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One goal of personal genomics is to use information about genomic variation to predict who is at risk for various common 

diseases.  Technological advances in genotyping have spawned several personal genetic testing services that market genotyping 

services directly to the consumer.  An important goal of consumer genetic testing is to provide health information along with the 

genotyping results.  This has the potential to integrate detailed personal genetic and genomic information into healthcare decision 

making. Despite the potential importance of these advances, there are some important limitations.  One concern is that much of 

the literature that is used to formulate personal genetics reports is based on genetic association studies that consider each genetic 

variant independently of the others.  It is our working hypothesis that the true value of personal genomics will only be realized 

when the complexity of the genotype-to-phenotype mapping relationship is embraced, rather than ignored.  We focus here on 

complexity in genetic architecture due to epistasis or nonlinear gene-gene interaction.  We have previously developed a 

multifactor dimensionality reduction (MDR) algorithm and software package for detecting nonlinear interactions in genetic 

association studies.  In most prior MDR analyses, the permutation testing strategy used to assess statistical significance was 

unable to differentiate MDR models that captured only interaction effects from those that also detected independent main effects.  

Statistical interpretation of MDR models required post-hoc analysis using entropy-based measures of interaction information.  

We introduce here a novel permutation test that allows the effects of nonlinear interactions between multiple genetic variants to 

be specifically tested in a manner that is not confounded by linear additive effects.  We show using simulated nonlinear 

interactions that the power using the explicit test of epistasis is no different than a standard permutation test. We also show that 

the test has the appropriate size or type I error rate of approximately 0.05. We then apply MDR with the new explicit test of 

epistasis to a large genetic study of bladder cancer and show that a previously reported nonlinear interaction between is indeed 

significant, even after considering the strong additive effect of smoking in the model. Finally, we evaluated the power of the 

explicit test of epistasis to detect the nonlinear interaction between two XPD gene polymorphisms by simulating data from the 

MDR model of bladder cancer susceptibility. The results of this study provide for the first time a simple method for explicitly 

testing epistasis or gene-gene interaction effects in genetic association studies. Although we demonstrated the method with 

MDR, an important advantage is that it can be combined with any modeling approach.  The explicit test of epistasis brings us a 

step closer to the type of routine gene-gene interaction analysis that is needed if we are to enable personal genomics. 

1. Introduction 

1.1.  Personal Genomics 

The era of commercial genetic testing and personal genomics was ushered in with help from the discovery and 

characterization of mutations in BRCA1 and BRCA2 that account for between 20% and 40% of all cases of 

familial breast cancer [1]. Unfortunately, the remaining 60% to 80% of familial breast cancer remains 

unexplained and the elusive BRCA3 gene has not yet been identified despite significant efforts using the full 

spectrum of genetic and genomic tools available [2].  Failure to find the putative BRCA3 gene is somewhat 

surprising given the familial nature and high heritability of this type of breast cancer. The current strategy for 

revealing genetic architecture is to carry out a genome-wide association study (GWAS) with a million or more 

single nucleotide polymorphisms (SNPs) that capture much of the common single nucleotide variation in the 

human genome by tagging blocks of variants that are in linkage disequilibrium [3,4].  These SNPs are then 

individually tested for association with a specific disease state. The GWAS approach is based on the hypothesis 

that scanning the entire genome for single SNP associations in an unbiased manner that ignores current 
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understanding about disease etiology will reveal much of the currently unexplained genetic architecture of a 

particular disease. 

Despite the excitement surrounding the GWAS approach, and the time and financial resources already 

committed, the results have generally been underwhelming.  Consider, for example, the application of GWAS to 

identification of cancer susceptibility genes.  A recent review of these studies shows that a number of new 

susceptibility loci have been identified for several types of cancer, including breast, prostate, colorectal, lung 

and skin [5].  The identification of new associations is certainly important.  However, as Easton and Eeles [5] 

note, the increase in risk for the susceptibility alleles at each of these loci is generally 1.3-fold or less. For 

familial breast cancer, Easton et al. [6] reported five significant, replicated associations that were identified by 

