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Unveiling the modular structure of biological networks can reveal important organizational patterns in the cell. Many
graph partitioning algorithms have been proposed towards this end. However, most approaches only consider a single,
optimal decomposition of the network. In this work, we make use of the multitude of near-optimal clusterings in
order to explore the dynamics of network clusterings and how those dynamics relate to the structure of the underlying
network. We recast the modularity optimization problem as an integer linear program with diversity constraints.
These constraints produce an ensemble of dissimilar but still highly modular clusterings. We apply our approach
to four social and biological networks and show how optimal and near-optimal solutions can be used in conjunction
to identify deeper community structure in the network, including inter-community dynamics, communities that are
especially resilient to change, and core-and-peripheral community members.

1. Introduction

Many types of biological networks, such as protein interaction networks and metabolic networks, are known
15 Modules are typically composed of a set of nodes that are all functionally
related. Uncovering such functional building blocks is useful because it can provide us with a systems-
level understanding of how the cell is organized. Several graph partitioning algorithms have been recently
proposed for this purpose (e.g.10:2:39:32:34) "hut these algorithms typically select only a single solution from
the vast space of possible clusterings. The chosen solution is meant to characterize the modular structure of
the data, but it ignores the horde of near-optimal solutions.

Near-optimal solutions are crucial in many respects. For example, they can help assess confidence in the
optimal partitioning. If a near-optimal solution is nearly as good as the optimal, we may be unsure whether
it is the near-optimal or the optimal partitioning that represents the true community structure. This is

to be modular in nature

especially true in the presence of noise, when the true community structure might be obscured and as a
result only emerge as some near-optimal solution. More locally, pairs of nodes that are co-clustered in many
near-optimal partitionings can be confidently determined to be members of the same community. Equivalence
classes of these frequently co-clustered nodes can be considered the “core” members of a community. Others
ought to be considered tenuous or “peripheral” members. Thus, unlike single solution approaches that treat
each individual as an equivalent community member, near-optimal solutions provide a way to measure the
strength of membership of members to each community. Further, understanding inter-and intra-community
interactions can be used to quantify how robust or resilient a community is to change. By taking such
interactions into account, we transition from treating communities as static, independent blobs to dynamic
blobs with varying memberships. Finally, there is also theoretical and empirical evidence suggesting that
single point solutions in high-dimensional spaces do not represent the data as well as ensembles of solutions?.
This is particularly true in machine learning, where ensembles of classifiers have been consistently shown to
outperform single models36:37.

In this article, we look at a broad collection of social and biological networks and show how near-optimal
clusterings impart information into community dynamics that would otherwise be missed using single solution
approaches. We use the popular modularity partitioning criteria proposed by Newman?3*. Modularity has
received mixed reviews regarding its relevance to biological networks. It was shown to perform poorly at
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recovering functional modules from large protein interaction networks3!, but it has been effective at finding
modules in smaller metabolic networks''. We consider it here for smaller networks, but use it simply as
a template to investigate near-optimal solutions. It is likely that other approaches will also reap similar
benefits by considering ensembles of solutions.

To explore near-optimal community partitions, we cast modularity optimization as an integer linear
program (ILP), as has been done before!, but add diversity constraints so that each subsequent clustering
is not only adequately different from all previous solutions, but also has high modularity. This way, we
directly optimize for both diversity and quality. The collection of solutions returned constitute a partial
“energy landscape” that represents overlaid decompositions of the network.

Several techniques have been proposed for finding ensembles of optimal and near-optimal solutions to sim-

ilar ILP problems. For example, both randomly perturbing objective function weights by a small amount?%12,

16,21 " can help explore different regions of the clustering

or perturbing the input data itself and re-clustering
space (though selecting the size of that perturbation can be difficult). Alternatively, a randomized rounding
procedure to convert a fractional solution to an integral one can be used!, yielding a slightly different par-

