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Analysis of condition-specific behavior under stressful environmental conditions

can provide insight into mechanisms causing different healthy and diseased cellular

states. Functional networks (edges representing statistical dependencies) inferred
from condition-specific expression data can provide fine-grained, network level in-

formation about conserved and specific behavior across different conditions. In this

paper, we examine novel microarray compendia measuring gene expression from
two unique stationary phase yeast cell populations, quiescent and non-quiescent.

We make the following contributions: (a) develop a new algorithm to infer func-

tional networks modeled as undirected probabilistic graphical models, Markov ran-
dom fields, (b) infer functional networks for quiescent, non-quiescent cells and ex-

ponential cells, and (c) compare the inferred networks to identify processes common

and different across these cells. We found that both non-quiescent and exponential
cells have more gene ontology enrichment than quiescent cells. The exponential

cells share more processes with non-quiescent than with quiescent, highlighting the
novel and relatively under-studied characteristics of quiescent cells. Analysis of in-

ferred subgraphs identified processes enriched in both quiescent and non-quiescent

cells as well processes specific to each cell type. Finally, SNF1, which is crucial for
quiescence, occurs exclusively among quiescent network hubs, while non-quiescent

network hubs are enriched in human disease causing homologs.

1. Introduction

Cellular adaptations essential for survival under changing enviromental con-
ditions are driven by a complex, but coordinated set of interactions among
genes, proteins and metabolites. Existing analyses of condition-specific
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behavior typically identify genes differentially expressed across conditions.
Fine-grained, interaction analysis among differentially expressed genes can
provide deeper insight into human diseases such as cancers1.

We define functional networks as networks with edges representing gen-
eral, statistical dependencies among genes. We model functional networks
using undirected, probabilistic graphical models, Markov random fields
(MRFs). We present a new algorithm, Markov blanket search (MBS), for
learning the MRF structure. MBS is based on Abbeel et al.’s theoretical
work of Markov blanket canonical parameterization (MBCP)2, which re-
quires an exhaustive enumeration (O(nl)) over variable subsets up to size l,
where n is the number of variables. We establish an equivalence between the
MB canonical parameters and per-variable canonical parameters3, which
requires enumeration over only singleton sets (O(n)), thus providing a
tractable approach for learning genome-scale networks.

We apply our algorithm to two novel yeast (S. cerevisiae) microarray
datasets measuring gene expression of quiescent and non-quiescent cells,
isolated from glucose-starved stationary-phase cultures4. Quiescent cells
play important roles in health and disease conditions of most living sys-
tems, but have been difficult to study due to their low metabolic activity5.
The recent generation of microarray datasets for these cells4, gives us the
first opportunity to infer a functional network that provides a fine-grained
characterization of yeast quiescence.

Algorithms for functional network inference can be broadly classified
into: (a) pairwise models (capturing dependencies between only pairs of
nodes), and (b) higher-order models (capturing dependencies among two or
more nodes). Bayesian networks are higher-order, directed models6,7,8, but
the acyclic constraint of the graph structure cannot easily capture cyclic de-
pendencies. Undirected graphical models can represent cyclic dependencies,
but because network inference is much harder2, higher-order dependencies
are often approximated by lower-order (often pairwise) functions9. As bio-
logical networks are likely to have higher-order dependencies10, higher-order
models are more appropriate for modeling functional networks. Unlike
Bayesian networks, our model captures cycles and, unlike pairwise models,
we explicitly identify higher-order dependencies.

Bio-techniques for identifying condition-specific networks have been ap-
plied to transcriptional regulatory networks11. Computational identifi-
cation of functional networks can provide a less expensive, complemen-
tary view of condition-specific networks. Some existing computational ap-
proaches integrate mRNA expression with known protein networks1. Other
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approaches identify cliques of co-regulated genes using mRNA expression.
De novo functional network inference, can identify novel relationships ab-
sent from existing protein networks. Furthermore, identification of gen-
eral statistical dependencies, including mRNA co-expression, can capture
condition-specific responses involving the metabolic and proteomic levels.