GWAS in a three-stage study design.  Four of these variants were in known genes and one was located in a 

hypothetical gene.  Assuming a multiplicative model, these five loci combine to explain only 3.6% of the excess 

familial risk of breast cancer and, as suggested by Ripperger et al. [2] were not deemed to be suitable for genetic 

testing due to their small effect sizes [6].  In a recent follow up study with two additional stages of testing and 

replication two additional susceptibility loci were identified with odds ratios of 1.11 and 0.95, respectively, each 

accounting for much less than 1% of the familial risk of breast cancer [7].  When combined with the previously 

known genetic risk factors for familial breast cancer, the estimated fraction of risk explained is approximately 

5.9%.  This is in stark contrast to BRCA1 and BRCA2 mutations that account for between 20% and 40% of 

familial breast cancer.  While the application of GWAS to familial breast cancer has generated new knowledge, 

it has not resulted in new genetic tests that can be used to predict and prevent familial breast cancer.  These 

results are particularly discouraging for more common diseases such as sporadic breast cancer that are likely to 

have a much more complex genetic architecture.  As Clark et al. [8] predicted, our success with GWAS depends 

critically on the assumptions we make about disease complexity. It is the goal of this study to develop a new 

hypothesis testing methodology that can be used to directly confront the challenge of detecting and 

characterizing epistasis or nonlinear gene-gene interaction that accounts for a portion of the complex etiology of 

common diseases. 

1.2. Genetic Architecture of Common Diseases 

When designing and executing a genetic association study of disease susceptibility it is very important to 

consider the assumptions that are being made about the genetic architecture of the disease [8].  The questions 

that we ask, the hypotheses that we formulate, the analytical tools selected for data analysis and the inferences 

we make from the results are all limited by the assumptions we make about genetic architecture.  Weiss [9] has 

defined genetic architecture as 1) the set of genes and DNA sequence involved in the disease, 2) their variation 

in the population and 3) their specific effects on the phenotype. It was initially thought that much of the genetic 

risk of familial breast cancer could be explained by three genes (BRCA1, BRAC2 and the hypothetical BRCA3). 

However, it is now clear that the remaining 60% to 80% of risk is likely to be explained by many genes each 

with multiple variations that have very small effects.  It also likely that each variant contributes to risk of 

sporadic breast cancer through nonlinear interactions with other variants in the genome and with multiple 

environmental factors such as diet and smoking.  We focus here on epistasis or gene-gene interaction that is 

expected to be a ubiquitous component of the genetic architecture of common diseases. 

William Bateson coined the word epistasis in the early 1900s to explain deviations from Mendelian 

inheritance [10]. The term literally means “standing upon”, and Bateson used it to describe characters that were 

layered on top of other characters thereby masking their expression. Since Bateson there have been many 

different and evolving definitions of epistasis or gene-gene interaction [e.g. 11-17].  For example, Fisher [18] 

defined epistasis in a statistical manner as an explanation for deviation from additivity in a linear model.  This 

non-additivity of genetic effects measured mathematically is different than the more biological definition of 

epistasis from Bateson.  We have previously made the distinction between Bateson's biological epistasis and 

Fishers statistical epistasis [16].  This distinction is important to keep in mind when thinking about the genetic 

architecture of common human diseases because biological epistasis happens at the cellular level in an 

individual while statistical epistasis is a pattern of genotype to phenotype relationships that results from genetic 

variation in a human population. This distinction becomes important when attempting to draw a biological 

conclusion from a statistical model that describes a genetic association.  Moore and Williams [16] and Phillips 

[13] have discussed the idea that more modern definitions of epistasis may be needed in light of our new 

knowledge about gene networks and biological systems.  However, the classic definitions provided by Bateson 

[10] and Fisher [18] still provide a good starting point for thinking about gene-gene interactions. 

1.3. A Multifactor Dimensionality Reduction Approach to Detecting Epistasis 

As discussed above, one of the early definitions of epistasis was deviation from additivity in a linear model [18].  