11,27 can be used instead

titioning each time. In addition, heuristic techniques such as simulated annealing
of ILPs to optimize the modularity. Such approaches explicitly explore the state space, and an ensemble of
partitionings can be generated by saving any good solutions observed. But these techniques are all based
on the idea of randomization: perturbing the inputs or the outputs randomly, or randomly transitioning
between solutions. Such randomized procedures suffer from at least two deficiencies. First, they often yield
solutions very similar to the optimal because large deviations are improbable to be generated at random.
Secondly, there is no guarantee that the perturbed solutions have high modularity. The randomized proce-
dure may generate many diverse solutions of poor quality. Other approaches vary input parameters, such
as the number of clusters to return®?, though there can exist multiple reasonable clusterings that have the
same number of clusters. Recently, another approach was proposed that systematically perturbs the input
data such that the transformed and original data retain similar properties; an alternative clustering is then
found by clustering the transformed data®®. Here, we take the approach of explicitly constraining for di-
versity within the clustering process itself. This guarantees that each successive solution is both sufficiently
different from previously obtained solutions and achieves the maximum possible modularity attainable under
the given diversity criteria.

We explore a broad spectrum of social and biological networks in an attempt to show the types of insights
that can be extracted from large collections of near-optimal solutions. We begin with Zachary’s karate club
social network®?, which documents the fission of a group of university students after an internal dispute over
the price of karate lessons. Interestingly, we find that the clustering closest to the actual resulting fission of
the club (i.e. the true clustering) does not appear until the 31*" near-optimal solution. We also show that
exploring near-optimal solutions can help identify fringe members of the two factions.

We next look at the ERK1/ERK2 mitogen-activated protein kinase (MAPK?'®) signal-transduction path-
way. We identify functional subunits that correspond well to known submodules of the pathway, and we
classify their robustness across the modularity landscape. Two portions of the ERK pathway consistently
remain tightly bound, whereas all other components are eventually split. We also identify gatekeeper nodes
that lie between functional modules in the Integrin signalling pathway?2°.

Finally, we consider a network of cortical-cortical connections in the human brain and find 53 of the first
60 near-optimal solutions are within 1% of the optimal modularity. Of these, 12 have a > 3% advantage in
spatial coherence over the optimal clustering, indicating that they might better represent the true modules
of the brain. Differentially classified nodes in this case can be used to identify spatial outliers with respect to
the topology. The immense number of similar solutions also suggests tremendous uncertainty in the optimal
partitioning.

In all four networks, we find insights conveyed by near-optimal partitionings that helps augment our
current understanding of community structure and dynamics.
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2. Generating A Diverse Ensemble of Partitionings

Below, we describe our procedure for generating an ensemble of distinct, high-modularity clusterings using
integer linear programming (ILP). All superscripts used below indicate indices, not exponentiation.

2.1. Integer Programming for Modularity

Intuitively, maximizing modularity corresponds to finding communities where the number of edges lying
within a cluster is much greater than we would expect by chance (under an Erdds-Renyi null distribution),
and the number of edges connecting two different clusters is much less. Formally, the modularity ¢(G,C) of
an undirected, unweighted network G with community decomposition C is defined as

q(G,C) == > (Auy — kuky/(2m)) (1 = 24y , (1)

u,veV

where A,, is an entry in the adjacency matrix for G (it is 1 if w and v interact and 0 otherwise), k,, is
the degree of node u, m is the total number of edges, and the variables x,, describe C by indicating which
vertices are in the same community. More specifically, we have a variable x,, for every pair of nodes u < v,
with the interpretation that z,, = 1 if v and v belong to different clusters, and ., = 0 otherwise. Letting
My = Ayy —kuky/(2m), a pair of nodes u, v in the same cluster contributes my,, to the total modularity (1.,
may be negative). Hence, we seek to maximize Zu’v My (1 — Xy ) by setting the x,, variables appropriately.

To ensure that the nodes identified as co-clustered are consistent with each other, we must enforce the
triangle inequality. This leads to the following integer linear program, MOD-ILP:

maximize Z Z My (1 — Toy) (2)

uEV vEV
subject to
Tuv + Tow > Tuw for all u,v,w eV (3)
Zuw € {0,1} (4)

This ILP is identical to the one proposed by Agarwal et al.! for modularity maximization and is similar to
the ILP proposed for correlation clustering by Charikar et al.> Another similar ILP, where instead z,, = 1
indicates that v and v are in the same cluster and with consequently modified constraints, was proposed by
Brandes et al.? Here, we use MOD-ILP as a tool to generate ensembles of diverse community decompositions,
as described in the next section. The ILP can be solved to optimality via branch-and-bound using an ILP
solver such as glpk?® or CPLEX!7. There are (g) variables and 3(3) constraints, where n is the number of
nodes. For large networks solving the ILP to optimality can be time consuming. Hence, a rounding heuristic
has been proposed! based on an approximation algorithm for correlation clustering®. In this approach, the
integrality constraints (4) are replaced by constraints requiring 0 < ., < 1 and the fractional solution
is rounded, treating the fractional x,, values as pairwise distances between the nodes. In this article, we
focus on smaller networks that can be solved to optimality. However, for larger networks the LP-relaxation
of MOD-ILP (with subsequent rounding) can be used, along with the same diversity constraints that are
discussed below.

