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The gram-negative myxobacterium Myxococcus xanthus is equipped with an interesting motility system that allows

it to reverse direction on average every 8 minutes by switching the construction of two motility engines at the ends

of this rod-shaped bacterium. While the mechanisms responsible for timing and engine construction/deconstruction

are relatively well understood, there are several competing hypotheses as to how they are coupled together. In this

paper we examine the evidence for protein interactions underlying these possible couplings using a novel framework

consisting of a probabilistic model describing protein and domain interactions and a belief propagation inference

algorithm. When provided with large amount of indirect pieces of information, such as high-throughput experiment

results, and protein structures, we can reliably determine the relative likelihoods of these hypotheses, even though

each individual piece of evidence by itself has very limited reliability. The same framework can be used to map large

protein and domain interaction networks in myxobacteria and other organisms.
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1. Introduction

The availability of large quantities of experimental data, protein information, crystal structures of proteins

and domains stimulated research on quantitative methods to estimate protein-protein (PPI) and domain-

domain (DDI) interaction likelihoods. At the present time, most of these efforts have been focused on proving

the effectiveness of these algorithms on known protein datasets. However, fewer efforts have been put into

using such predictive tools to understand and study the dynamics of protein networks of actual interest in

biology from an in silico perspective. In this work, we aim to do this by concentrating in a particular pathway

related to motility in myxobacteria. Specifically, our study focuses on the study of Myxococcus xanthus, a

gram-negative myxobacterium which under extreme conditions of starvation stops swarming and starts a

new developmental phase to coordinate their motion cooperatively to aggregate and ultimately form fruiting

bodies.1 This multicellular cooperation in an unicellular organism makes Myxococcus xanthus an important

model to understand regulatory pathways where many cells work together to achieve a common functional

role.

To achieve this we use a PPI/DDI inference framework to provide a set of possible interactions underlying

signaling pathways in M. xanthus. M. xanthus cells reverse the direction of gliding, which leads to efficient

swarming, by controlling the assembly and disassembly of motility engines. For these reasons, M. xanthus

is an interesting system to perform PPI predictions, since many of its proteins and domains have homology

with chemosensory and other regulatory proteins in other well studied proteobacteria like Escherichia coli,

Salmonella typhimurium and other sequenced δ-proteobacteria. Structures of domains in E. coli proteins

are available, a feature required for the structural scoring. We also include structural complexes of domains

obtained from the iPfam database to enhance the predictive nature of our methodology.
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2. Methods

2.1. Sum-Product Algorithm for DDI/PPI Inference

Posterior probabilities for domain and protein interaction pairs can be obtained by calculating the marginals

of a joint probability distribution that is a function of protein interaction experiments, domain interaction

evidence and the relationship between domain composition of proteins and the fact that individual inde-

pendent domains establish physical contacts leading to protein interactions. We calculate this using the

Sum-Product Algorithm (SPA),2 an efficient method to compute marginals of multivariate functions that

factor into products of simpler functions. The SPA uses a graph representation of this joint probability dis-

tribution, called the factor graph, and obtains marginal values by iteratively exchanging messages along the

graph edges. One of the advantages of SPA is the ability to improve prediction accuracy against other known

methods like maximum likelihood estimation, while at the same time correct experimental errors. SPA will

not only estimate the probability of potential interaction but also will re-score the experimental input data

and correct putative experimental errors. We present a more in-depth derivation and validation of the use

of SPA for PPI and DDI inference in.3 In this work, we include a brief overview of the method and focus on

its application to protein networks in M. xanthus.

We denote by Ai,j = 1 a hypothesis that proteins i and j interact, by Bx,y = 1 a hypothesis that domains

x and y interact, and use Mi,j and Nx,y to quantify the results of interaction measurements or experimental

evidence performed on the protein pair (i, j) and domain pair (x, y), respectively. According to the model,

the joint probability distribution P (A,B,M,N|H), where H denotes the set of the domain architectures of

proteins, factors into a product

P (A,B,M,N|H) =
∏

(i,j)

P (Mi,j |Ai,j)
∏

(x,y)

P (Nx,y|Bx,y)P (Bx,y)P (A|B,H). (1)

The terms P (Mi,j |Ai,j) and P (Nx,y|Bx,y) represent the probability that an experiment produces a positive

result given that proteins i and j actually interact and the probability of a positive measurement given that

domain x interacts with y, respectively. These terms serve as the main information input points of the model.