The linear model plays a very important role in modern genetic epidemiology because it has a solid theoretical 

foundation, is easy to implement using a wide-range of different software packages, and it is easy to interpret. 
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Despite these good reasons to use linear models [14,15], they do have limitations for explaining genetic models 

of disease because they have limited ability to detect nonlinear patterns of interaction [19].  Here, a nonlinear 

interaction is defined as a synergistic or nonadditive effect of multiple genetic variants that is greater than the 

independent effects of the variants considered alone. It is well documented that linear models have greater 

power to detect main effects than interactions [20-22].  The limitations of the linear model and other parametric 

statistical approaches have motivated the development of computational approaches such as those from machine 

learning and data mining that make fewer assumptions about the functional form of the model and the effects 

being modeled [23-25]. Several recent reviews highlight the need for new methods [26] and discuss and 

compare different strategies for detecting statistical epistasis [15,27]. 

As reviewed recently by Cordell [15], multifactor dimensionality reduction or MDR has emerged as one 

important new and novel method for detecting and characterizing patterns of statistical epistasis in genetic 

association studies that complements the linear modeling paradigm. Multifactor dimensionality reduction 

(MDR) was developed as a nonparametric (i.e. no parameters are estimated) and genetic model-free (i.e. no 

genetic model is assumed) data mining and machine learning strategy for identifying combinations of discrete 

genetics and environmental factors that are predictive of a discrete clinical endpoint [28-34]. Unlike most other 

methods, MDR was designed to detect interactions in the absence of detectable main effects and thus 

complements other statistical approaches such as logistic regression and other machine learning methods such as 

random forests and neural networks.  At the heart of the MDR approach is a feature or attribute construction 

algorithm that creates a new variable or attribute by pooling genotypes from multiple SNPs (see Figure 1).  The 

general process of defining a new attribute as a function of two or more other attributes is referred to as 

constructive induction, or attribute construction, and was first described by Michalski [35].  Constructive, 

induction using the MDR kernel, is accomplished in the following way.  Given a threshold T, a multilocus 

genotype combination is considered high-risk if the ratio of cases (subjects with disease) to controls (healthy 

subjects) exceeds T, otherwise it is considered low-risk.  Genotype combinations considered to be high-risk are 

labeled G1 while those considered low-risk are labeled G0.  This process constructs a new one-dimensional 

attribute with values of G0 and G1.  It is this new single variable that is assessed, using any classification 

method.  The MDR method is based on the idea that changing the representation space of the data will make it 

easier for methods such as logistic regression, classification trees, or a naive Bayes classifier to detect attribute 

dependencies.  As such, MDR complements any classification methods such as those reviewed by Hastie et al. 

[24].  Cross-validation is used to prevent overfitting while permutation testing is used to assess statistical 

significance and to control for false-positives due to multiple testing. This method has been confirmed in 

numerous simulation studies and a user-friendly open-source MDR software package written in Java is freely 

available from www.epistasis.org. 

Although MDR is a powerful method for detecting nonlinear interactions in the absence of independent 

main effects it, like other machine learning methods, does not explicitly disentangle these two types of genetic 

effects.  In other words, a statistically significant MDR model could capture interactions, main effects or both 

interactions and main effects.  It may not be immediately apparent to the user which types of effects are 

represented in a high-order MDR model. This has been previously addressed through post-hoc analysis methods 

that use entropy-based measures of interaction information to identify evidence of nonlinear interactions [33].  

These information theoretic approaches work well but do not reveal directly which genetic effects made a 

meaningful contribution to the statistical significance. We propose here a new explicit test of epistasis that can 

be used in conjunction with MDR or any other method to directly test for nonlinear gene-gene interaction while 

holding the independent main effects constant. 

