
 

TOWARDS A CYTOKINE-CELL INTERACTION 
KNOWLEDGEBASE OF THE ADAPTIVE IMMUNE SYSTEM 

SHAI S. SHEN-ORR1,2, OFIR GOLDBERGER2, YAEL GARTEN3, YAEL 
ROSENBERG-HASSON4, PATRICIA A. LOVELACE4,5, DAVID L. HIRSCHBERG4, 

RUSS B. ALTMAN6, MARK M. DAVIS2,7, ATUL J. BUTTE1,8 

1 Stanford Biomedical Informatics Research, Department of Medicine, 2 Department of 
Microbiology & Immunology,3 Stanford Biomedical Informatics Training Program,4 
Stanford Human Immune Monitoring Center, 5 Stem Cell Biology and Regenerative 

Medicine,6 Departments of Bioengineering and Genetics,7 The Howard Hughes Medical 
Institute,8 Department of Pediatrics 

 Stanford University, Stanford, CA 94305-5479, USA 

The immune system of higher organisms is, by any standard, complex. To date, using 
reductionist techniques, immunologists have elucidated many of the basic principles of 
how the immune system functions, yet our understanding is still far from complete.  In an 
era of high throughput measurements, it is already clear that the scientific knowledge we 
have accumulated has itself grown larger than our ability to cope with it, and thus it is 
increasingly important to develop bioinformatics tools with which to navigate the 
complexity of the information that is available to us. Here, we describe ImmuneXpresso, 
an information extraction system, tailored for parsing the primary literature of 
immunology and relating it to experimental data. The immune system is very much 
dependent on the interactions of various white blood cells with each other, either in 
synaptic contacts, at a distance using cytokines or chemokines, or both. Therefore, as a 
first approximation, we used ImmuneXpresso to create a literature derived network of 
interactions between cells and cytokines. Integration of cell-specific gene expression data 
facilitates cross-validation of cytokine mediated cell-cell interactions and suggests novel 
interactions. We evaluate the performance of our automatically generated multi-scale 
model against existing manually curated data, and show how this system can be used to 
guide experimentalists in interpreting multi-scale, experimental data. Our methodology is 
scalable and can be generalized to other systems.  

1. Introduction 

Modern biology has benefited greatly from reductionism, perhaps most notably 
in the last century by the decision by Delbruck and colleagues to focus on the 
lowly bacteriophage in their efforts to discern the relationship between genes 
and DNA on a chromosome, thus escaping the complexities of higher 
organisms. But to understand the complexities of systems that are only present 
in higher organisms, such as the immune system, reductionism can only be 
taken so far before it veers into oversimplification. This is especially true in 
human immunology, where it is much more difficult to perform experiments as 
tightly controlled with respect to the many possible variables as in the mouse 
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model. For these reasons we believe that high throughput assays and their 
accompanying large datasets will be increasingly the norm in immunology, and 
thus it is critical to develop bioinformatics tools that can assimilate and interpret 
these datasets as efficiently and broadly as possible, ideally not just the output 
of one laboratory, but of thousands, and over the several decades that could be 
considered the modern era. 
 

With respect to how this might be accomplished, the complex and concise 
nature of the scientific literature means that the use of information extraction 
tools developed for generic tests is often insufficient. Driven by the utility of 
high-throughput technologies such as microarrays to measure whole genome 
gene expression data and yeast two hybrid screens to measure protein-protein 
interactions, many of the information extraction systems were developed with 
the aim of extracting genetic1 or protein-protein interactions2 from the literature 
or for annotating groups of differentially expressed genes. Results from these 
have been used either for construction of searchable knowledgebases1,3 or for 
validation of high-throughput experimental results4. 
 