The term P (Bx,y) represents the a priori probability of a domain-domain interactions and is set for all x

and y to an estimated probability that two randomly selected domains would interact. The central part of

our model is described through deterministic relations of the form

Ai,j =
∨

(x,y)∈Bi,j(H)

Bx,y for all (i, j), (2)

where Bi,j(H) is the set of domain pairs, such that one domain is present in protein i and the other in

j. Relations (2) state that a protein pair interacts if and only if at least one of its domain pairs interacts.

This set of equations must be satisfied by all Ai,j and Bx,y. Consequently, the probability P (A|B,H) can

be factored into a product of individual indicator functions for each (i, j). The factor graph illustrating the
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Fig. 1. Factor graph representation of the joint probability distribution P (A,B,M,N|H).

complete factorization is presented in Figure 1. The SPA iteratively recomputes messages along each edge in
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the graph according to equations specific to the type of the node from which the message originates. After

completing a predefined number of iterations, the algorithm obtains the a posteriori probabilities of PPI,

P (Ai,j = 1|M,N,H), and DDI, P (Bx,y = 1|M,N,H), which are the final result of the inference task. They

are obtained from all messages incoming into their corresponding variable nodes, i.e.,

P (Ai,j = 1|M,N,H) =



1 +
K

Ai,j
∏

k=1

eα
Ai,j

k





−1

, (3)

P (Bx,y = 1|M,N,H) =



1 +

KBx,y
∏

k=1

eα
Bx,y

k





−1

, (4)

generated in the final iteration. Where α
Ai,j

k is the log-ratio message entering node Ai,j along the branch

k in the factor graph of Figure 1. In this model, the domain pair architecture as well as potential protein

pairs are connected via a factor graph. Hence, protein and domain pair probability estimates depend on the

shared domain pair architecture. Since protein domain architectures define the topology of the factor graphs

they directly affect the computation of probabilities via message passing.

2.2. Data Sets

Several sources were used to extract relevant information for PPI inference. Protein information was retrieved

from Uniprot4 and 3-D protein structures from the Protein Data Bank.5 Domain composition of each protein

was extracted from Pfam 22.6 PPI data were obtained from two main sources: Database of Interacting Protein

(DIP),7 where most of the interaction pairs were obtained using yeast two-hybrid assays and IntAct,8 which

contains a higher number of interactions with different reliability levels. In3 we use a high quality binary

dataset of PPI in Saccharomyces cerevisiae, compiled by Yu et al.9 for performance evaluation and validation.

The algorithm also uses 6,081 iPfam domain interaction pairs as input.10

Table 1. Data sets used by our inference in silico methodology

Data Source Description

Uniprot Protein general information and sequence

DIP Database and literature 33,234 protein interactions

(May 2007)
IntAct 150,876 protein interactions

Yeast Golden Set (Yu et al.) 2,581 protein interactions

Pfam version 22 Domain composition of proteins
iPfam 6,081 Domain-domain interactions with complex

PDB Protein and Domain three dimensional structure

For the M. xanthus system we used a list of 23 proteins that are known to be related to the Frz system.

Out of 253 possible pairings, SPA found a list of 66 potential PPI with a probability larger than 0. These

interactions contained 18 unique proteins. We discarded protein interactions that do not share the same

cellular location to obtain Figure 2. Finally, Table 2 shows 10 protein pairs that either have experimentally

confirmed interactions or that contain potential interactions that seem biologically meaningful for the motility

reversal model in M. xanthus. The discarded protein interactions have a mean score of 0.6634 while the 10

selected interactions have a mean score of 0.8064.

2.3. SPA run time and scalability

Run time of this algorithm depends on the size of the factor graph and the number of iterations defined in the

message passing algorithm. The factor graph scales quadratically with the number of proteins and domains
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analyzed. However, given the nature of the input data, where domains are not shared among all the proteins

and the fact that we only have measurements for a smaller subset of protein pairs, a series of disconnected

factor graphs are created for the input protein and domain datasets. We process these disconnected factor

graphs independently, which allows parallelization and scalability of the inference task. We do predictions

using the high performance computing cluster (HPCC) of the University of Notre Dame. Using 2.29 GHz

Quad-Core AMD Opteron processors we run SPA with 19 iterations in less than two hours including the

largest connected subgraph.

