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Curated biological knowledge of interactions and pathways is largely available from 

various databases, and network synthesis is a popular method to gain insight into the 

data. However, such data from curated databases presents a single view of the knowledge 

to the biologists, and it may not be suitable to researchers‟ specific needs. On the other 

hand, Medline abstracts are publicly accessible and encode the necessary information to 

synthesize different kinds of biological networks. In this paper, we propose a new 

paradigm in synthesizing biomolecular networks by allowing biologists to create their 

own networks through queries to a specialized database of Medline abstracts. With this 

approach, users can specify precisely what kind of information they want in the resulting 

networks. We demonstrate the feasibility of our approach in the synthesis of gene-drug, 

gene-disease and protein-protein interaction networks. We show that our approach is 

capable of synthesizing these networks with high precision and even finds relations that 

have yet to be curated in public databases. In addition, we demonstrate a scenario of 

recovering a drug-related pathway using our approach. 

1. Introduction  

Modeling large-scale biological knowledge in the form of networks is a common 

approach to advance our understanding of the mechanisms that govern the 

behavior of a cell. The steadily increasing amount of „omics‟ data facilitates the 

synthesis of a wide variety of biological networks, from modeling physical 

protein-protein interactions [1], synthesizing networks of genes that share certain 

properties such as coexpression based on gene expression data [2], to proteins 

that share biological processes [3]. The synthesis of biological networks, such as 

gene-disease associations [4] and gene-drug interactions [5], provides insights to 

our understanding of the role of genetics in diseases. Descriptions of other kinds 

of biological networks can be found in [6]. 

As a way to share this wealth of biological knowledge, the data is made 

available in various databases, such as IntAct [7] and MIPS [8] for protein-

protein interactions. Such interaction databases are typically curated manually by 
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a team of scientists, aided by automated extractors or provided by external 

contributors in some cases. While interaction data from these databases are 

highly useful as a concise resource for biologists, the level of detail about the 

interactions is a priori defined by the databases. The interactions are often 

restricted to specific kinds of information so that information one might be 

interested, such as the structure or strength of the interactions, might not be 

encoded in the databases [9]. Biologists who use these interactions have to be 

aware of the limitations of the data, which can be unclear if the biologists are not 

familiar with the curation protocol for the particular database. In other words, 

biologists can only use the interaction data in a passive manner as they are not 

engaged in the curation process of the interactions. Biologists can perform 

filtering or visualization on the interactions provided by the databases as users, 

but not how the interactions are collected. Such passive use of interactions limits 

the applicability of the interaction data into research. On the other hand, Medline 

abstracts are publicly accessible and encode the necessary information to 

synthesize different kinds of biological networks. For instance, it was estimated 

that 270,000 Medline abstracts are classified as abstracts with mentions of 

human, mouse and yeast protein-protein interactions [10]. A more recent work 

found 150,000 protein-protein interactions in 1 million Medline abstracts [11]. 

Our goal is to provide a mechanism that allows users to synthesize 

biomolecular networks specific to their needs through queries against Medline 

abstracts. Unlike the traditional approaches in querying biomolecular networks 

that are synthesized from existing curated data, the networks generated from 

querying Medline abstracts can be more suitable to the users‟ needs. By using 

simple-to-use queries to our specialized database of Medline abstracts, these 

networks convey the information needed by the users, such as strength of the 

interactions, and such information might be missing in the networks that are 

synthesized from curated data. Users can specify precisely what kind of 

information they need in the networks through queries, such as preconditions of 

the interactions. In addition, users do not have to depend on the time-consuming 

curation process and synthesize biological networks from curated data that do 

not include the latest findings. 

To implement this mechanism, Medline abstracts are parsed by a natural 

language parser to represent the syntactic structures of the sentences called parse 

trees. Entities such as genes, diseases and drugs are automatically identified with 

the use of entity recognizers as semantic information. The parse trees and the 

semantic information are then stored in a specialized relational database. Having 

the parse trees in the database enables the users to extract sentences using 

simplified linguistic queries. The resulting sentences allow the users to 

synthesize biomolecular networks specific to their needs. This new paradigm 
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enables biologists to utilize information in Medline abstracts effectively and 

synthesize their own biomolecular networks. 