2.2. Dwersity Constraints

A solution to MOD-ILP reveals only one possible partitioning of the network. Suppose X° is a (g)-vector

(z9,) representing an optimal solution to MOD-ILP, and let 1 be the ()-vector with every component equal

to 1. The following constraints require a vector X to be different from vector X°:

XO(T_X) Zd?‘ﬂerge (5)
(T=X%) - X > dy, (6)
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Here, - denotes the dot product between the vectors. Considering X©, d?nerge and dgplit to be constants, the

constraints represented in (5) and (6) are linear. By adding them to MOD-ILP and finding a new optimal,
the ILP is forced to return a solution X that is different from X°. The amount of difference is governed

by the parameters dgplit and d?nerge. Equation (5) requires that at least d?nerge variables change from 1 to

0, thereby requiring that d?nerge pairs of nodes formerly in separate clusters become co-clustered. Similarly,

equation (6) requires that at least dgplit pairs that were co-clustered in X© are placed in separate clusters

0
merge

constraints are required to balance between larger-and smaller-sized clusters, respectively. We can avoid

in X. The parameters d and dgpht can be set to vary the level and type of diversity desired. Both

setting separate levels of each diversity type by consolidating these constraints:
XO'(T_X)+(I_X0)'Xchhangcs; (7)

where the left-hand side is equivalent to the Hamming distance, A(X, X"), between vectors X and X°.
Re-solving MOD-ILP with constraint (7) added will find an alternative optimal (if one exists) or will find a
second-best partitioning.

To speed up the solution of the ILP, we can use a heuristic algorithm to find a reasonable partitioning
and then supply that partitioning to the integer programming solver as an initial basis. Here, this was
necessary only for the Integrin pathway and the human brain network, where we used the partitioning found
by Newman’s spectral method®* as a starting basis. This provided the solver a starting point for the branch-
and-bound process and resulted in convergence in minutes (as opposed to hours). Such an initial basis does
not alter the optimality of the solution found.

2.3. Modularity Landscape

A partial “modularity landscape” of a network can be generated by iteratively solving MOD-ILP including
constraint (7) while increasing denanges. If X ¢ is the solution of the ith iteration, in the i + 1 interaction, we
set

difl = AX% X)) +1. (8)

changes

In contrast to repeated sampling using, e.g., simulated annealing'':?7, this approach guarantees that succes-
sively obtained partitionings maximize modularity while still being sufficiently different from the optimal,
XY, We call this the distance-based method of generating diverse solutions.

An alternative method for generating an ensemble of diverse, high-modularity partitionings is to re-
peatedly resolve MOD-ILP with the addition of several constraints of the form of Equation 7, one for each
previously uncovered solution. In other words, on the ith iteration, for each previous solution X7 (0 < j < i),
we add a constraint X7 - (I — X) + (I — X7) - X > 1 to MOD-ILP. A new solution will have at least one
difference from each previously uncovered solution. We call this the point-based method because it is akin
to avoiding specific markers on the clusterings space. The point-based method produces clusterings that
are finer-grained than the distance-based approach because there can exist many solutions having distance
2hanges dz?l_;nges
the 7'M solution returned is a provably i** optimal network decomposition in terms of modularity (clusterings
with identical modularity will be ordered arbitrarily). The distance-based method more quickly samples
a more diverse collection of solutions. By setting dchanges > 1, the point-based approach could also be
adopted to more rapidly sample the solution space. In the results described below, we experiment with the
distance-based approach and the point-based approach with dchanges = 1.

between d and that the distance-based method would miss. Using the point-based method,