3. Predicting interactors in M. xanthus reversal system

We studied how the control of reversals in gliding direction of M. xanthus takes place. M. xanthus has two

different multi-protein engines: S-motility and A-motility; both involve social interactions. S-motility depends

on Type IV Pili motors.11 These pili attach to fibrils surrounding other M. xanthus cells and by means of

retraction pull the cell forward. A-motility, is associated with slime secretion. One hypothesis states that

slime coming out of several molecular nozzles at polar ends of the cell pushes the cell forward12.13 Pili should

be present in the leading part of the cell while slime nozzles be part of the back of the cell. This configuration

allows for pilus retraction and slime propulsion at the same time. A second hypothesis relates A-motility

with non-polar cell surface adhesion complexes.14 M. xanthus cells are able to move over surfaces by gliding,

they reverse their direction of movement with an average period of approximately 7.2 minutes.15 This period

seems to be optimal to achieve higher swarming rates and cell flux.16 These reversals occur by switching

motility engines from one end of the cell to the other. Under the slime propulsion model, a process of nozzle

inactivation takes place when secretion is switched from one pole to the other, and pili are inactivated when

they switch from one end to the other. A control circuit is needed for engine switching that would lead to

cell reversals. That circuit includes the Frz (frizzy) system which is deemed responsible of controlling the

frequency of reversals in M. xanthus.17 This circuit is based on a two-component system that clocks the time

to exchanging motility engines in the ends of the cell. Frizzy proteins that control the reversal frequency

include FrzCD (uniprot accession: P43500), a methyl-accepting chemosensory protein having similarities

with MCP proteins used for flagellar swarming in E. coli, but which is cytoplasmic in M. xanthus and not

a membrane protein as in E. coli .15 Also important is FrzE (P18769), a histidine kinase composed of two

domains similar to CheY (P0AE68) and CheA (P07363) proteins in E. coli .18 FrzE has autophosphorylating

function induced by a phosphate transfer from the HK domain (CheA) to its response regulator (CheY).

It is suggested that FrzE∼P is responsible for signaling reversal of polarity to the motility engine. FrzG

(P31758) is a methyltransferase similar to CheB (P07330), which is involved in the methylation of FrzCD,

for adaptation. During fruiting body development, the FruA (Q1D7Q3) response regulator triggers FrzCD

methylation. During growth there is no FruA, and FrzCD is spontaneously methylated at a low rate.19

Igoshin et al.20 constructed a dynamical model of the Frz system. During reversals the levels of methy-

lated FrzCD and FrzE∼P oscillated consistently out of phase, suggesting that these proteins form a negative

feedback loop. The loop describes accurately the frequency of reversals observed in M. xanthus when nu-

trients are scarce and development towards fruiting body formation is in its initial phase. For the model of

Igoshin et al. to be valid, it requires one of two potential protein pairs. These hypotheses still remain to be

tested experimentally. The two potential interactions are the following: FrzE-FrzF and FrzE-FrzG. To test

these hypotheses, we used our predictive methodology on a list of proteins involved in the FruA-Frz network.

Since several interactions forming part of the reversal mechanism are understood and their existence has

been established, we have a way to assess our predictions. Reproducing interactions that are already studied

provides support to our methodology and at the same time shows the potential of in silico methodologies to

reproduce scientific efforts to elucidate protein interactions in a given pathway. On the other hand, predicting

protein interactions in proteins of and related to the Frz-Mgl network let us investigate the plausibility of

these competing hypotheses. The prediction algorithm was run using the data sets presented in Methods.

Figure 2 presents a PPI network that was the outcome of the algorithm.

In Figure 2, nodes represent signaling proteins while the edge represent the physical interaction pre-

Pacific Symposium on Biocomputing 15:157-165(2010



September 23, 2009 14:38 WSPC - Proceedings Trim Size: 11in x 8.5in morcos

Fig. 2. Predicted network of interactions in the Frz system of M. xanthus.

diction. Self interactions have been subtracted to facilitate readability. This network has also a color code

classification: orange nodes represent proteins in the negative feedback loop of Igoshin’s model; red proteins

are related to A-motility; yellow nodes play a role in S-motility; green nodes are being identified to have a

role in both A and S motility systems and finally MglA is represented by a blue node. This node plays an

important role in the connection of the reversal control and the actual motility mechanisms.

Table 2 presents a summary of the most important predicted interactions in the signaling network of M.

xanthus. It includes literature references and SPA scores to those interactions discuss here, illustrating the

correct predictive capabilities of our methodology. The bottom part of the table encompasses those PPI for

which we have not found literature describing them, however, our predictions present computational evidence

about their interaction and our analysis shows that their biological role might be of importance and thus

can be further studied.

