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RNAz, a support vector machine (SVM) approach for identifying functional non-coding RNAs (ncRNAs), has been

proven to be one of the most accurate tools for this goal. Among the measurements used in RNAz, the Structure
Conservation Index (SCI) which evaluates the evolutionary conservation of RNA secondary structures in terms
of folding energies, has been reported to have an extremely high discrimination capability. However, for practical

use of RNAz on the genome-wide search, a relatively high false discovery rate has unfortunately been estimated.
It is conceivable that multiple alignments produced by a standard aligner that does not consider any secondary
structures are not suitable for identifying ncRNAs in some cases and incur high false discovery rate. In this study,
we propose C-SCI, an improved measurement based on the SCI applying γ-centroid estimators to incorporate the

robustness against low quality multiple alignments. Our experiments show that the C-SCI achieves higher accuracy
than the original SCI for not only human-curated structural alignments but also low quality alignments produced
by CLUSTAL W. Furthermore, the accuracy of the C-SCI on CLUSTAL W alignments is comparable with that of
the original SCI on structural alignments generated with RAF for which 4.7-fold expensive computational time is

required on average.
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1. Introduction

Many studies have recently discovered essential roles of non-protein-coding functional RNAs (ncRNAs)
in cells such as translation, post-transcriptional gene regulation and maturation of rRNAs, tRNAs and
mRNAs.1,2 Therefore, to identify ncRNAs in genomes and analyze their functions is a crucial task for not
only molecular cell biology but also bioinformatics.

It is well-known that such biological functions of ncRNAs are deeply related to their secondary structures
which consist of hydrogen-bonded base-pairs including the Watson-Crick base-pairs (A-U and G-C), the wobble
base-pairs (G-U) and other non-canonical base-pairs. These base-pairs stabilize the structure of RNAs in terms
of the free energy. Thus, the secondary structure with the minimum free energy (MFE) has been regarded
as the most reliable prediction of RNA secondary structures.

However, MFE alone could not be an appropriate measure for identifying ncRNAs since the free energy
is heavily biased by the nucleotide composition.3 Therefore, several comparative approaches for identifying
ncRNAs have been proposed.4–10 For this purpose, Washietl et al. have developed RNAz which uses a support
vector machine (SVM) approach, and have proposed the Structure Conservation Index (SCI) as a feature
to measure the evolutionary conservation in terms of secondary structures.7 Assuming that MFE for the
consensus secondary structure is close to that for each sequence if a given multiple alignment is structurally
conserved, the SCI is defined as the rate of MFE for the common secondary structure to averaged MFE for
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each sequence. MFEs for each sequence and the common secondary structure are calculated by RNAfold and
RNAalifold both part of the Vienna RNA packages,11,12 respectively.

RNAz with the SCI has been proven to be the one of the most accurate tools for identifying ncRNAs.7,13

However, for practical use of RNAz on the genome-wide search, a relatively high false discovery rate has
unfortunately been estimated.14 It is conceivable that multiple alignments produced by a standard aligner
that does not consider any secondary structures are not suitable for identifying ncRNAs in some cases and
incur high false discovery rate. Wang et al. have also suggested that the genome-wide alignments in the UCSC
Genome Browser15 produced by MULTIZ16 should be improved in some regions for identifying ncRNAs.17

To improve the accuracy, two strategies can be considered: the one is to employ a structural aligner such
as RAF18 to produce high quality alignments, and the other is to develop a more robust method against
low quality alignments. Since the former strategy will consume impractical execution time for structural
alignments, this study takes the latter strategy.

Recently, CentroidFold which employs γ-centroid estimators for predicting RNA secondary struc-
tures has been developed, and has been shown to be more accurate than other existing tools.9 Especially,
CentroidFold can predict much more accurate common secondary structures for low quality multiple
alignments produced by CLUSTAL W19 than RNAalifold.

In this study, we propose C-SCI, an improved measurement based on the SCI applying γ-centroid
estimators for (common) secondary structure prediction, instead of RNAfold and RNAalifold, to incorporate
the robustness against low quality multiple alignments. Our experiments show that the C-SCI achieves
higher accuracy than the original SCI for not only human-curated structural alignments but also low quality
alignments produced by CLUSTAL W. Furthermore, the accuracy of the C-SCI on CLUSTAL W alignments
is comparable with that of the original SCI on RAF alignments for which 4.7-fold expensive computational
time is required on average.