Here, we construct an information extraction system, partly based on the 
earlier Textpresso1 and later Pharmspresso3 knowledgebases, which we have 
named ImmuneXpresso, to search abstracts of primary immunology literature 
for interactions between adaptive immune cells and the cytokines which they 
secrete and/or affect them. Using the identified interactions, we assemble an 
inter-cellular network of cells and cytokines to which we integrate with cell type 
specific gene expression data.  Identification of expressed cytokines and 
receptors in specific cells provides support for ImmuneXpresso identified 
interactions and allows, in many instances, to assign them directionality. We 
evaluate the performance of our automatically generated model against existing 
manually curated data, and use it to guide the identification of novel findings.   

 

2. Methods 

2.1   Immune related corpus and lexicon for information extraction 

To define a comprehensive list of relationships between cells and cytokines, we 
queried the NCBI journals database to identify journals reporting findings in 
immunology. 326 journals are annotated under the subject terms: “Immunology 
& Allergy”, or “General Science”. Our corpus thus consists of all abstracts 
published in these journals circa-1960 (PubMed limitation) and onwards, 
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downloaded using NCBI’s eFetch utility. We established a lexicon of 
immunological terms, and a comprehensive list of their synonyms (e.g., 
RANTES = CCL5). Our lexicon is currently limited to six adaptive immune 
system cell types: B-cells, Cytotoxic T-cell lymphocytes (CTLs), T helper cells, 
T-regulatory cells, γδ T-cells, and dendritic cells) and 38 cytokines and growth 
factors. We also constructed a list of verb stems which describe interactions 
between terms (e.g., induc, stimulat, repres). 

2.2  Automatic construction of immune-centric knowledgebase of cells 
and cytokines  

To extract information from the primary literature on interactions of immune 
system components, we built on the Textpresso extracting and processing 
package1. Given a corpus of literature and a lexicon of concepts, 
ImmuneXpresso identifies occurrences and co-occurrences of concepts within 
those sentences as well as relations between them. Importantly, owing to its 
rules, lexicon and corpus, ImmuneXpresso is tailored for the immunology 
knowledge domain with its unique and developing jargon and expressions. Our 
corpus of immune related text was tokenized into single sentences.  For each 
sentence we marked all appearances of terms from our lexicon of cells, 
cytokines and verbs. We then identified all sentences in which two or more 
terms of different categories co-occurred (e.g. IL-2 stimulates T-helper cells). 
Next, a filtering step was applied to remove sentences not containing interaction 
terms or sentences from which it was difficult to infer a regulatory interaction, 
such as those containing negation. We categorized the verbs in our lexicon as 
describing positive or negative interactions. For example, sentences containing 
interactions described using terms such as ‘stimulate’, ‘increase’ and ‘induce’ 
were all considered descriptive of a positive interaction, whereas sentences 
containing terms such as ‘decrease’, ‘interferes with production of’ or 
‘deactivates’ were categorized as describing negative interactions.  A third 
category of ‘undetermined’ interactions were those for which we could not 
assign either a positive or negative role. These included sentences in which 
terms such as ‘alter’, ‘mediates’ and ‘cooperatively’ appeared. The resulting 
output is a list of all interactions ImmuneXpresso detected in the corpus. Each 
interaction described a relationship of a certain type (positive, negative or 
undetermined) between a cell and a cytokine. For each we also kept track of the 
number of sentences an interaction was detected in, for use as measure of 
confidence in an interaction.  The resultant interactions were visualized as a 
bipartite network of cells and cytokines using Cytoscape5. 
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2.3 Data for cell specific gene expression 

Ultimately, cellular communication through cytokines is mediated by the 
binding of a cytokine secreted from one cell to a receptor expressed on the 
surface of another. The signature of cytokine and receptor expression should be 
detectable in cell specific gene expression patterns. We identified publically 
available microarray studies in GEO in which specific cell subsets were isolated 
from human blood and their gene expression measured. Data for stimulated and 
unstimulated dendritic cells was obtained from Jeffery et al.6 (GSM IDs: 90666, 
90836, 90837, 90664). Data for T-regulatory cells was obtained from 
Ocklenburg et al.7 (GSM IDs: 101521, 101519). In both of these studies, 
hybridizations were done on an Affymetrix GeneChip Human Genome U133 
Array Set HG-U133A.  Palmer et al. 8 (GSE4889) isolated B-cells, T-helper 
cells and CTLs from healthy individuals and hybridized them on an array. These 
are two-color printed microarrays in which a single individual’s cells (Cy5 
labeled) were hybridized against a standard reference – a mixture of RNA from 
11 human cell lines. Blood samples from 3 males and 3 females were drawn, 
and cells selected for using magnetic beads. B-cell selection was positive, 
whereas for T-helper and CTLs selection was negative.  To the best of our 
knowledge, no high quality γδ T-cell study for humans is publicly available.  
 