Our proposed mechanism is different from  automated extraction tools that 

perform biological relationship extraction. Typical relationship extractors such 

as iHop [12] rely on their own dictionaries of entities to identify their 

associations based on coccurrences. Other systems such as AliBaba [13] utilize 

linguistic patterns to extract relationships. From the user‟s point of view, such 

extraction systems are treated as black boxes and users cannot specify how the 

interactions should be obtained. Our method allows users to issue their own 

search criteria through queries to generate biomolecular networks of interest. A 

text analysis engine called TLM [14] is based on the idea of a retrieval system 

that retrieves sentences using textual patterns as queries. Unlike our approach, 

TLM does not utilize grammatical structures of the sentences to retrieve 

sentences. Interaction databases such as IntAct, MINT, MIPS for protein-protein 

interactions and PharmGKB [15] for gene-drug interactions rely on their curators 

to identify interactions, and users have no influence in the curation process. 

Proprietary pathway analysis tools such as Ingenuity IPA
*
, ActiveMotif

†
 utilize 

their manually curated database to analyze experimental data, but the curation 

protocol is not accessible to the users. The use of query languages can be found 

in querying pathways, such as PQL [16], QPath [17] and PATIKA [18], and 

finding information that require multiple data sources, such as semCDI [19], 

GenoQuery [20], Cytoscape [21]. However, these query languages depend on 

curated data in order to return answers. 

In this paper, we describe a new paradigm in how users can synthesize 

biomolecular networks. We illustrate how this approach can lead to the synthesis 

of gene-drug relationship networks, gene-disease association networks and 

protein-protein interaction networks. 

2. Methods 

Our proposed method is to place the user in control of synthesizing their own 

biomolecular networks through queries to our specialized database of Medline 

abstracts, and the results returned by the database are utilized to generate the 

resulting biomolecular networks. Suppose a user is interested in constructing a 

network of gene-drug relations, in which the drugs are metabolized by enzymes. 

The following query can be used: 

<DRUG> _ metabolized by <GENE> 

                                                           
*
 Ingenuity Pathway Analysis Tool: http://www.ingenuity.com 

†
 Active Motif: http://www.activemotif.com 
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The symbols <DRUG> and <GENE> infer that the sequences of words have to be a 

drug name and a gene/protein name in the matching sentences. The order of the 

tokens in the query matters, so that the above query specifies that the 

grammatical structures of the matching sentences include a syntactic dependency 

between the words “metabolized” and “by”. Similarly, “by” has to be 

syntactically dependent on <GENE>. The operator _ is a wildcard operator that 

<DRUG> and “metabolized” may not have any syntactic dependency between 

them in the matching sentences. This query can retrieve support evidences such 

as “Diclofenac is widely used in the treatment of rheumatic diseases and is 

mainly metabolized in the liver by CYP2C9.”(PMID: 8793607). The 

grammatical structure of the sentence reveals that there are syntactic 

dependencies between “metabolized” and “by”, as well as “by” and “CYP2C9”. 

By allowing users to perform their own queries, users can specify their own 

criteria in their target interactions. One way of specifying the strength of the 

interaction is to include the word “extensively” in the query as follows: 

<DRUG> _ extensively metabolized by <GENE> 

Here we are interested in drug-enzyme metabolic relations in which the strength 

of the interactions is described as “extensive”. The support evidence “Tacrine is 

extensively metabolized by CYP1A2.” (PMID:9209244) is an example retrieved 

by the query. There are cases when negative relations are reported in the 

literature. Our current system simply disregards sentences with words that 

indicate negation, such as “not”, “no”, so that sentences such as “Hesperetin was 

not metabolized by human CYP1A2” (PMID:10781868) are not retrieved as 

support evidences. 