We applied MBS to three microarray datasets measuring expression of
quiescent, non-quiescent, and exponential yeast cells to genetic and chemi-
cal perturbations. We analyze the inferred networks to identify subgraphs
that are common among, or that discriminate quiescent, non-quiescent cells,
and exponential cells. In both quiescent and non-quiescent cells, fermenta-
tion and translation are down regulated, but not in exponential cells. The
exponential and non-quiescent cells are more enriched in Gene Ontology12

(GO) slim processes than quiescent cells, suggesting that the quiescent cells
are under-studied novel cell types.

Hub analysis of the inferred networks identified SNF1, which is impor-
tant for quiescence, to be present exclusively in quiescent cells. Hubs from
non-quiescent cells are more enriched in yeast homologs of human disease
genes. Overall, our results both agree well with existing knowledge and
include novel findings that differentiate quiescent and non-quiescent cells.

2. Methods

2.1. Markov random fields for biological networks

A Markov random field (MRF) is an undirected, probabilistic graphical
model that represents statistical dependencies among random variables
(RVs), X = {X1, · · · , Xn}. A MRF consists of a graph G and a set of
potential functions ψ = {ψ1, · · · , ψm}, which together describe the struc-
tural and functional relationships among the RVs. Nodes correspond to
continuous RVs encoding gene expression level, Xi ∈ R.

Although MRFs capture both higher-order and cyclic dependencies,
MRF structure learning is harder than in directed models2. Approaches to
overcome this problem include dependency networks13 and Markov blanket
canonical parameterization (MBCP)2. MBCP requires the estimation of
optimal Markov blankets (the set of immediate neighbors) for RV subsets,
Y ⊆ X, |Y| ≤ l, where l is a pre-specified, maximum subset size.

We extend MBCP by establishing an equivalence between Markov blan-
ket canonical parameters and per-variable canonical parameters3. As a con-
sequence, we need to estimate Markov blankets of individual RVs instead
of all subsets. Abbeel et al ’s MBCP exhaustively enumerates over subsets
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up to size l taking O(nl) time. Instead, our approach enumerates over sin-
gleton sets resulting in a reduced complexity of O(n), producing a more
tractable structure learning approach.

Our algorithm also enforces structural consistency, which is not guar-
anteed in dependency networks and MBCP. In structurally consistent net-
works, for every pair {Xi,Xj}, Xi is in Xj ’s Markov blanket, if and only
if, Xj is in Xi’s Markov blanket. A structurally inconsistent network may
not have an associated joint probability distribution making probabilistic
inference difficult.

2.2. Markov blanket search algorithm

Our per-variable canonical parameterization enables structure search by
identifying the best Markov blanket (MB) per RV3. We identify the best
MB by minimizing conditional entropy14,2, H(Xi|Mi) for each Xi given its
MB, Mi. We enforce structural consistency by computing the score gain
on adding an edge, {Xi, Xj}. This combines the decrease in H(Xi|Mi)
due to addition of Xj , with the conditional entropy change if Xj ’s MB was
constrained to include Xi. Overall, MBS minimizes

∑n
i=1H(Xi|Mi) plus a

regularization term, subject to the structure consistency constraint.
Let Mk

i denote the current best MB for Xi of size k, Xj denote a
candidate for addition to Mk

i , and Mk
j be the current best MB for Xj .

Then the score gain is:

Gi = H(Xi|Mk
i )−H(Xi|Mk

i ∪ {Xj}) + H(Xj |Mk
j )−H(Xj |Mk

j ∪ {Xi}). (1)

The MBS algorithm performs a greedy search to identify the best MB
for each variable. Each search iteration uses a combination of add and swap
operations. In the add stage of the k+ 1th iteration, we make one variable
extensions to the current Markov blanket Mk

i of each Xi restricting it to at
most k+ 1 RVs per MB. In the swap stage, we revisit all variables Z in the
Markov blanket Mk

i of each Xi, and consider other RVs Y /∈ ({Xi} ∪Mk
i ),

which if swapped in instead of Z, gives a score improvement. We assume all
variables to have a Gaussian distribution. However, our general approach
is applicable to other random variables, requiring only the estimation of
conditional entropy.