1.4. Redefining the Null Hypothesis in Genetic Association Studies 

The present study is motivated by the need to greatly improve our knowledge of biological and statistical 

epistasis and its role in human health and disease.  We know very little about the role of epistasis in human 

biology and public health because the focus for so long as has been on the effects of single genes and single 

genetic variants in biological and clinical endpoints.  Given the ubiquity of complexity in genetic architecture, 

with epistasis as a central component, we propose a rephrasing of our research questions.  Instead of asking 

which single SNP is associated with disease, we propose asking which combination of SNPs is associated with 

disease.  Rephrasing the question in this manner necessitates a redefinition of the null hypotheses that needs to 

be tested using statistical and computational methods.  Given the reality of complexity, and this specific 

research question, we propose the following logical set of hypotheses as a starting point for retooling our 

analytical approach to this problem.  First, we propose testing the null hypothesis that the associations in the 

data are only linear and additive using methods such as MDR and the explicit test of epistasis that were designed 

specifically for this purpose.  Once there is significant evidence for rejecting the null hypothesis of linearity, it is 

then a logical next step to test the universal null hypothesis of no association using linear statistical methods 

such as logistic regression that are powered to model the independent and additive main effects.  Rejection of 

the universal null in addition to the linear null provides a set of results generated in a systematic manner that 
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addresses complexity that can then be interpreted biologically using experimental methods or that can be 

interpreted statistically using approaches such as parsimony.  Is the evidence generated by testing the linear null 

more compelling than the evidence generated by testing the universal null?  Answering this question will help 

further our understanding of genetic architecture.  We propose here a new 'explicit test of epistasis' that allows 

us to directly test the linear null hypothesis using MDR or any other method. 

 
Figure 1. MDR attribute construction.  A) Illustrates distribution of cases (left bars) and controls (right bars) for each of the three genotypes 

of SNP1 and SNP2.  The dark-shaded cells have been labeled „high-risk‟ using a threshold of T = 1.  The light-shaded cells have been 

labeled „low-risk‟.   B) Illustrates the distribution of cases and controls when the two functional SNPs are considered jointly.  A new single 

attribute is constructed by pooling the “high-risk” genotype combinations into one group (G1) and the low-risk” into another group (G0).   

2. Methods 

2.1. An Explicit Test of Epistasis 

The goal of our proposed explicit test of epistasis is provide a hypothesis testing framework that will allow us to 

directly test the null hypothesis that the only genetic effects in the data are linear and additive.  As described in 

detail by Pattin et al. [36], the current hypothesis testing framework for MDR is based on a permutation test that 

randomizes the class (i.e. case and control) labels so that the only genetic associations in the permuted data are 

there by chance (see Figure 1A and 1B).  Permutation testing is used because it doesn't assume we know the null 

distribution of the test statistic (e.g. testing accuracy) and it controls for false-positives due to multiple testing.  

However, the current permutation testing framework provides a global p-value for an MDR model that might 

have main effects, gene-gene interactions, or a combination of both.  Significance tells us nothing about the 

nature of the MDR model and only reflects the fact that the model predicts class better than chance. 

We propose here an explicit test of interaction that has all the same advantages of the permutation testing 

framework but that is able to provide a p-value that reflects only the nonlinear interaction or epistasis 

component of the model.  To accomplish this, we first sort the data rows (i.e. the subjects) by class into cases 

and controls (see Figure 1C). We then randomize each column (i.e. the SNPs) within each class.  This removes 

any relationship between genotypes within class but preserves the overall genotype frequency difference 

between the classes.  This new type of permutation randomizes any interaction effects while keeping the 

independent main effects as defined by class differences in genotype frequency.  This allows us to generate 

permuted datasets under the null hypothesis that the only genetic associations in the data are linear or additive in 

nature and that any nonlinear interaction effects are only there by chance.  This yields an explicit test of epistasis 

when combined with a method such as MDR that is capable of modeling nonlinear interactions. 

We have included the explicit test of interaction in the MDR permutation testing (MDRpt) module that is 

open-source and freely available from www.epistasis.org. 
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Figure 2. Overview of the explicit test of epistasis. Shown on the left (panels A and C) is a hypothetical dataset with three attributes (e.g. 

SNPs) coded X1, X2 and X3 and class (i.e. case-control status).  Each row of the dataset is one of 40 subjects with hypothetical binary 
genotypes colored in light shades of blue and case-control status coded darker shades of blue.  In this simple example, X1 and X2 effect 

disease risk through a nonlinear interaction while X3 has an independent main effects that is reflected by a frequency difference in 

genotypes between cases and controls.  Panel B shows the process of randomizing class labels in a standard permutation test.  Panel D 
shows the same data randomized for the explicit test of interaction.  Here, the columns are randomized within each class.  Note that the 

genotype frequencies within each class remain fixed.  This preserves the independent main effects while randomizing any nonlinear 

interactions. 