2.4. Determining Core and Peripheral Community Members

Nodes that travel together across the modularity landscape can be thought of as core members of a commu-
nity. Such nodes remain together despite the additional diversity constraints added, which implies that their
cohesion is stronger than that of other pairs of nodes. Nodes whose co-clustered neighbors fluctuate across
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Figure 1. Zachary’s karate club social network*?. The network consists of 34 nodes and 78 edges. Blue circles correspond
to Mr. Hi’s faction. Red squares correspond to the officers’ faction.

solutions can be considered peripheral members that lie on the outskirts of the community. We find core and
peripheral members of communities by creating a co-clustering matrix whose entries equals the number of
clusterings in the landscape in which nodes v and v are co-clustered. Dense blocks in the matrix correspond
to core members; cavities within dense blocks indicate peripheral activity or overlapping modules. Such

28,9 __ where the

matrices have been previously investigated in a different context — consensus clustering
goal is typically to return a centroid clustering that lies centrally amongst a given set of input clusterings.
Finding core and peripheral proteins within dense subgraphs in protein interaction networks has also recently
been shown to be useful for protein complex identification® 2324, We use the co-clustering matrix as a means

to identify inter-and intra-module clustering dynamics.

3. Results

We used MOD-ILP with diversity constraints to produce modularity landscapes for the karate club social
network??, the ERK1/ERK2 MAPK!'® and Integrin®® metabolic pathways, and a coarse-level human brain
network'3. For each network, we show how exploring ensembles of near-optimal solutions reveals clustering
dynamics that would otherwise be missed by single solution approaches.

3.1. Karate Club Network

We begin by studying the modularity landscape of Zachary’s karate club network*?, shown in Figure 1. This
network consists of 34 nodes and 78 social-interaction edges. Due to an internal dispute over the price of
karate lessons, the group split into two factions, one corresponding to the club’s karate instructor, Mr. Hi,
and the other to the club’s officers. Although not a network derived from molecular biology, it has the
advantage of being small enough to examine by hand and to have hand-curated evidence regarding social
interactions and community membership.

The distance-based approach found 82 different clusterings, after which no more feasible clusterings
existed. These clusterings had between 1 and 5 communities. Figure 2 shows the modularity landscape
produced by MOD-ILP with diversity constraints using the distance-based approach. In each panel, the
z-axis gives the solution number. The y-axis in the top panel shows the distance from each solution to the
optimal solution; the y-axes of the middle and bottom panels show the solution’s modularity and number
of communities, respectively. The number of communities does not monotonically decrease with lower
modularity. Instead, different components join or break-off as dictated by the resulting modularity and
diversity constraints. This implies that our ensembles do not simply correspond to iteratively choosing
different levels in the modularity hierarchical tree decomposition®.

Although the true structure consisted of 2 communities, the optimal modularity solution (with modularity
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Figure 2. Modularity landscape of the karate club network. The z-axis in all panels shows the community index (ordered
list of clusterings returned by iterative runs of MOD-ILP with distance-based diversity constraints). The 0** community index
corresponds to the optimal modularity clustering. (a) The Hamming distance from each clustering to the optimal modularity
clustering. (b) The modularity of each clustering. There are 10 clusterings with modularity > 0.4, and 37 with modularity
> 0.3. (¢) The number of communities in each clustering.

0.419790) had four clusters (with each faction broken into two communities). The network is not split into the
two communities until the 313 solution. This solution has modularity 0.343195 and corresponds closely to the
actual groups formed (with the exception of nodes 9, 10, 20, and 31 — all topologically fringe, three of which
were weak supporters of their faction leaders*?). Such a solution would never be found unless near-optimal
solutions were considered. Further, randomized rounding procedures would be unable to generate diverse
solutions for this network, because even when the integrality constraints were relaxed, allowing ., € [0, 1],
an integral solution was returned. This argues for the necessity of a constraint-based approach.

The point-based method, which only constrains each solution to be minimally different from all previous
solutions, produced many more finer-grained solutions corresponding to incremental merging and splitting

0" solution of the point-based approach still had a modularity above 0.4.

of communities. In fact, the 10
Although this level of detail could be useful for some applications, here we seek to more coarsely characterize
the clustering dynamics, and therefore only further consider the distance-based solutions.