For each cell type, we performed quantile normalization9 across all replicate 
and/or multiple measurements.  We matched microarray platform probes to 
Entrez GeneIDs10. Those probes not mapped to any Entrez GeneID were 
discarded, whereas the intensity values of those mapping to the same gene were 
averaged. We converted the expression values into binary form by considering, 
for each array, only the genes in the top 40% of the intensity values, as 
expressed. We picked the 40th percentile as this is where the log ratio turns 
positive on most two color arrays in this data. For each cell type, we generated a 
cell type specific gene expression signature by considering a gene as expressed 
if it was detected as expressed in arbitrarily 50% or more of the replicate or 
multiple array measurements of that cell type. This resulted in 4338, 4468, 
4931, 5803 and 6122 genes considered as expressed in B-cells, T-helper cells, 
CTLs, dendritic cells and T-regulatory cells, respectively. 
 

2.4  Linking inter-cellular interactions with intra-cellular content 

To link our inter-cellular communication network to the intra-cellular networks 
which drive them, for each cytokine listed in the ImmuneXpresso lexicon, we 
identified in the Entrez Gene database one or more receptors to which it binds. 
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This complete list included a total of 79 genes, 38 of which were cytokines or 
growth factors and 41 receptors, with 68 binary cytokine-receptor interactions 
between them. For example, the binding of IL-13 to the IL13RA1 receptor as 
well as IL13RA2 and IL4RA was considered as three separate binding events. 
All 79 genes had probes on at least one of the array platforms (see 2.3), but only 
57 had probes on both array platforms. We use these to compile a cellular gene 
expression driven cell-cytokine network and contrast it with a literature-derived 
network generated by ImmuneXpresso. 
 

2.5 Validation and Experimental data 

It is critical to assess the quality of the output ImmuneXpresso extracts, namely 
how well do we automatically extract cell-cytokine interactions from literature. 
The Cytokine Online Pathfinder Encyclopedia (COPE) database 11 and the 
Cytokine Reference – Online Database 12 are the two largest publicly available 
references for cytokine functionality. Both are manually curated by experts. We 
used these databases to search for each of the cell-cytokine interactions 
identified by ImmuneXpresso and check its validity. 
 

Unlike the free text which it mines, ImmuneXpresso output is in machine 
interpretable form that can easily be utilized for downstream analysis. We 
contrasted ImmuneXpresso output to two experimentally derived datasets: in the 
first, blood was drawn from 29 human individuals, males and females of 
varying ages, and analyzed for cell frequency and serum cytokines. The 
frequency of B-cells, γδ T-cells, CTLs and T-helper cells was assessed using 
antibody staining and flow cytometry. Serum cytokines  were analyzed using 
the Luminex 200 assay system with MilliPore 37-plex kits. Employing our 
network algorithm (relevance networks)13 and using a Pearson’s correlation 
cutoff of ±0.8, we identified 668 associations in the data, of which 41 were 
between cells and cytokines.  