2.2. Multifactor Dimensionality Reduction Analysis 

As described above, the goal of MDR is to change the representation space of the data using constructive 

induction to make nonlinear interactions easier to detect.  This is accomplished by combining two or more 

variables or attributes into a single attribute that can be modeled using a discrete data classifier.  Here, we used a 

simple probabilistic classifier that is similar to naïve Bayes [31] to model the relationship between variables 

constructed using MDR and case-control status.  Naïve Bayes classifiers were assessed using balanced accuracy 

as recommended by [37].  For each dataset we evaluated all possible pairwise combinations of SNPs using 

MDR.  The model with the maximum training accuracy as assessed with ten-fold cross validation was selected 

as the best model. The testing accuracy (i.e. predictive ability) of the single best MDR model was then assessed 

using the cross-validation hold-out data. We used the open-source MDR software package that is freely 

available from www.epistasis.org.  A tutorial on MDR can be found in the November and December 2006 

postings at compgen.blogspot.com. 

2.3. Evaluation of Power and Type I Error Using Simulated Data 

The goal of the simulation study was to generate artificial datasets that could be used to evaluate the power of 

the MDR within the explicit test of epistasis framework to detect nonlinear gene-gene interactions.  We 

developed a total of 35 different penetrance functions that define a probabilistic relationship between genotype 

and phenotype where susceptibility to disease is dependent on genotypes from two loci in the absence of any 

marginal effects.  The models were distributed evenly across seven broad-sense heritabilities (0.01, 0.025, 0.05, 
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0.1, 0.2, 0.3, and 0.4) with minor allele frequencies of 0.4. A total of five models for each of the seven 

heritabilities were generated for a total of 35 models.  More information about the mathematics of penetrance 

functions and heritability can be found in Culverhouse et al. [38]. A heritability of 0.01 is a very small genetic 

effect size while 0.4 is a very large genetic effect size. The details of the 35 penetrance functions used here have 

been previously described in detail by Velez et al. [37].  Genotype frequencies for all 35 epistasis models were 

consistent with Hardy-Weinberg proportions.  One hundred data sets were generated for each model with three 

sample sizes (400, 800, and 1600 total individuals) with case-control proportions of 1:1.  Each pair of functional 

polymorphisms was embedded within a set of 20 independent single-nucleotide polymorphisms (SNPs).  A total 

of 7,000 artificial datasets were generated and analyzed.  For evaluating the type I error of the explicit test of 

epistasis, null data sets with no functional SNPs were generated by permuting the case-control labels of the data 

sets described above. All simulated data are available upon request. 

The power of MDR using the explicit test of epistasis test was estimated as the percentage of times MDR 

correctly identified the two functional SNPs in the best model out of each set of 100 datasets for which the result 

was statistically significant at the 0.05 level (i.e. the testing accuracy was equal to or higher than the top 5% 

highest testing accuracies in the permuted data). Type I error was estimated as the proportion of times that the 

permutation test indicated a statistically significant MDR model in data consistent with the null hypothesis of no 

association. 

 

 
Figure 3. Distribution of cases (left bars) and controls (right bars) for each XPD genotype (coded 0, 1, 2) and for pack years of smoking 

(pack.yr) in the bladder cancer example. Dark shaded cells indicate high-risk for disease while light-shaded cells indicate low-risk. The p-
value from a standard permutation test for this model was <0.001. Note that it is difficult to tell which attribute has a main effect and which 

are interacting and how these different effects contribute to the statistical significance. 