Table 2. Predicted Interactions found in Literature and novel interactions for

M. xanthus

Predicted Reference SPA score

Interaction

FrzE - FrzG 20 Hypothesis (high likelihood) 0.96

FrzE - FrzCD 21 0.99

FrzE - FrzZ 22 (suggested) 1.00

FrzF - FrzCD 21 0.46

MglA - MasK (Q1DB00) 23 1.00
MglA - AglZ 24 0.56

MglA - FrzE Predicted , (motility bridge) 0.639

MglA - FrzF Predicted 0.95
MglA - RomR Predicted (A-motility) 0.56

MglA - Tgl Predicted (S-motility) 0.95

3.1. Analysis of hypotheses in Igoshin’s model

We turned our discussion to those potential interactions that make possible a negative feedback loop yielding

a biochemical oscillator in the signaling circuit of M. xanthus. Based on these results, we provide compu-

tational support for one of these hypothesis. The hypothesis FrzE-FrzG, was predicted with high score (see

Pacific Symposium on Biocomputing 15:157-165(2010



September 23, 2009 14:38 WSPC - Proceedings Trim Size: 11in x 8.5in morcos

Table 2). The PDB 1a2o provides structural evidence that proteins with these domains might create in-

teracting complexes. Djordjevicj et al.25 determined the crystal structure of CheB. It has two domains, a

response regulator and a CheB methylesterase joined by a linker. They found that in its unphosphorylated

state, the RR would bind the CheB methylest domain and impede its activity. The crystal in 1a2o shows how

an unphosphorylated response regulator interacts with the effector domain CheB methylest with a surface

area of 1000 Å
2
. They also argued that phosphorylation of the response regulator would induce a conforma-

tional change that takes both domains apart and free the methylesterase to perform its catalytic function.

Phosphorylation induces minor reorientation of regulator helices α4 and α5, resulting in disruption of the

inter-domain interaction. Protein CheA phosphorylates the response regulator in CheB.26 In the regulatory

circuit of M. xanthus, the FrzG-FrzE interaction is different because FrzG only has the CheB methylest

domain, hence this domain could be active in the absence of a regulator. We hypothesize that the unphos-

phorylated response regulator in FrzE could help inhibit FrzG function, while an autophosphorylated FrzE

could not block FrzG methylesterase and activating it as a consequence. This hypothesis is plausible but

unconfirmed. Our results suggest that the biochemical oscillator depends on the FrzE-FrzG interaction.

3.2. Searching for interactions with MglA, the proposed switch protein

Although the mechanism to control the frequency of reversals in M. xanthus has been studied extensively

through the Frz system, and other two-component systems,27 there are still some missing links needed to

uncover the connection between the MglA switch and the actual A and S engines. MglA has been shown

experimentally to have an influence in both A and S engines.28 Cells with mutant mglA genes fail to reverse

and fail to swarm. They show simultaneous secretion of slime from both ends of the cell;13 it is suggested,

but not experimentally confirmed, that pili are also present from both ends of the cell. Thus MglA may

serve as a switch to start disassembly of engines at both ends of the cell.16 MglA-GTP might pick the end

that should lose pili by losing Tgl (P95324) and would also select the end to inactivate slime propulsion by

potentially interacting with CglB (O31191).29

We included MglA, with a conserved Ras domain, in our list of interactors. We were interested in

the interaction patterns of MglA with respect to proteins in the Frz system and other proteins related to

motility. We found that MglA has a potential central role in both motility systems and the Frz system

given its predicted interactions with different members of these systems. Figure 2 depicts MglA in blue, and

presents edges with several proteins. We start our discussion by analyzing the inferred interaction MglA-

FrzE, since this interaction could potentially represent the link between the Frz system and the two motility

systems in M. xanthus.

Our estimation algorithm produced a score for Ras-Response reg, supporting the plausibility that a

potential interaction between MglA and FrzE results from a physical contact between the Ras domain in

MglA and the phosphorylated Response reg in FrzE. The domain pair Ras-Response reg-P which underlies

the FrzE-MglA interaction leads to the prediction of other interactions that seem important to our study.

The protein pairs MglA-FrzZ (Q7BU54) and MglA-FrzS (Q1D4U9) are also plausible interactions between

a Ras domain pair and response regulators. These results suggest how MglA has an important role for the

switching of motility in the Frz system of M. xanthus.