The essential component of our method is parse trees of Medline abstracts; 

parse trees are syntactic structures that represent the grammatical structures of 

sentences. Parse trees include constituent trees and linkages, in which 

constituent trees are hierarchical syntactic structures of sentences and linkages 

are composed of links that represent syntactic dependencies between pairs of 

words. These parse trees are generated automatically by the Link Grammar 

parser [22]. Such parse trees are ideal to be used for expressing linguistic 

patterns, which are commonly utilized in automated extraction systems. To store 

the parse trees, a database is needed to capture the hierarchical representation of 

abstracts, which include the sections of the abstracts such as title or body of the 

abstracts, parse trees and the semantic information of words. Semantic 

information includes the entity type of a sequence of words, such as whether it is 
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a gene/protein name
‡
, a drug name or a disease name. To cope with the high 

variation of gene names, an entity recognition system based on a statistical 

machine learning technique named BANNER [23] is utilized to identify gene 

names in text. Lists of drug and disease names from MeSH
§
, DrugBank

**
 and 

PharmGKB are employed to recognize drug and disease names. We called the 

database as the parse tree database, and the database is implemented using a 

relational SQL database. Since standard SQL queries are not ideal for expressing 

queries that involve linguistic patterns, we develop a query language called parse 

tree query language (PTQL) that are used to express linguistic patterns and 

query parse trees. The details of the PTQL query language and its 

implementation can be found in [24]. Similar to standard database query 

languages such as SQL, PTQL is designed to be used by developers and people 

who are familiar with linguistics. To facilitate the synthesis of biomolecular 

networks through querying of parse trees of sentences in Medline abstracts by 

biologists, we offer a simpler query language called PTQL
LITE

 that is not as 

expressive as PTQL but the syntax is close to keyword-based queries used in 

search engines. The sample queries shown in the beginning of this section are 

PTQL
LITE

 queries.  

Figure 1 shows an overview of our approach in using PTQL
LITE

 queries to 

synthesize biomolecular networks. The processor utilizes the named entity 

recognizers and parses the MedLine abstracts, and stores the processed 

information in the parse tree database and the inverted index. The middleware 

handles the communication between the web interface and the parse tree 

database. The middleware takes PTQL
LITE

 queries as input and generates PTQL 

queries. The PTQL queries are translated into standard SQL queries before 

querying the parse tree database. Due to the complexity of the translated SQL 

queries, retrieving results from a large parse tree database can be slow. We 

increase the efficiency of our system by utilizing an off-the-shelve information 

retrieval (IR) system so that PTQL
LITE

 queries are first translated into IR queries 

to retrieve the matching sentences. The PTQL queries are applied to only the 

parse trees of the sentences retrieved by the IR system rather than the entire 

database of parse trees so that the process can be performed efficiently. We 

summarize the process of translating PTQL
LITE

 queries into SQL queries to 

retrieve answers by the middleware as follows: 

                                                           
‡
 Gene, protein and enzyme names are indistinguishable by current automated 

entity recognizers, and sometimes even by human readers. From here on, we 

use “gene” to refer to genes/proteins/enzymes. 
§
 Medical Subject Headings (MeSH): http://www.nlm.nih.gov/mesh/ 

**
 DrugBank: http://www.drugbank.ca/ 
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1. The IR query generator generates an IR query based on an PTQL
LITE

 query 

provided by the user. 

2. The IR query is used to retrieve relevant documents D and sentences S from 

the inverted index. 

3. The PTQL generator translates the PTQL query into an SQL query and 

instantiate the query with document id d ∈ D and sentence id s ∈ S. 

4. The SQL query generated in Step 3 is applied to the parse tree database. 

5. The bionetwork generator delivers the resulting network. 

 

 
Figure 1 – A client-server system architecture for synthesizing bionetworks through querying parse 

trees of Medline abstracts. The middleware generates PTQL and IR queries based on the user‟s 

input, and retrieves information from the database and the index. 