2.4. Application to Bladder Cancer 

We demonstrated use of the explicit test of epistasis with real data by applying it to a genetic epidemiology 

study that examined the relationship between DNA repair gene SNPs, smoking, and bladder cancer 

susceptibility that was previously analyzed using MDR and a 1000-fold permutation test [39]. The study 

analyzed 355 bladder cancer cases and 559 controls ascertained from the state of New Hampshire. This study 

focused specifically on genes that play an important role in the repair of DNA sequences that have been 

damaged by chemical compounds (e.g. carcinogens).  Seven SNPs were measured including two from the X-ray 

repair cross-complementing group 1 gene (XRCC1), one from the XRCC3 gene, two from the xeroderma 

pigmentosum group D (XPD) gene, one from the nucleotide excision repair gene (XPC), and one from the AP 

endonuclease 1 gene (APE1).  Each of these genes plays an important role in DNA repair.  Smoking is a known 

risk factor for bladder cancer and was included in the analysis along with gender and age for a total of 10 

attributes.  Age was discretized to > or ≤ 50 years. 

A parametric linear statistical analysis of each attribute individually revealed a significant independent main 

effect of smoking as expected (P < 0.05).  However, none of the measured SNPs were significant predictors of 

bladder cancer individually (P > 0.05).  Andrew et al. [39] used MDR to exhaustively evaluate all possible two-, 

three-, and four-way interactions among the genetic and environmental attributes. For each combination of 

attributes a single constructed attribute was evaluated using a naïve Bayes classifier.  Training and testing 

accuracy were estimated using 10-fold cross-validation.  A best model was selected that maximized the testing 

accuracy. The best model had a testing accuracy of approximately 0.63 and included two SNPs from the XPD 

gene and smoking. The distribution of cases and controls with each genotype/smoking combination is illustrated 

above in Figure 3.  They statistically evaluated this model with a 1000-fold permutation test and determined 

these results to be highly significant (p<0.001). Post-hoc analysis of the MDR model using entropy-based 
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measures of interaction information revealed that the two XPD polymorphisms had evidence of nonlinear 

interaction or synergy in the near complete absence of main effects.  Interestingly, the joint effect of the two 

XPD SNPs was larger than the independent from the effect of smoking. As such, these data provide an ideal test 

case for the proposed explicit test of interaction.  Is the nonlinear interaction between the two XPD SNPs 

statistically significant after holding the effects of smoking constant in the new permutation test or was the 

significance only due to the large effect of smoking? To answer this question we applied MDR with the explicit 

test of interaction to the bladder cancer data and determined the statistical significance of the model comprised 

of the two SNPs from the XPD gene and smoking. 

To assess the power of the explicit test of epistasis to detect the joint effect of the two XPD SNPs in the 

bladder cancer we simulated 100 datasets using three different MDR models from the bladder cancer data 

analysis described above.  First, we simulated 100 datasets using the MDR model containing the two XPD 

SNPs.  Second, we simulated 100 datasets using the MDR model containing just smoking.  Third, we simulated 

100 datasets using the MDR model containing the two XPD SNPs with smoking.  The total number of simulated 

attributes was the same as the original data. We applied MDR along with the explicit test of interaction to each 

simulated dataset and recorded the power to detect an interaction.  We expect the results of this study to provide 

realistic power estimates for real data with a detectable interaction and a strong independent main effect. 

3. Results 

3.1. The Power and Type I Error of the Explicit Test of Epistasis 

Table 1 summarizes the power and the type I error (in parentheses) of the explicit test of epistasis to detect 

nonlinear interactions in the simulated data using MDR models.  The power exceeded 0.80 for all sample sizes 

for data with moderate to large genetic effect sizes (heritability > 0.025).  Power also exceeded 0.80 at sample 

sizes of 1600 and 800 for the small genetic effect sizes of 0.01 and 0.025, respectively.  It is important to note 

that these power estimates are extremely close (± 0 to 0.01) to those estimated using a standard permutation test 

by Pattin et al. [36]. These results demonstrate that the new explicit test of interaction does not lose power to 

detect nonlinear interactions as compared to a standard permutation test. 

Also shown in Table 1 in parentheses are the estimates of the false-positive rate or type I error.  Note that in 

each case the type I error rate was approximately 0.05 suggesting that the explicit test of interaction is an 

appropriately sized test.  As with power, this is not different than has been previously reported for standard 

permutation tests with MDR [36]. This is important given that MDR is a machine learning algorithm that looks 

at the data in a combinatorial manner. 

 
Table 1. Summary of the power and type I error (parentheses) of the explicit test of interactions when combined with MDR. 