 
 In the second dataset, a cytokine response assay was performed on CD4+ T 

cells from spleens of 10 week old MRL.MpJ mice. These were stimulated with 
various dilutions of 5 cytokines (IL-2, IL-3, IL-12, IFN-γ and TNF-α) by 
incubation for 16 hours at 106 cells per well. Secretion blockers were then added 
for an additional 2 hours in order to accumulate intracellular cytokines and then 
the cells were lysed and lysates used for Luminex cytokine multiplex assays 
with Panomics Procarta 21-plex kits. An increase, appearance or decrease in the 
abundance of the 21 measured cytokines compared with their abundance with 
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no stimulation, was indicative of an increased production above background, de 
novo production and inhibition of production of cytokines respectively.  

3. Results 

A total of 3695 sentences reporting interactions between the six cell types used 
here and 38 cytokines were identified by ImmuneXpresso (Fig. 1). These were 
unified into 217 unique interactions, with an average number of 17 sentences 
per interaction. The resultant network is dense, with 54% of cell-cytokine pairs 
connected to one another directly. In comparison with other biological 
networks, this is a very dense network14,  in agreement with the high density 
value observed for the cellular immune network (nodes are cells, edges are 
cytokines) that Frankenstein et al.14 derived from curated databases.  
 

 
Figure 1.An automatically derived network of cells and cytokines from the immunological literature. 
Six immune system cell subsets (white nodes) and their relationship, through 217 edges, with 38 
cytokines (grey nodes). Edge color, from light to dark denotes the type of interaction, positive, 
undetermined, and negative. Edge width denotes the confidence of the relationship, represented as 
the log of the number of sentences in which the interactions was identified. Treg – T-regulatory cell, 
Th – T-helper cell, γδ – gamma delta, DC- dendritic cell. 
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Despite the high density we observe, the theoretical density which could be 
reached with 217 edges in a bipartite network of this size is 95%. However, 
many of the cell-cytokine pairs have more than one edge type spanning between 
them which likely reflects either incorrect semantic parsing of the text or the 
multiple functionality of cytokines under different conditions or in specific cell 
subsets. From the 217 edges, 113 were positive, 50 were negative and 54 were 
of undetermined type. Examination of the number of sentences shows that the 
evidence for most cell-cytokine relationships is predominantly of one type 
(Fig. 2). Furthermore, there is a strong correlation (Pearson’s 0.91 for cell types, 
0.59 for cytokines) between the degree of a node and the number of sentences 
which support its interactions. This is to be expected in a literature based 
network as the more research is done in a field, the more separate components 
become associated with one another.  

Figure 2: Interactions between B-cells and twelve cytokines extracted from abstracts by 
ImmuneXpresso. X-axis shows the number of sentences the interaction was observed in.  Color 
denotes interaction type. White, gray and black denote positive, negative and undetermined 
interaction respectively. All twelve cytokines are true effectors or products of B-cells. 
 

To evaluate our ability to correctly capture cell-cytokine interactions 
automatically from abstracts, we compared our results to the relevant subset of a 
manually curated set of cytokine-cell interactions from the COPE database and 
the Online Cytokine Reference12.  Checking specifically by cell type, we 
verified each of our detected B-cell interactions with those available on the two 
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websites. Overall, we had a 40% false-negative rate, but no false positives, 
better results than are usually observed for co-occurrence systems which search 
abstracts only1. Two of the cytokines interacting with B-cells, IL-21 and 
RANTES, did not appear in the Online Cytokine Reference, but did appear in 
COPE. Similar false negative rates were observed for dendritic cells.  
Interestingly, more recent discoveries in cytokine-cell regulation such as the 
regulatory interactions of γδ-T-cells, or IL-33 did not appear in either database, 
showing the power of automatic annotation for keeping up to date with 
published literature. 
 

Edges in the ImmuneXpresso network link cells and cytokines to one 
another (Fig. 1). In reality, these cells produce and secrete cytokines which bind 
to membrane receptors expressed on the surface of another cell or even the same 
one. We hypothesized that inter-cellular interactions between cytokines and 
their receptors would be evident, in cell specific gene expression data. If we 
could detect cytokines and receptors gene expression, than we may be able to 
assemble gene-expression-based inter-cellular communication networks. 
Further, if cytokines and their binding partner receptors were exclusively 
expressed between cells, we may be able to assign directionality to currently 
undirected ImmuneXpresso reported interactions. To test this, we assembled a 
compendium of cell specific gene expression signatures from publically 
available microarray studies (see 2.3) matching the cell types in the present 
version of the ImmuneXpresso lexicon, as well as identified the one or more 
receptors each cytokine binds (see 2.4).  