Dynamics for individual nodes can be better understood by looking at near-optimal solutions. For
example, the solution with the provably second-best modularity, which is also the clustering that is output
by Newman’s spectral method3*, consists of 4 clusters but with slightly smaller modularity (0.418803) than
the optimum. The difference lies in the classification of node 10, which, in the second-best clustering is
placed with Mr. Hi and in the optimal clustering is placed with the officer’s faction. Zachary measures the
strength of friendship between pairs of individuals based on their interactions in other social contexts (for
example, academic classes, student pubs, and other karate studios*?) and finds that node 10 had nearly
equal interaction with members from both factions. Node 10 was also not a strong believer in either faction’s
ideology (although he ultimately chose the officer’s club after the fission). Hence, it makes sense that node
10 was the first to jump from one clustering to the other.

Another interesting case occurs for node 20. He lies in Mr. Hi’s faction in the optimal clustering, but in
subsequent clusterings is co-clustered with members from the officer’s faction. According to Zachary, node
20 ultimately chooses Mr. Hi’s club, but only weakly supported Mr. Hi’s position in the dispute*3. Looking
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Figure 3. (a) The ERK1/ERK2 MAPK signalling pathway!8. The network consists of 32 nodes and 54 edges. The color
of the node indicates the subcellular localization of the signalling component (green = cytosol, orange = plasma membrane, gray
= nucleus, blue = plasma membrane translocation, and pink = mitochondrion). The network was drawn using Cytoscape3?.
(b) “Flip-book” showing the clustering dynamics of the ERK1/ERK2 MAPK pathway. Each of the four blocks
corresponds to a clustering produced by MOD-ILP with distance-based diversity constraints. The number of the clustering is
shown at the top, and its modularity on the bottom. Each cluster is blocked within a polygonal shape. A variety of near-optimal
clusterings provide alternative, legitimate decompositions of the network.

at the network, 20 is connected to both faction leaders, plus an additional supporter of Mr. Hi. Topologically
and anecdotally, it seems to make sense then that node 20 is a peripheral member of Mr. Hi’s karate club.

Trying to identify core and peripheral nodes by only looking at the neighbors of a node, however, can
be misleading. Node 3, for example, is a topologically fringe node with 10 total edges, 5 to members in
both factions. But, according to Zachary*3, node 3 was a strong supporter of Mr. Hi, whose club he joined
after fission. In our ensemble, we only see node 3 switch from a Mr. Hi-dominant clustering to a clustering
dominated by officer members three times. These all occur near the end of the landscape, at clusterings 72,
78, and 80, which have a very low modularity (average = 0.030188). Using only network neighbors to classify
a node as core or peripheral is therefore not always sufficient. Further, the landscape also provides a way to
confidently say what groups of nodes do not belong together. A static analysis of the optimal clustering will
clearly be unable to understand these type of community dynamics.

3.2. Signalling Networks

We considered the ERK1/ERK2 mitogen-activated protein kinase (MAPK) pathway!® shown in Figure 3a.
MAPK is a signal-transduction pathway that is highly-conserved across eukaryotes. MAPKs phosphorylate
serines and threonines of target proteins and regulate a vast array of cellular functions, including gene
expression, mitosis, and metabolism!?. The extra-cellular signal-regulated kinases (ERKs) play a functional

role in cell division, in particular meiosis and mitosis!'?

. Identifying functional modules in such pathways
is important because modules are often conserved across organisms, and thus can be used to generate new
pathways from reference pathways?%#!. The pathway consists of 32 nodes and 54 edges.

Figure 3b shows four snapshots of the modularity landscape. The optimal modularity (clustering 1)
consists of five clusters roughly corresponding to nodes surrounding the Ras activation module, the Raf
and MEK kinase modules, and the larger ERK module (split into three) — all known submodules of the
pathway. In subsequent clusterings, nearby cores are either split or merged together, corresponding to finer-
and coarser-grained functional subunits of the pathway. As in the karate network, we also find that the

number of clusters does not simply monotonically decrease (or increase) as the diversity constraint, dehanges.
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Figure 4. Co-clustering heatmap for the ERK1/ERK2 MAPK pathway!'®. A broad view of how pairs of nodes
traverse the modularity landscape. Each cell (u,v) in the heatmap corresponds to the number of clusterings in which nodes u
and v were placed together. The nodes are ordered according to the optimal modularity found by MOD-ILP. Though outlines
of the five optimal modules are present, the fluctuation of activity within and between the five blocks reveal interesting inter-
and intra-community interactions.

is increased.