 

Sample Size 

Heritability 

0.01 0.025 0.05 0.10 0.20 0.30 0.40 

400 0.22 (0.06) 0.65 (0.06) 0.87 (0.04) 0.95 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 

800 0.51 (0.04) 0.88 (0.07) 0.98 (0.04) 1.00 (0.06) 1.00 (0.06) 1.00 (0.04) 1.00 (0.07) 

1600 0.87 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.04) 1.00 (0.05) 1.00 (0.05) 1.00 (0.04) 

3.2. Application to Bladder Cancer 

As described above, the bladder cancer study of Andrew et al. [39] makes an ideal test case for the new explicit 

test of interaction because a statistically significant MDR model was detected that consisted of two interacting 

SNPs and smoking that appeared to have an independent main effect.  This model was determined to be 

significant at the 0.001 level using a standard permutation test and, at the time, it wasn't clear the degree to 

which the significance was due to the main effect of smoking, the nonlinear gene-gene interaction, or both.  We 

applied MDR with the explicit test of interaction and found the same best model with the p-value of 0.005.  This 

is a highly significant result that confirms the important role of a nonlinear interaction between the two XPD 

polymorphisms.  This synergistic interaction was still highly significant even after controlling for the 

contribution made by smoking, a known risk factor for bladder cancer. 

Figure 4 below illustrates the distribution of testing accuracies for best MDR models from the standard 

permutation test and the explicit test of interaction.  First, note that the center for the permutation distribution is 

approximately 0.50.  This is the result that is expected if a fair coin were used to predict who is a case and who 

is a control.  Now note that the distribution for the explicit test of epistasis is shifted to the right. This shift is due 

to the factors with independent main effects in the data such as smoking that are fixed during the randomization 

process used by the explicit test of epistasis. 
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Figure 4. Distribution of testing accuracies from best MDR models obtained from 1000 datasets randomized using a standard permutation 
test (red squares) and the explicit test of epistasis (purple circles).  Note that the permutation distribution is centered (dashed line) at 

approximately 0.50, as expected. However, the center null distribution derived from the explicit test of epistasis is shifted to the right.  This 

new center is consistent with the fixed main effects in the data. The testing accuracy for the best MDR model from the bladder cancer data is 
shown on the right (solid line).  The area to the right of 0.637 is shaded purple and is equivalent to the p-value of 0.005. 

 

What was the power to detect this effect?  As described above, we evaluated power by simulating data from 

MDR models of the two XPD SNPs, just smoking and the two XPD SNPs with smoking.  We found that the 

power to detect just the interaction was 1.00 while the power to detect the interaction with the effect of smoking 

in the model was 0.94.  This reduction in power is not surprising given the increase in MDR model size from 

two factors (two dimensions) to three factors (three dimensions).  As expected, the power to detect an 

interaction for the model with just smoking was 0.06.  This is approximately equal to the type I error rate of 0.05 

since there was no interaction to find.  These findings confirm the results from the earlier simulation study.  The 

power results are not relevant to the actual bladder cancer data analysis since a highly significant model was 

detected with a p-value of 0.005.  However, they do help to reveal the operating characteristics of the explicit 

test of interaction. 

4. Discussion 

Epistasis or gene-gene interaction is expected to be a ubiquitous component of the genetic architecture of 

common human diseases [40]. As such, it has very important implications for the success of personal genomics 

which is currently based almost entirely on results from genetic association studies that only consider one SNP 

or one gene at a time.  Moore and Williams [41] have suggested that personal genomics will not reach its full 

potential to impact human health until the full complexity of the genotype-to-phenotype relationship is 

addressed in all genetic studies. What can be done to improve the usefulness of personal genomics?  Moore and 

Williams [41] offer the following five recommendations:  

 

1.  We need to greatly improve our understanding of biological and statistical epistasis and their roles in human 

health and disease.  

2.  We need powerful analytical tools that are designed to address the complexity of genetic architecture due to 

epistasis and other phenomena. 

3.  We need better experimental methods for confirming statistical models of epistasis in animal models or in 

human cell culture.   