3. Synthesis of various biomolecular networks 

In this section, we illustrate our approach with the synthesis of gene-drug 

relation, gene-disease association and protein-protein interaction networks. We 

evaluate our approach by using PharmGKB to verify the relations in the 

generated networks. As PharmGKB only covers part of the knowledge in the 

literature, we manually evaluated the correctness of the relations based on their 

corresponding supported evidences that were extracted by our approach. 

3.1. Gene-drug relationship networks 

Drug metabolism influences the effects of drug chemicals, and genetic variations 

can affect the effectiveness of drug metabolism. It is therefore essential to study 

the metabolic relations between enzymes and drugs. Here we illustrate the 

synthesis of a network of gene-drug relationships using our approach, 

specifically capturing the relations of drugs that are metabolized by enzymes. 

We use a collection of 13015 Medline abstracts from [25] that focus on topics 

about gene-drug relations to demonstrate the feasibility of our approach. 

Sentences such as “Triazolam is metabolized by CYP3A4” (PMID:8612379) 

are typical examples of how gene-drug metabolic relations are described in 
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biomedical articles. Biologists who are interested in such relations would use the 

following PTQL
LITE

 query to synthesize their networks:   

<DRUG> _  metabolized by <GENE> 

By default, the system filters out any sentences that infer negative relations. This 

query results a network of 141 genes and drugs with 138 relations generated 

from 178 supporting sentences, and each relation is supported by at least 1 

sentence. The gene-drug network took about 10 seconds to be generated on a 2-

GHz Intel DualCore CPU with 2 GB of RAM. To verify the correctness of the 

network, we used the gene-drug relations from PharmGKB [15], which is one of 

the largest curated databases of relations among genes, drugs and diseases that 

are publicly available. Among the 138 relations in the network, 43 of them can 

be found in PharmGKB. We further manually evaluated the correctness of the 

relations in the network based on their evidences that were extracted by our 

method. We observed that 122 out of 138 (i.e. precision of 88.41%) are indeed 

correct. We analyzed the incorrect relations and categorize the errors into two 

sources: (i) errors in extraction due to the sentence structure; (ii) errors due to 

recognition of entities. We list out some of these errors in Table 1. Example 1 in 

Table 1 is incorrect due to the fact that the clause describing the drug-enzyme 

metabolic relation for CYP2C9 is not in the same clause as the drugs lovastatin, 

simvastatin and atorvastatin. On the other hand, incorrect identification of drug 

names, such as recognizing “important drugs” and “widely used drugs” as drug 

names, leads to incorrect support evidences as shown in example 2 of Table 1. A 

careful, manual revision of the lexicon used for drugs would eradicate many of 

the type (ii) errors. 

 
Table 1 – Support evidences that are extracted incorrectly by the query <DRUG> _ 

metabolized by <GENE>  

 Gene/Drug Incorrectly extracted evidence 

 1 CYP2C9/Lovastatin; 

CYP2C9/Simvastatin; 

CYP2C9/Atorvastatin 

Lovastatin, simvastatin, and atorvastatin are 

substrates of CYP3A4, whereas fluvastatin is 

metabolized by CYP2C9. (PMID:11029845) 
   

2 CYP2E1/important 

drugs 

Among important drugs metabolized by CYP2E1 … 

(PMID:2134674) 

 

We synthesize another network using the same PTQL
LITE

 query but 

specifying that the relations in the network have to be supported by at least 2 

different publications. A smaller network of 33 vertices (10 genes and 23 drugs) 

with 27 edges is generated with this criterion, as shown in Figure 2. Such 

network allows the discovery of potential relations. For instance, the drugs 

omeprazole are metabolized by CYP3A4 and CYP2C19, and users might want 

to study a potential relation between CYP3A4 and CYP2C19. Table 2 lists some 

of the relations encoded by this network as well as the corresponding supported 
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sentences. Among the 27 relations, only 2 of them are considered as an error in 

the extraction (i.e. precision of 92.59%).  This experiment serves as a proof-of-

concept that a biologist can easily synthesize a user-specific network with 

PTQL
LITE

 queries. This also shows that our approach can overcome the time-

consuming process of expert curation, which generally results in a low coverage 

of the knowledge that has already been published in the literature. 