Figure 4 shows a global view of how the affiliation between each pair of nodes changes across clusterings.
The intensity of cell (u,v) in the heatmap corresponds to the number of clusterings in the landscape in which
nodes u and v are co-clustered. A similar picture was obtained by setting the intensity of a cell (u,v) to be
the total modularity sum of all clusterings in which v and v were co-clustered. The nodes are ordered based
on the clusters from the optimal modularity clustering.

The outlines of the five optimal blocks in Figure 4 provide a basic hint about the modular structure of the
pathway, but it does not tell the whole story. For example, nodes 20 (PKA) and 27 (Rapla) travel together
much more than 27 and 13 (Mos), even though all three were placed together in the same optimal module.
From the layout shown in Figure 3a, this makes sense — PKA and Rapla are connected to the core Raf
module by only one edge, and are also connected to each other. This suggests that they play a peripheral
role in the module in which they were placed, or perhaps that they should be placed together in their own
module.

The heatmap also provides a way to measure the confidence in a community by looking at how a group
of nodes change their membership with respect to each other. For example, nodes 15, 17, 30, 31, and 32,
corresponding to a portion of the ERK module, were co-clustered across all clusterings, as indicated by the
solid red block in the upper-right corner of Figure 4. This implies that we are very confident in this module,
more so than any other. Other clusters vary greatly with respect to how often their members travel together.
An optimal clustering alone would yield a heatmap with solid red blocks for all clusters, which is much less
informative of community membership strength.

We also looked at the Integrin signalling pathway?®, known to be vital for cell migration and growth. This
pathway is longer and less dense than the ERK/MAPK pathway. The optimal modularity clustering found
a reasonable decomposition consisting of modules with long chains of nodes. These long chains are often
prefaced by gatekeeper nodes that branch off multiple non-overlapping paths. Network centrality measures
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Figure 5. Anatomical network of the human cerebral cortex!'3. The network consists of 66 nodes (brain regions) and
2,149 multiedges (dense axonal-pathways). The ‘r’ and ‘I’ prefixes correspond to the right and left hemispheres of the brain.
The remaining portion of the names correspond to cortical regions (e.g. ENT = entorhinal cortex, TP = temporal pole, PC =
posterior cingulate cortex, CUN = cuneus, and PARH = parahippocampal cortex). The layout is set to spatially agree with
the actual positions of the regions in the brain. Coordinates of the regions were estimated from Figure 6 in Hagmann et al.13,
as well as from the Brede database3®. The network was drawn using Cytoscape®.

have also been used to globally identify highly “between” nodes,*>'* though they do not typically take
modules into account. Interestingly, many of the near-optimal clusterings identified these gatekeepers by
placing them into different modules corresponding to the various branches. For example, the Cdc42 protein
acts as a between-module node that ultimately leads to activation of actin and the c-Jun N-terminal kinases
(JNK). It was first placed amongst nodes in the JNK module, but later switches into the actin module. A
similar dynamic was seen for branches leading out of the focal adhesion kinase (FAK), which is involved in
cellular adhesion and migration.

3.3. Brain Network

Lastly, we investigated a network representing the axonal-pathways within the cortex of the human brain.
Brain maps have typically been constructed using functional magnetic resonance imaging (fMRI), which

10,7y, 1.13 used a technique called

measures neural activity via blood flow (e.g. Recently, Hagmann et a
diffusion spectrum imaging (DSI) which identifies neuronal fiber trajectories by looking at the diffusion of
water molecules in brain tissues. DSI produces a 3D water-flow gradient at specified positions in the brain
to which tractography can be applied to recover the underlying neural tracts. Tractography identifies, for
each position, the diffusion of water to that position from all other directions. Thus, we can determine the
axonal trajectories across white matter, i.e. the connectivity across different regions in the brain. Regions
are typically defined manually after white-gray matter segmentation (white = nerve connections, gray =
congregations of neurons). The resulting network is composed of nodes (brain regions) and weighted edges,
corresponding to the density of the connection between brain regions.

1.13 applied their technique to generate a brain “connectome” for five human participants.