4.  We need to remember the principles of classical genetics as we immerse ourselves in the excitement of 

cutting-edge genotyping technology and emerging methods for rapidly sequencing an entire genome. 
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5.  We need to continue to integrate systems biology into human genetics in a meaningful manner.   

 

The goal of the present study was to develop a hypothesis testing framework and methodology that can be 

used with methods such as MDR that were designed specifically for detecting and characterizing nonlinear or 

nonadditive gene-gene interactions in genetic association studies.  As such, this study is consistent with the first 

two recommendations listed above.  We have introduced an explicit test of epistasis that can be used to test the 

null hypothesis that the only genotype-to-phenotype relationships in the data are linear and additive.  This is 

important because until now methods such as MDR could only perform a universal test of the null hypothesis of 

no association [36].  Inferences about nonadditive interactions were made from post-hoc analyses using methods 

based on information theory [33].  We demonstrated using simulated data that this approach retains the power of 

a standard permutation test to detect epistasis across a range of effects sizes and sample sizes.  Further, we 

demonstrated that this new approach has a reasonable type I error rate of approximately 0.05.  Finally, we 

applied this new approach to a large genetic study of bladder cancer and were able to confirm a previously 

reported nonadditive gene-gene interaction in the presence of the large independent effect of smoking [39]. 

In addition to introducing a new method for epistasis analysis, we have also introduced a new hypothesis 

testing framework that redefines the null hypothesis of no genetic association into component parts that are 

more consistent with the assumption that the genetic architecture of common diseases is complex (see Section 

1.4).  It is important to note that idea of testing the null hypothesis of linearity using nonlinear statistical 

methods is not new.  For example, Theiler et al. [42] introduced the method of surrogate data in the context of 

time series analysis as way to test for nonlinear patterns with the confounding of linear patterns. With the 

method of surrogate data, a discrete Fourier transform of a time series is taken, the phases are randomized and a 

new time series generated using an inverse discrete Fourier transform.  The resulting phase-randomized time 

series has the same linear patterns as the original time series with all other patterns randomized.  This procedure 

makes it possible to test the null hypothesis of linearity using any statistic that is capable of measure nonlinear 

patterns.  As reviewed by Moore [43], the method of surrogate data is a type of permutation and thus has many 

similarities to the explicit test of interaction introduced here. 

The advantages of the explicit test of epistasis include its simplicity and its flexibility.  First, the explicit test 

of interaction is simply a modified permutation test that randomizes the attribute columns within each class.  

Thus, it can be easily implemented in a Perl or Python script or in a data analysis package such as R.  We have 

also provided the method in the open-source MDR permutation testing module.  Second, the approach is very 

flexible in that it can be generally applied to any method that is designed for detecting nonlinear gene-gene 

interactions.  Thus, it could be combined with other machine learning methods such as decision trees, neural 

networks or support vector machines. The only disadvantage of the approach is that permutation testing can add 

a significant amount of computational time.  This will be important for application of these methods to GWAS.  

Approaches such as the extreme value distribution (EVD) that can reduce the number of permutations that need 

to be performed are likely to help address this problem [36]. 

We recommend several future studies with the explicit test of epistasis.  First, it will be interesting to use 

the explicit test of epistasis to compare the power of different methods for detecting gene-gene interactions in 

the presence of independent main effects.  This will be important because some methods may be confounded by 

any linear additive patterns in the data.  Second, it will be important to demonstrate that the EVD approach 

described by Pattin et al. [36] could be combined with the explicit test of epistasis without violating the 

distributional assumptions of the EVD.  This will be important in the context of GWAS where computational 

efficiency is extremely important. Finally, it will be very important to implement the explicit test of interactions 

with other real datasets where both interactions and independent main effects are present.  Reanalysis of 

published epistasis results to confirm nonlinear interactions will be helpful for determining statistical 

significance.  We anticipate the explicit test of epistasis will play an important role in the detection, 

characterization and interpretation of nonlinear gene-gene interactions in genetic association studies.  As such, it 

will play an important role in improving the impact of personal genomics and other healthcare endeavors that 

depend critically on published genetic association results that reflect the underlying genetic architecture of the 

disease in question. 
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