 
Table 2 – A partial list of gene-drug relations generated by our approach using the pattern <DRUG> 

_ metabolized by <GENE>. Each gene-drug relation is supported by at least 2 different 

publications, and the relations are yet to appear in PharmGKB. 

Gene/Drug Support evidence 

CYP3A4/Triazolam Triazolam is metabolized by CYP3A4. (PMID:8612379) 

CYP3A4/Terfenadine … therapeutics (terfenadine and cyclosporine) known to be 

metabolized by CYP3A4 (PMID:10752642) 

Alcohol dehydrogenase / 

Ethanol 

Ethanol is metabolized by alcohol dehydrogenase in the human 

stomach. (PMID:9693201) 

CYP1A2/Propafenone Propafenone is mainly metabolized by CYP2D6 (PMID:10917404) 

CYP2E1/Chlorzoxazone Chlorzoxazone is mainly metabolized to 6-OHchlorzoxazone by 

CYP2E1. (PMID:7910460) 

 

 
Figure 2 – A gene-drug network in which each edge represents a drug metabolized by an enzyme. 

Each edge is supported by at least 2 support evidences. 

 

We illustrate our network synthesis approach with another example of drug-

enzyme inhibition. The following PTQL
LITE

 query can be used: 

<DRUG> _ inhibit <GENE> | <DRUG> _ inhibits <GENE> | 

inhibition of <GENE> by <DRUG> |  

<GENE> _ inhibited by <DRUG> 

This query is composed of 4 subqueries, which are separated by the operator |, to 

capture the drug-enzyme inhibition relations. Our system essentially synthesizes 

the drug-enzyme inhibition network as the union of the relations resulted from 
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the 4 subqueries. Using the criteria that each relation has to be supported by at 

least 2 publications, the resulting network is composed of 14 enzymes and 13 

drugs with 19 relations. Among these 19 relations, 7 of the relations can be 

verified with the PharmGKB database. We further look into the other 12 

relations, and realize that 9 relations are well supported by our extracted 

evidences, as shown in Table 3. 

 
Table 3 – A list of correct drug-enzyme inhibitions and the corresponding support evidences. These 

correct relations are currently not contained in PharmGKB.  

Gene/Drug Support evidence 

CYP3A4/Indinavir; 

CYP3A4/Nelfinavir; 

CYP3A4/Amprenavir 

The HIV protease inhibitors amprenavir, indinavir, 

nelfinavir, ritonavir and saquinavir inhibit CYP3A4. 

(PMID:10926350) 
  

CYP2D6/Terbinafine Terbinafine inhibits CYP2D6. (PMID:11475469) 
  

alcohol dehydrogenase/ 4-

methylpyrazole 

… 4-methylpyrazole to inhibit alcohol dehydrogenase. 

(PMID:2994256) 
  

CYP2D6/Quinidine Inhibition of CYP2D6 by quinidine … (PMID:10510150) 
  

catechol-O-methyltransferase/ 

tolcapone 

Inhibition of catechol-O-methyltransferase by tolcapone 

has been shown …. (PMID:9343116) 

Thiorphan/Bradykinin … formation of the major metabolite bradykinin 1-7 was 

inhibited by thiorphan. (PMID:1629199) 
  

benzoyl-Gly-His-Leu/ 

captopril 

The metabolism of benzoyl-Gly-His-Leu was completely 

inhibited by captopril (PMID:7588745) 

3.2. Gene-disease relationship networks 

We illustrate how we can synthesize gene-disease association network using our 

approach. We use the following query to construct such gene-disease network: 

<GENE> _ associated with <DISE> |  

<GENE> _ risk of <DISE> 

Using the same 13015 Medline abstracts that were used in constructing gene-

drug networks as described in the previous subsection, a network with 88 genes 

and diseases with 76 gene-disease relations is generated with the above query. 