Hagmann et a
Each connectome consists of 998 regions of interest. They also created a coarser network by condensing the
998 regions into 66 anatomical regions. An edge (u,v) in the anatomical network was weighted by computing

the average of all edges that map to (u,v). To handle weighted networks, we used an extended version of



Pacific Symposium on Biocomputing 15:166-177(2010)

Clustering 1 Clustering 21 Clustering 56

Py

¢
)

® @ L

L RN it S
= 4
A0
modularity = 0.591012 modularity = 0.588372 modularity = 0.581412
spatial coherence = 49.14 spatial coherence = 46.53 spatial coherence = 48.64
Figure 6. “Flip-book” showing the clustering dynamics of the anatomical brain network!?. Each of the three blocks

corresponds to a clustering produced by MOD-ILP with distance-based diversity constraints. The number of the clustering is
shown at the top, with modularity and spatial coherence on the bottom. Co-clustered nodes share the same color and shape.
Black circles highlight nodes whose communities change across clusterings. The optimal modularity clustering does not have
the highest coherence with the spatial coordinates of the regions.

modularity that converts weighted edges to unweighted, multi-edges®®. In particular, in the multi-edged

anatomical network we created [1000 - w(u, v)]| edges between nodes w and v, where w(u, v) is the weight of
edge (u,v) in the weighted anatomical network. The only change required in the definition of modularity
is with A,,, which is now the number of edges that go between u and v, instead of just 0 or 1. The final
anatomical network contained 66 nodes and 2, 149 multiedges. Hagmann et al.!® applied modularity to the
anatomical network to identify regional hubs.

We ran MOD-ILP with diversity constraints on the first subject’s human connectome (Figure 5). The
similarity between the modularity values of the near-optimal solutions suggest extreme uncertainty in whether
the optimal solution represents the true partitioning. Figure 6 shows the optimal clustering plus two near-
optimal clusterings returned by the distance-based approach. The near-optimal clusterings are only slightly
less topologically modular. In fact, amongst the first 60 solutions, we find that 53 are within 1% of the
optimal modularity.

The brain network is unique among those that we consider because the nodes have a fixed spatial position.
Hagmann et al.'? assigned spatial coordinates to each region corresponding to its center of mass, but because
not all spatial coordinates were available, the layout in Figure 5 is a taken from the layout drawn in Hagmann
et al.!3 Three-dimensional spatial coordinates were directly available for 23 of the 66 regions. An additional
15 regions were assigned spatial coordinates based on averaging the coordinates from several studies for the
relevant region using the Brede neuroimaging database®’.

The spatial coordinates themselves define a rough clustering, which can be used as an additional measure
(along with modularity) to evaluate the likelihood of a particular brain network partitioning. We defined
the spatial coherence of a clustering as the average Euclidean distance between anatomical regions placed in
the same cluster. The near-optimal clusterings shown in Figure 6 have a better spatial coherence than the
optimal solution at only a tiny decrease in modularity, despite having the same number of clusters. In fact,
out of the 60 near-optimal solutions 30 of these solutions have a > 1% advantage in spatial coherence, 24 have
a > 2% advantage, and 12 have a > 3% advantage. Naturally, clusters and nodes that do not match what
is expected spatially may be the most interesting to investigate further. The nodes that are differentially
clustered within the ensemble of solutions (circled in black in Figure 6) are typically such spatial outliers.
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4. Conclusions

We investigated the clustering dynamics of four social and biological networks to reveal how these networks
are organized. In all four settings, we showed how traversing the modularity landscape by explicitly con-
straining for diversity can be used to uncover deeper community structure that would otherwise be absent
from single-solution or randomization-based procedures. In particular, we used ensembles of near-optimal
network decompositions to identify resilient communities, core-peripheral community members, and finer-
and coarser-grained community structure. We also found cases where near-optimal solutions corresponded
better with known community structure than the optimal solution. We presented mostly anecdotal evi-

dence regarding inter-and intra-module dynamics. Testing these notions on a large scale, such as for the

8,23,24

automated identification of core-peripheral proteins in protein complexes , is a potential avenue for

future work. It would also be interesting to characterize the relationship between clustering dynamics across
the energy landscape and clustering dynamics across time. Nonetheless, we believe the insights provided
by near-optimal solutions augment our current understanding of community structure and dynamics, and
should not be ignored.
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