2.3. Data pre-processing

We applied our algorithm to two yeast, S. cerevisiae, datasets from quies-
cent and non-quiescent cells4, and one dataset from exponential cells15. We
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included only genes with < 20% missing data in all three datasets. As the
quiescent and non-quiescent datasets had biological replicates, we filtered
the genes further to discard not-reproducible genes. Our final datasets com-
prised n = 2, 818 genes, with 170, 186, and, 300 measurements per gene in
the quiescent, non-quiescent and exponential populations respectively.

2.4. Analysis of inferred networks

Generation of coarse modules: To obtain a high-level view of the in-
ferred networks, we generated local subgraphs and clustered them into
coarse modules. We excluded clusters of size < 5 and connected the re-
maining clusters into high-level graphs (Fig 1, Section 3.1).

We generated subgraphs by considering a node, and its neighbors reach-
able by r links. We refer to these subgraphs as 1-n subgraphs, denoting
a neighborhood reachable by traversing one link (r = 1). We computed
a topological similarity for each pair of subgraphs, {Si, Sj}, tij = lij

ni+nj
,

where lij is the sum of number of vertices common between Si and Sj , and
the number of edges across Si and Sj . ni and nj are the vertex counts in
subgraphs, Si and Sj , respectively16.

To obtain coarse modular organization, we first clustered the subgraphs
using hierarchical clustering with average linkage17. We selected clusters to
optimize between including majority of the genes, and to have clusters of
size≥ 5. This resulted in 230, 214 and 179 clusters, with n = 2630, 2551 and
2651 genes in quiescent, non-quiescent and exponential cells respectively.
We then used topological similarity as edge weights for each pair of clusters.

To assess if the clusters were biologically meaningful, we computed an
annotation similarity, fij , for each cluster pair, {Ci, Cj}. We obtained GO
slim process enrichment vector, ei per cluster. Each dimension ei(r) was
the logarithm of p-value enrichment for each process term. The annota-
tion similarity between Ci and Cj was the Pearson’s correlation coefficient
between ei and ej .

We developed a measure, Annotation-Topological Similarity (ATS), to
assess if clusters that were topologically close were also similarly annotated.
ATS is the Pearson’s correlation coefficient between two vectors, vA and vT ,
each of length

(|Cx|
2

)
, where Cx is the set of clusters generated for population

x. Each dimension vA(r) (vT (r)) was the annotation (topological) similarity
for rth cluster pair, where 1 ≤ r ≤

(|Cx|
2

)
.

We define relative enrichment among two populations x and y that tests
if x is equally, less or more annotated than y. Let py be the proportion of
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y’s clusters that are enriched (< 10−2) in any slim term. Assuming r out
of s clusters of x are enriched, we compute the probability of observing ≤ r
out of s using the binomial with parameter py. The smaller the probability
the more depleted is x as compared to y. Similarly, the probability of ≥ r

out of s enriched clusters estimates how annotated x is as compared to
y. Smaller the probability the more annotated x is w.r.t to y. We repeat
this for testing y’s relative enrichment w.r.t x. We do this analysis for
all population pairs such as quiescent versus exponential, quiescent versus
non-quiescent, etc.
Identification of up or down-regulated subgraphs: We analyzed the
1-n subgraphs for significant up-regulation or down-regulation at expression
level using a similar approach to Chuang et al.1 Each subgraph was assigned
the average of the mean expression of the subgraph genes. For each dataset
and subgraph size, we estimated a null distribution of subgraph expression
by randomly sampling s = 100, 000 subsets of all genes. A p-value < 0.05
was considered as significantly up or down-regulated.
Identification of conserved and specific subgraphs: To identify con-
served subgraphs among two cell populations, A and B, we computed a
match score for each 1-n subgraph, SA

i ∈ SA generated from A’s network,
using B’s network structure. This score is the harmonic mean of recall, RA