 
We asked how many cytokines in a given cell type are exclusively expressed 
from their receptor and how many are expressed in the same cell. The majority 
of cytokines and receptors were expressed exclusively of their binding partner. 
For example, the 8 cytokines and 21 receptors we detect expressed in T-
regulatory cells may participate in 35 different binary interactions, both within 
our model framework (5 immune cell subsets, no data for γδ-T-cells) and 
outside, but for only two (IL-13 binds IL4RA and IL-16 binds CD4) are both 
the receptor and the cytokine expressed by T-regulatory cells. We note that the 
cytokine IL-2, known to both be expressed by T-regulatory cells, and regulate 
them via IL2Ra (CD25), is not detected as expressed in T-regulatory cells under 
our criteria. Similarly, for only 7 out of 40, 10 out of 30, 6 out of 40 and 5 out of 
34 for B-cells, T-helper, CTL and dendritic cells respectively, both cytokine and 
receptor are expressed on the same cell. Expression of both cytokine and 
receptor in the same cell may be indicative of auto-regulation, or of the 
expression of either the cytokine or its’ receptor under different conditions or 
subsets.  
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The ImmuneXpresso network is bipartite, with each edge representing an 

interaction between cell and cytokine. Each edge in this network has been 
extracted from the literature and thus is supported by experimental evidence. On 
the other hand, an interaction between two cells must always consist of at least 
two edges. Unlike single edges, interpretation of a path of two or more edges as 
a cytokine mediated interaction between two cells, is not necessarily warranted, 
as it requires one cell to be a producer of the cytokine and the other to be 
affected by it. Here, gene expression data may come to the aid, as it allows one 
to identify cells expressing or producing cytokines, and those with the potential 
to be affected by them by expressing the corresponding cytokine receptors.  

 
 Ignoring edge types, the ImmuneXpresso network has 119 edges. In 

theory, these could encode for 309 possible undirected regulatory paths between 
the 6 cells in our system, 119 of which are auto-regulatory. Using the 
information obtained from the gene expression data, we can now estimate how 
many of the pathways theoretically derived from the ImmuneXpresso output  
are supported by the gene expression data, such that a cytokine and its receptor 
are expressed in the two communicating cells. To do so, we consolidated the 
gene specific cytokine-receptor information we obtained from Entrez to match 
the details of the lexicon ImmuneXpresso uses. For example, the information 
‘B-cells express both IL-10 and the IL-10 receptor IL-10Ra and IL-10Rb’ is 
simplified in the consolidated form to ‘B-cells express the IL-10 cytokine and a 
receptor to which it can bind’. 

 
 Filtering the  309  ImmuneXpresso paths by requiring one of the cells to 

express a cytokine while the other expresses its receptor drops the number of 
interactions to 158 of which 30 are auto-regulatory (same cell expresses both the 
cytokine and the receptor). The remaining 151 non-functional paths are either a 
byproduct of the network representation, or appear as such due to the threshold 
we set as to which genes should be considered expressed (see 2.2). Furthermore, 
as we observed, many of the cytokines and receptors are exclusively expressed 
on one of the two cells. Therefore, unlike the directionless interactions 
ImmuneXpresso currently reports, many of the cytokine mediated cell-cell 
interactions we infer from the gene expression data are directional. Of the 158 
ImmuneXpresso paths supported by the gene expression data, we can assign 
directionality to 76. Last, we can ask the reverse question, namely how many of 
the possible cytokine mediated, cell-cell interactions appear in the gene 
expression data, and cannot be traced to any path in ImmuneXpresso. We find 
27 such paths, 21 of which we could not find in the manually curated cytokine 
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databases11,12. Each represents a hypothetical cytokine mediated cell-cell 
interaction that can be tested experimentally. 