Each of the relations in this network is supported by at least 1 publication. The 

evaluation of the network using PharmGKB shows that 7 of the relations can be 

confirmed as correct. Our manual evaluation shows that 54 of the 76 relations 

(i.e. precision of 71.05%) are correct by analyzing the extracted support 

evidences. We conclude that 11 of the incorrect relations are due to errors from 

the entity recognizers. For instance, ACE inhibition was incorrectly recognized 

as a gene name when in fact it is considered as a drug/treatment (even though 

ACE itself is a gene name). The rest of the incorrect relations are caused by 

incorrect extraction. We also synthesize another network using the criteria of at 

least 2 publications as support for the relations in the network. This results a 

small network with 11 genes and diseases with 6 relations. One of the reasons for 
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such a small network is that our current system does not utilize normalization 

techniques to realize that terms such as “vitamin D receptor” and “VDR” refer to 

the same entity. Table 4 lists out some of these associations. 

 
Table 4 – A list of gene-disease associations and the corresponding support evidences. 

Gene/Disease Support evidence 

VDR/Osteoporosis To determine whether a polymorphism of the VDR gene, 

already associated with osteoporosis ….  (PMID:9259424) 

UGT1A1/Gilbert's 

syndrome 

The presence of an additional TA repeat in the TATA sequence 

of UGT1A1 has been associated with Gilbert's syndrome. 

(PMID:10340924) 

VDR/ 

Hyperparathyroidism 

Polymorphism of the VDR gene has recently been shown to be 

related to bone mineral density, and also associated with 

hyperparathyroidism …. (PMID:10508794) 

3.3. Protein-protein interaction networks 

We constructed a network of protein-protein interactions using the BioCreative 2 

dataset [26]. The task in the BioCreative 2 IPS benchmark is to find protein-

protein interactions for which a text provides evidence for a physical interaction 

between the proteins. A sample query is as follows: 

<GENE> _ binds with <GENE> 

We generated 11208 PTQL queries from the BioCreative 2 training dataset, and 

achieved a precision of 83.6% and recall of 58.6%. 

4. Scenario 

We illustrate a scenario on how users who are not familiar with linguistic 

structures can utilize our system to synthesize networks. Suppose the user is 

interested in synthesizing a pathway about the drug tamoxifen, the following 

query can be issued to first find all sentences that describe associations between 

genes and tamoxifen. 

<GENE> _ <DRUG=”tamoxifen”>|<DRUG=”tamoxifen”> _ <GENE> 

The retrieved sentences contain cooccurrences of genes and tamoxifen. The user 

can examine some of these sentences and refine the relations with this query: 

<DRUG=”tamoxifen”> _ involvement of <GENE> |   

Binding _ <DRUG=”tamoxifen”> _  <GENE> 

A pathway that involves the genes CYP3A4, CYP2B6 and CYP2D6 with 

tamoxifen can then be synthesized. This pathway is supported by the evidences 

as shown in Table 5, and can be verified with PharmGKB. This example 

illustrates the feasibility of pathway synthesis using our approach. 
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5. Conclusion 

We demonstrate that our approach is capable of synthesizing biological networks 

with high precision without the use of curated data. This new paradigm of 

network synthesis tailors the specific needs of the users. Future work includes 

normalization of entities to handle name variations, and parse all Medline 

abstracts so that networks can be synthesized with respect to the latest findings. 

Inclusion of query templates that are typically used in describing gene-drug, 

gene-disease and protein-protein relations will be provided through the interface, 

so that synthesizing biological networks with our approach can even be simpler. 

A prototype based on 13015 Medline abstracts from [25], mainly focusing on 

gene-drug relations, is available at http://cbioc2.eas.asu.edu/netsynthesis. 

 
Table 5 – A list of support evidences for the pathway that involves the drug tamoxifen 

PMID Support evidence 

7748182 Binding of tamoxifen correlated with CYP3A4 and CYP2B6 content. 

9037249 The proportion of activity inhibited by quinidine correlated positively 

with total microsomal tamoxifen 4-hydroxylation activity, indicating a 

major involvement of CYP2D6 in this reaction. 
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