation. In
general, the functional homogeneity of modules increases with increasingd.

Interestingly, a majority of the dynamic module are very sparse. For exam-
ple,81% of the dynamic modules from the dataset GDS2347 have a connectivity
γ less than0.5, whereγ is defined asγ = 2m/(n(n − 1)), with m being the
number of edges andn the number of nodes in a module. We have illustrated
two such examples in Figure 2. The non-dense modules are very hard to extract
from the static protein-protein interaction network solely based on their topology.
Here, we demonstrate that the temporal expression information can facilitate the
identification of likely important signals that are otherwise easily overlooked.

Dataset # modules GOa

GDS124 13729 40.96%
GDS1611-1 32532 36.43%
GDS1611-2 43024 31.21%
GDS1752-1 26306 37.14%
GDS1752-2 25412 37.68%
GDS18 26662 31.33%
GDS2318 12405 41.93%
GDS2347 7574 48.26%
GDS2350 3038 26.56%
GDS39 23983 36.17%
GDS608 2814 46.55%

a The percentage of modules with significant enrichment in proteins from a GO term

(P < 10
−6 is required and at least 2 genes in the module are annotated with the same GO term).

4.3. Dynamic network motifs reveal temporal events in cellular systems

The edge-maximal dynamic modules can aid in the characterization of signal
propagation and the elucidation of temporal organizational patterns in cellular ac-
tivities. Note that, there is little information on the detailed sequential ordering of
molecular events due to the limited power and resolution of current experimental
techniques. This leaves an important opportunity for the community of computa-
tional scientists, asin silico predictions can complement experimental approaches
to provide novel insights. In the following, we will discuss two cases from our
analysis in detail, for which the identified dynamic events are supported by cur-
rent knowledge.

Figure 2(a) illustrates an edge-maximal dynamic module activated during the
cell cycle progression (obtained using dataset GDS2350). The module contains
5 genes, all of which are involved in the biological process of “microtubule cy-
toskeleton organization and biogenesis”. Among those, SPC105 and SPC110 are
components of the spindle pole body; NUF2 is implicated in connecting the cen-
tromere to the spindle pole body during chromosome segregation13; Cin8 clusters
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Figure 2. Two examples of edge-maximal dynamic modules.

kinetochores into their characteristic bi-lobed metaphase configuration24; while
NUM1 is required for nuclear migration and localizes to the mother cell cortex
as well as the bud tip, forming cytoplasmic microtubule capture-sites during the
late anaphase5,6. Although all of these genes participate in microtubule dynam-
ics, their interactions do not occur at the same time. The directed edges from
SPC105/SPC110 to NUF2 indicates that the assembly of the spindle pole body
takes place ahead of its interaction with the centrosome, and the directed edge
from NUF2 to NUM1 implies that the connection from the centromere to the
spindle pole occurs before nuclear migration. The identified edge-maximal dy-
namic module correctly captures the sequential order of protein-protein interac-
tions along the time axis. It is noteworthy that all of the 4 connected gene pairs
have the very low Pearson’s expression correlations of -0.34, -0.08, -0.12, and
0.35. Consequently, this module can only be identified by taking the temporal
characteristics into account.

Our second example, Figure 2(b), shows a dynamic module activated in the
dataset GDS60816. This dataset resulted from studies of the temporal expres-
sion patterns in wild-type diploid cells shifted from the typical yeast-form growth
to that of a filamentous-form growth. Filamentous-form cells were collected and
profiled hourly for 10 hours. The identified dynamic module contains 8 genes,
in which RPN1, RPN3, RPN8, PRE1, PRE5 are involved in ubiquitin-dependent
protein catabolic process. In particular, PRE5 belongs to the proteasome alpha-
subunit complex, RPN3 and RPN8 are part of a proteasome regulatory particle,
the lid subcomplex, while SRS, SKP1, and CDC28 are involved in the cell cycle.
Most edges in this module are undirected (that is, they contain at most a time shift
of 1 unit), and only two edges are directed, one pointing from PRE1 to SKP1,
and the other pointing from SRS2 to CDC28. This is in agreement with the hy-
pothesis that the ubiquitin-dependent protein degradation by the 26S proteasome
is controlling the filamentous-form growth16. More specifically, the 26S protea-
some regulates the activity of the Cdc28 kinase, which in turn controls cell-cycle
progression and morphogenesis during filamentous-form growth16.

5. Conclusions

We have presented a graph-based algorithm to identify dynamic network building-
blocks by combining information from multiple temporal networks. To this end,
we have designed a set of efficient algorithms to identifydynamic network mod-
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ules. Our approach provides an alternative to traditional graph-based module find-
ing algorithms that assume all links are simultaneously present (static). Conse-
quently, traditional algorithms are incapable of addressing questions such as the
time-ordering of link-based events.

In contrast, our approach facilitates the use of temporal information to detan-
gle the complex wiring diagrams of cellular systems. As an example, we have
applied our algorithm to a combination of microarray time-series expression data
and the yeast protein-interaction network. We have demonstrated that our method
uncovers functionally homogenous network modules, and more importantly, that
it has the ability to identify thesequential ordering of molecular events taking
place in biochemical systems. While the results from our approach have no di-
rect implication on the causality of events, the sequential activity information em-
bedded in the derived modules may serve as a starting point for causal-inference
analyses.

Microarray gene-expression data and protein interaction data have their spe-
cific limitations, and as such, may not provide a measurement of all functional
activities in a cell. However, we want to emphasize that as a general data integra-
tion framework, our algorithm can be applied to any type of time-series activity
measurement (not limited to gene-expression data) and any type of network data
(not limited to protein-interaction data). Thus, our approach provides an important
new class of tools for the systems-level analysis of biological data.
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