i ,
and precision, PA

i , per subgraph SA
i . For each SA

i ∈ SA, RA
i = |EA

i ∩EB
i |

|EA
i |

,

where EA
i is the edgeset of SA

i in A’s network, and EB
i is the edge set

among SA
i ’s vertices in B’s network. Similarly, PA

i = |EA
i ∩EB

i |
|EB

i |
. The match

of SA
i in B’s network is FA

i = 2∗P A
i ∗R

A
i

P A
i +RA

i
. We assumed an FA

i > 0 to in-

dicate SA
i is a conserved subgraph in B’s network. The set of conserved

subgraphs between A and B is SM
A ∪ SM

B , where SM
A ⊆ SA and SM

A ⊆ SB .
Each SA

i ∈ SM
A has FA

i > 0, when compared with B’s network, and each
SB

j ∈ SM
B has FB

j > 0, when compared with A’s network. A subgraph was
considered specific to a particular population if it had a match score of zero
for the remaining populations.
Gene ontology (GO) enrichment and false discovery rate: For each
1-n subgraph (or cluster), we used the hyper-geometric distribution to com-
pute GO term enrichment. We sampled s = 1000 random subsets of size k
from the n = 2818 genes, and computed their p-values for each term. The
false discovery rate (FDR)18 is associated with the number of terms en-
riched in a subgraph at a particular p-value. For example, if a subgraph of
size k is enriched in u terms at p < 10−4, FDR is u′

u , where u′ is the average
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number of terms enriched in a random subgraph of size k at p < 10−4. We
used an FDR of ≤ 0.05 to identify significant enrichments.

Exponential

Quiescent Non-Quiescent

Figure 1. Coarse modular organization of networks inferred from three populations.
Each node represents a cluster of genes. The node size is proportional to the gene count
per cluster. The node shade indicates if cluster genes are more expressed (dark) or

repressed (light). The edge thickness is proportional to similarity between two clusters.
The nodes are labeled with processes enriched in the member genes. AAM: amino

acid and deriv. ACM: aromatic comp CM: carb. meta CC: cell cycle CH: cellular
homeostasis CR: cellular resp. CWOB: cell wall org. & biogen. CMP: cofactor metab.

C: conjugation CSOB: cytoskeleton org. & biogen. GPME: gen. of pre. metab. &energy
HM: heterocycle metab. LM: lipid metab. M: meiosis MOB: membr. org. & and
biogen. OOB: organelle org & biogen. UNK &other PC: protein catab. PF: protein
folding PM: protein modif RCS: resp. to chemical stimulus RS: response to stress RBA:

ribosome biogen & assem RM: RNA metab ST: signal transduction TR: transcription
TL: translation T: transport TP: transposition VMT: vesicle-mediated transport VM:
vitamin metabolic process.
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3. Results

3.1. Modular organization in quiescent, non-quiescent and

exponential cells.

To obtain a high-level view of inferred networks, we clustered the sub-
graphs from inferred networks per population, followed by GO slim process
enrichment of the clusters (Fig 1). We had high Annotation-Topological
similarity (ATS) measure (see methods), for exponential (ATS=0.51) and
non-quiescent cells (ATS=0.49), suggesting that similarly functioning genes
are topologically close in the inferred networks. Quiescent cells had lower
agreement (ATS=0.26), suggesting that gene expression is more informa-
tive for non-quiescent and exponential cells, than quiescent cells. Quies-
cent cells may employ additional mechanisms, including post-translational
modification, to respond to stresses19,4. The presence of post-translational
modification is further supported by up-regulation of a quiescent cluster
enriched in protein modification (PM).

Relative enrichment analysis shows that both quiescent and non-
quiescent cells have significantly fewer annotated clusters than exponen-
tial (Table 1). Quiescent is also less annotated than non-quiescent. This
highlights the under-studied characteristics of quiescent cells, motivating
further investigation of these cells.

Table 1. Relative enrichment of clusters. ↑ and ↓ denote enrichment and depletion

p-value, respectively, of annotated clusters.

