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Background: 
 
Regulation of gene expression at the post-transcriptional level, including the control of 
splicing, mRNA transcript stability, localization, and translation, is widespread in 
eukaryotes. An explosion of recent findings underscores both the predominance and 
complexity of PTR, including the discovery of ubiquitous but previously unknown 
regulatory mechanisms, such as microRNAs[1] (miRNAs); the observation that RNA 
recognition motif (RRM) and Kelch homology (KH) RNA-binding domains (RBDs) are 
among the most numerous protein domains in metazoan genomes, including the human 
genome[2, 3]; and the finding that, in several cases, RNA-binding proteins (RBPs) bind 
and presumably co-regulate sets of functionally-related transcripts[4].  An overall 
hypothesis has emerged that mRNA-containing ribonucleoprotein complexes (mRNPs) 
are the functional equivalent of “post-transcriptional operons”[5].  There are, however, 
relatively few examples of such “operons”; many putative PTR cis- and trans-regulatory 
factors were discovered by computational analysis of genome sequences, and have not 
been subjected to individual directed experimentation.  Nonetheless, the sheer number of 
miRNAs (>500 in humans) and apparent sequence-specific RBPs (i.e. those carrying 
RRM, KH, and other RBDs) suggests that PTR mechanisms are as abundant as 
transcriptional regulatory mechanisms. 

The study of PTR regulation presents a number of experimental challenges.  Two 
of the major modes of PTR (control of subcellular localization and translation) cannot be 
assayed by analysis of total RNA extracted from cells; rather, they must be analyzed 
either in situ or via extraction of intact macromolecular structures (e.g. organelles, P-
bodies, polysomes).  Another major mode, transcript degradation rate, must be separated 
from transcript synthesis rate in order to make accurate measurements. 

Coupled with these experimental challenges are computational challenges both in 
analysis of experimental data and in the modeling of cis-regulatory elements involved in 
PTR.  For example, though alternative splicing can be assayed by analyzing total RNA 
using microarrays or next-generation sequencing, because alternatively spliced isoforms 
share most of their RNA sequence, estimating relative abundance levels from these data 
requires careful computational modeling [6-8].  Unlike DNA-binding proteins, many 
RBPs have both sequence and RNA secondary structure binding preferences – even 
among RRM and KH domains, which primarily recognize unpaired bases, roughly half of 
the proteins that have been characterized have a preference or requirement that the 
primary sequence is embedded in a particular type of secondary structure[3, 9, 10].  As 
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such, motif models of RBP binding preference should include both primary sequence and 
secondary structure features.  However, most of the recent work in describing secondary-
structure motifs has been focused on use of Covariance Models (CMs)[11, 12] to model 
families of non-coding RNA (ncRNA)[13, 14] using stochastic context-free 
grammars[15].  However, fitting CMs to collections of sequences bound by an RBP can 
be difficult because the procedures rely heavily on sequence alignment and compensatory 
mutations among paired bases[16] to detect features of RNA secondary structure.  As 
such, it is not clear that these representations are appropriate for protein binding sites, 
which tend to be much smaller than ncRNAs and may be subject to different constraints. 
So, despite an increase variety of experiment methods available for identifying sequences 
bound by RNA-binding protein, either in vivo (e.g. RIP-chip[17] and CLIP[18, 19]) or in 
vitro (e.g., SELEX [20]), substantial effort is still needed to develop motif models that 
capture RBP binding preferences and can be easily learned from sequence data. 

There also remain open questions in understanding how trans-acting regulators of 
PTR identify their targets.   For example, though microRNA targeting has been 
extensively studied in the last few years, until recently, the most accurate predictors of 
miRNA target sites were conserved matches to the ~7bp seed region near the 5’ end of 
the miRNA[21, 22].  Accessibility of target sites is now known to be an even more 
accurate predictor[23] though the target predictions of miRNAs are still far from 
complete and new features of target mRNA sequence continue to be discovered [24]. 

Summary  

 The goal of our workshop is to introduce some recent work in the area of post-
transcriptional regulation to a wider computational community, discuss some of the 
unique computational problems faced in this area, and to present some preliminary 
solutions to these problems.  In particular, we will focus on emerging computational and 
large-scale experimental strategies (e.g. microarray and deep sequencing) for 
investigating aspects of gene regulation at the post-transcriptional level, with an emphasis 
on the identification and characterization of the cis- and trans-acting RNA and protein 
components involved.  We will also be exploring new developments in computational 
methods to detect and characterize cis-regulatory signals encoded in mRNAs. 
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