 
The utility of a knowledgebase in machine computable format stands out 

when conducting high throughput discovery driven experiments. In such 
experiments, researches rarely have expert knowledge in all of the variables 
being assayed and the number of results from experiments is often very high. 
Thus, it may be difficult to prioritize findings and link them to one another or to 
previous discoveries, to establish a comprehensive perspective. As a proof of 
principle, we analyzed serum cytokine and cell subset frequency data measured 
at the Stanford Human Immune Monitoring Core for 29 individuals, males and 
females of varying ages. Of the 41 detected interactions (see 2.5), 18 were 
between a cell and a cytokine covered in the present ImmuneXpresso lexicon 
version (see Data sources 2.1). Remarkably, ImmuneXpresso could verify each 
of those 18 and match it with a reported interaction in the literature. For 
example, an interaction between IL-15 and CTLs, which was deduced by our 
algorithm by the positive correlation observed between  IL-15 and CTLs, was 
detected 9 times  in abstract sentences by ImmuneXpresso, from such sentences 
as ‘These findings identify a novel CTL costimulatory pathway regulated by IL-
15 and suggest that tissues can fine-tune the activation of effector T cells based 
on the presence or absence of stress and inflammation’15.  Comparison of a 
second dataset, in which interactions of 13 cytokines were experimentally 
identified with spleen derived CD4+ T-helper cells, showed that 
ImmuneXpresso could validate 10 out of the 13 observed interactions. Manual 
searches for the other three interactions was able to confirm one additional 
interaction not captured by ImmuneXpresso.  Each such interaction suggests a 
testable hypothesis which requires considerable time and resources to test. As 
datasets grow larger, machine identification and prioritization of novel findings 
to follow up on is key. 

4. Discussion 

The multi-scale nature of the immune system and its high complexity challenge 
us to find new ways to analyze it. Discoveries in immunology and cellular 
biology are occurring at an unprecedented rate. Despite this, we are far away 
from understanding how the immune system of higher organisms, and humans 
in particular, are able to mount an immune response. Here, we take the first 
steps towards building bioinformatics tools that are specifically geared towards 
extracting information from primary immunology literature and comparing it to 
high throughput data. For the primary literature in this field, a particular value 
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of ImmuneXpresso is that it facilitates ‘connecting the dots’ between very 
different areas of immunology. Its low false positive rate, unlike the 35% false 
positive rate1 observed in extraction systems specializing in genetic interactions,  
may be due to the types of associations we are extracting (i.e. cells with 
cytokines) which may be easier to extract from natural language text than other 
types of associations. The false negative rate matches that of other systems 
using abstracts to extract information. Expansion to full text analysis is likely to 
drop the false negative rate1, but will likely result in an increase in false 
positives. 
 
 However, solely relying on information extraction systems to establish 
interaction networks always run the risk of misleading. As the accuracy of each 
individual reported interaction may not to be perfect, confidence in correctness 
of any given path decreases as a function of path length. To aid in this, as well 
as validate our findings, we use cell specific gene expression data to establish a 
biological context to our network. These provide both supporting evidence for 
extracted information and utilization of the extracted information for the 
identification of novel associations. We note that at present, our approach 
discards low abundance genes, and is sensitive to the conditions under which 
the gene expression data was assayed. These limit our ability to infer on 
cytokine mediated cell-cell interaction. Furthermore, extension of this approach 
to rare cell types may be complicated by the smaller body of literature and the 
lack of expression data. Thus we advocate systems integrating data from 
multiple data sources. For example, the requirements for high accuracy in 
natural language text processing, may be lifted to some extent by the integration 
of machine formatted data from other electronic sources. Future work should 
address this by integration of protein interaction data, enriching the lexicon by 
the use of predefined ontologies, and expanding the system to integrate not only 
cytokines and receptors, but also activation pathways and downstream targets.  
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