Population Enriched/Total clusters
wrt EXP wrt Q wrt NQ
↑ ↓ ↑ ↓ ↑ ↓

Exponential 32/179 – – 3e-4 1.0 0.03 0.94
Quiescent 19/230 1 7e-5 – – 1.0 0.02

Non-quiescent 27/214 0.04 0.96 0.01 0.99 – –

3.2. Fine grained analysis of the cell populations

3.2.1. Quiescent and non-quiescent cells show common global
starvation response behavior.

To identify similarly enriched processes, we obtained conserved subgraphs
among two populations. For each subgraph, we compared GO process
enrichment, and whether it agreed in expression – both up or both down-
regulated – in the two populations being compared.

There were a large number of subgraphs common between quiescent
and non-quiescent (Table 2). These subgraphs were enriched in glycolysis,
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Table 2. Number of conserved subgraphs between pairs of populations. Enr implies

enriched. Up and Down indicate significant up and down regulation, respectively.

Population pair Subgraphs Enr Up Down Enr & Up Enr & Down

Q-NQ 833 97 26 95 4 27
NQ-EXP 288 99 7 25 5 16

Q-EXP 311 98 0 27 11 24

fermentation, translation and fatty acid oxidation processes. However, only
half agreed in expression. Several of these subgraphs had both up and down-
regulated genes, resulting in only average expression of the entire subgraph.
These heterogeneous dependencies indicate more complex relationships not
likely to be captured by co-expression.

We also identified several subgraphs conserved between quiescent and
non-quiescent populations, that were up-regulated, but did not have term
enrichment. Genes from these subgraphs were associated with unknown bi-
ological process, further elucidating the importance of studying these cells.

Non-quiescent and exponential cells had several conserved subgraphs
enriched in telomere maintenance, DNA packaging, chromatin assembly
and mitotic recombination. These findings are consistent with previous
knowledge of non-quiescent cells to have unstable genomes, and, therefore
requiring these processes5. Comparison of quiescent and exponential cells
did not identify any processes enriched in the up-regulated subgraphs. The
processes enriched in down-regulated subgraphs included glycolysis, gluco-
neogenesis and ribosomal biogenesis.

Overall, the subgraph analysis suggests that quiescent and non-
quiescent cells are more similar to each other, than each is to exponential
cells. There are several subgraphs common to quiescent and non-quiescent
cells, but not all agree in expression. The processes that are common
between these cells suggest global environmental response as the cells tran-
sition from fermentable to non-fermentable carbon sources for energy.

Table 3. Subgraphs specific to individual populations. Same legend as Table 2.

Population Subgraphs Enr Up Down Enr & Up Enr & Down

Q 2295 70 174 160 7 17

NQ 2317 74 171 186 10 11

EXP 2570 232 327 206 54 44

3.2.2. Differences in quiescent and non-quiescent cells suggest
population-specific response

We examined GO enrichment of subgraphs that occurred only in one pop-
ulation. Both quiescent and non-quiescent cells had fewer subgraphs with
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Table 4. Processes exclusively up regulated in different populations

Population Process genes

Q

RAS signal transduction IRA1, SPG3, YGR026W, BCY1, PFK2

Sporulation GPA2, GSC2, OSW2, CAF120, YOR277C
de novo pyrimidine base ARF1,DIG1,

biosynthetic process URA1,URA3,YHR003C

NQ
hyperosmostic response TRS120, MSB2, YHR100C, PBS2, RSF2

regulation of DNA PIM1, DIG2, BCK2,SSL2,
metabolic process DPB11, PLB3, HST1, YNG1

EXP

ATP biosynthesis COX20, QCR10,QCR8, ATP2, ATP7

cell wall organization & AFR1, SKN1,GFA1,

biogenesis KTR2, DFG5
amino acid IDP1, ARO3, HOM2, YGL117W, YSC83,

biosynthesis ARG4,SIP4, CPA2,ARG1, SER1, SSU1

response to toxin AAD10,AAD16, AAD4,BAP2,MID2,
TAT1,TYR1

enriched processes than exponential (Table 3). The quiescent cells were
exclusively enriched in sporulation and negative regulation of the RAS sig-
nal transduction pathway (Table 4). Down regulation of this pro-growth
pathway indicates mechanisms to conserve energy expended in growth con-
ditions. Furthermore, subgraph genes that are not annotated with signal
transduction (SPG3, PFK2), are all important for stationary phase.