3.3. MglA interacts with Tgl and RomR

We also investigated a possible interaction between MglA and engine proteins. Tgl is a lipoprotein needed

for the assembly of the PilQ (Q9ZFG1) secretin and thus for S-motility. Tgl is a stimulatable protein found

in membrane. It allows PilQ to assemble with the help of six TPR (Tetratrico peptide repeat superfamily)

repeats. One hypothesis is that three of these repeats interact with one monomer of PilQ, while the three

remaining repeats interact with the adjacent PilQ monomer.29 We investigated if MglA interacts with Tgl.

Our prediction algorithm infered that TPR 1, one of the domains present in Tgl, interacts with high prob-

ability with the Ras domain in MglA. This domain interaction would potentially trigger the destruction of
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Tgl or its removal from PilQ.29 The inclusion of iPfam evidence in our algorithm allowed us to identify a

crystal structure (PDB: 1e96) showing the Ras domain in complex with TPR 1. When this structure was

obtained, Rittinger et al. suggested that this interaction is important for the assembly of protein (enzyme)

complexes.30 This proposition provides more plausibility to the hypothesis that MglA-GTP causes PilQ to

disassemble. It is possible that through this interaction, MglA opens Tgl in such a way that it makes it

accessible to a protease that would then contribute to the disassemble of PilQ at one end of the rod shaped

cell.31

RomR is an essential protein for slime engine function. Its switching from the extremes of the cell

depends on MglA. Thus, we are interested in the possible interaction MglA-RomR. Søgaard-Andersen et

al.32 report that RomR has a Response reg (receiver) domain in the N terminal and an output domain

in the C terminal of the protein. Søgaard-Andersen et al. proposed that correct RomR polarity depends

on the small GTPase MglA. They also state the importance of RomR for A-motility and how this protein

relocates synchronously with another Frz protein: FrzS. They concluded that the Receiver domain is involved

in dynamic RomR localization and that this is required for reversals, while the output domain is a polar

targeting determinant. Their studies also showed that when the receiver domain is not phosphorylated then no

reversals are observed. On the other hand, if the receiver domain is always phosphorylated then there is a 1.5

fold increase in reversal frequency. However, the RomR kinase has yet to be identified. With this information

and based on our prediction of interaction between Ras-Response reg-P, we provide computational evidence

that indeed MglA could interact with RomR.

4. Discussion

In this work, PPI/DDI prediction methods are combined with the biological understanding of the reversal

system of M. xanthus as an attempt to improve present knowledge of the players involved in this process. A

contribution of this work is to illustrate how this framework is used to study small networks that perform

important functions in an organism. The focus in M. xanthus’ reversal system is due to its importance

in development and swarming. Support for this approach is provided by predicting interactions previously

reported in the literature. This study provides an assessment of the contribution of interactions FrzE-FrzF

and FrzE-FrzG as being part of the biochemical oscillator that controls the reversal frequency. Results suggest

that FrzE-FrzG plays an important role in negative feedback circuit. Furthermore, this framework let us reach

a more detailed explanation of how the response regulator domain in FrzE possibly interacts with the CheB

methylesterase domain in FrzG. This interaction possibly inhibits FrzG demethylation activity. When the

response regulator is phosphorylated this interaction is broken allowing FrzG to demethylate FrzCD. This

mechanism is needed to support the negative feedback model in the “Frizzilator”.

We investigated the role of MglA as a switch to control the construction of motility engines in M. xanthus.

Predictions showed the central role of this protein, first as a bridge with the negative feedback system by

interacting with FrzE and how its interactions with RomR, Tgl, FrzS and AglZ (Q1D823) are important for

both A and S engines. With these predictions, along with the present understanding of the reversal switch

it is possible to expand the model of this system. This model is illustrated in Figure 3.

The model shows how MglA serves as a link between the signaling pathway involving Frz proteins and

the motility engines. MglA receives a signaling message from FrzE that triggers the destruction of old engines

in the ends of the cell. Potential interactions of MglA with Tgl and FrzS have an impact in the switching

of S-motility engines. Parallel to these interactions, MglA is predicted to be interacting with RomR and

AglZ, showing a connection with the A-motility engines. This expanded model could help devise testable

hypotheses in the motility system of M. xanthus.
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Fig. 3. Expanded model of switching motility in M. xanthus. Switching is triggered by FrzE-MglA. MglA-GTP interacts

with A and S motility systems.
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