The non-quiescent cells exhibited processes involved in osmotic stress
response and regulation of DNA recombination. This is consistent with
these cells trying to cope with environmental changes and that they have
unstable genomes. However, unlike quiescent cells, most of the processes
up-regulated in non-quiescent cells, also occurred in exponential cells.

The exponential cells were enriched in response to chemical stresses,
biosynthesis of amino acids and ATP biosynthesis. ATP biosynthesis
was down-regulated in both quiescent and non-quiescent cells. The up-
regulation of these energy producing pathways suggests that exponential
cells expend a large amount of energy to make relevant mRNA in response
to different stresses. In contrast, as quiescent cells are formed in response to
a starvation condition, they are likely to sequester mRNA for rapid release
in response to different stresses19.

3.2.3. Non-quiescent hubs are enriched in disease causing genes

We analyzed the inferred networks to identify network hubs, nodes with
degree ≥ 7. A significant overlap between quiescent and non-quiescent
hubs (n=29) implied similarities among these cells due to global starvation
response, consistent with Section 3.2.1.
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Table 5. Hub nodes and their most enriched processes

Population Hubs Exclusive Processes

Q 215 167 cell wall organization & biogenesis

signal transduction, carbohydrate metabolism,
organelle organization and biogenesis,

generation of precursor metabolites

NQ 166 116 vesicle-mediated transport, response to stress,

membrane organization & biogenesis

EXP 318 273 aminoacid & derivative process, cellular respiration
ribosome biogenesis & assembly

The non-quiescent cells have been hypothesized as models for studying
diseases in humans due to the instability of their genomes4. We asked if
hubs from different cell populations were enriched in human disease causing
gene homologs20 (Table 6). Of the n = 2818 genes used to infer networks,
there were n = 225 yeast genes, homologous to different human disease
genesa. We found that hubs in non-quiescent cells are more likely to be
enriched in disease homologs than either quiescent or exponential cells.
This provides preliminary empirical evidence for the hypothesis that these
cells can provide insight into human disease causing conditions.

We found network hubs from quiescent cells to be enriched (p-value
<0.05) in signal transduction and cell wall biogenesis (Table 5). Among
the quiescent hubs was SNF1, known to be crucial for the formation of
quiescent cells. The non-quiescent hubs were enriched in stress response and
vesicle mediated transport. Finally the exponential hubs were enriched in
amino acid processes and cellular respiration. The enrichment of different
processes further illustrates the underlying bio-chemical characteristics that
discriminate these cells, and how they respond to different stresses.

Table 6. Enrichment of human disease gene homologs in hubs.

Population Total Hubs Homologous Disease Hubs Pval

NQ 166 26 5e-4
Q 215 22 0.130

EXP 318 26 0.395

4. Conclusion

We have developed an undirected, probabilistic graph learning algo-
rithm that can capture different types of dependencies that may exist in
expression-based, functional networks. We use our algorithm to perform

aWe downloaded human-yeast homologs from http://www.biomart.org/index.html
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a network analysis of three yeast cell populations in starvation and ex-
ponential growth conditions. A high-level analysis of the modular struc-
ture of these networks suggests that quiescent cells are significantly under-
annotated, highlighting the need to study these cells. Our analysis suggests
that the non-quiescent cells share more characteristics with exponential
cells as compared to quiescent. Analysis of individual subgraphs indicates
that quiescent and non-quiescent cells exhibit similarities in their mecha-
nisms to adapt to glucose starvation. However, there are processes specific
to quiescent cells such as sporulation, which suggest alternative response
mechanisms that might be active in these cells. Finally, we find that non-
quiescent hubs are enriched in homologs of human disease genes. In sum-
mary, our network-based analysis has identified both previously known and
novel biological processes that are important in these cells, giving a finer
understanding of the mechanisms conserved and specific to these cells.
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