2. Method

2.1. Structure Conservation Index

The Structure Conservation Index (SCI) evaluates secondary structure conservation of a given multiple
alignment of RNAs in terms of the minimum free energy (MFE). We denote with S(x) the entire folding
space of a single sequence x and denote with S(A) the entire consensus folding space of an alignment A. The
SCI is defined as

SCI(A) =
EAlign(yMFE

A )
1

#A

∑
x∈A E(yMFE

x )
, (1)

where #A is the number of sequences in the alignment A. For a single sequence x, E(y) denotes the free
energy of a secondary structure y ∈ S(x), and yMFE

x = arg miny∈S(x) E(y) is defined to be the MFE
structure of x calculated by RNAfold.11 Similarly, for an alignment A, EAlign(y) is the free energy of a
consensus structure y ∈ S(A), and yMFE

A = arg miny∈S(A) EAlign(A) is the consensus MFE structure of A

calculated by RNAalifold.12 The free energy of a consensus structure is defined as the average of the energy
contributions of the single sequences plus covariance scores for bonuses of compensatory and consistent
co-mutation in the alignment.

The consensus MFE alone could be used to identify functional RNAs likelihood of functional RNAs in
terms of thermodynamic stability of consensus folded structures. However, it is difficult to make straight-
forward use of it, since the folding energy is heavily biased by the nucleotide composition and the length of
the alignment. The SCI solved this problem by normalizing EAlign(yMFE

A ) with the average of E(yMFE
x ) for

all x ∈ A. From a different view, the SCI reflects the idea that for a well-conserved alignment the structure
of each sequence resembles each other and the consensus structure resembles all of them, so EAlign(yMFE

A )
would have as low value as E(yMFE

x ), otherwise EAlign(yMFE
A ) would not. The SCI is near 0 for an alignment

that is not structurally conserved, whereas the SCI is near 1 or above for an alignment that is structurally
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conserved. Especially, if the alignment is structurally well-conserved and compensatory and consistent mu-
tation often occurs, the SCI may be above 1.

As shown in the definition (1) of the SCI, the SCI obviously depends on the accuracy of common
secondary structure prediction, which is also deeply influenced by the quality of multiple alignments of
RNAs. This fact is supported by a previous study20 and our results shown in Sec. 3. For the genome-wide
search, high quality alignments that consider RNA secondary structures cannot be obtained easily due to the
computational cost for calculating structural alignments. Therefore, a robust method that does not require
high quality alignments is required.

2.2. γ-Centroid Estimator

CentroidFold implements a γ-centroid estimator which predicts secondary structures with the maxi-
mum expected accuracy by a kind of posterior decoding methods on the base-pairing probability matrix.
CentroidFold employs a gain function between a true secondary structure θ and a predicted secondary
structure y on x defined as

Gγ(θ, y) =
∑

1≤i<j≤|x|

{γI(yij = 1)I(θij = 1) + I(yij = 0)I(θij = 0)}, (2)

where γ is a weight for base-pairs, yij is 1 if the i-th and j-th nucleotides form a base-pair in y, and
I(condition) is the indicator function, which takes 1 or 0 relying on whether condition is true or false. The
gain function (2) is equal to the weighted sum of the number of true positives and the number of true negatives
of base-pairs. CentroidFold predicts a secondary structure y ∈ S(x) which maximizes the expectation of
Gγ(θ, y) with respect to an ensemble of all possible secondary structure S(x) which is distributed under a
posterior distribution p(θ|x),

Ep(θ|x)[Gγ(θ, y)] =
∑

θ∈S(x)

Gγ(θ, y)p(θ|x)

=
∑

1≤i<j≤|x|

((γ + 1)pij − 1)I(yij = 1) + C, (3)

where C is a constant independent of y, and pij = Ep(θ|x)[θij ] is the base-pairing probability that the i-th
and j-th bases form a base-pair. The optimal secondary structure ŷ = arg maxy∈S(x) Ep(θ|x)[Gγ(θ, y)] can be
calculated efficiently by using the following DP algorithm:

Mi,j = max


Mi+1,j

Mi,j−1

Mi+1,j−1 + (γ + 1)pij − 1

maxk[Mi,k−1 + Mk,j ]

, (4)

and tracing back from M1,|x| to calculate ŷ. The model of the posterior distribution p(θ|x) can be chosen
from various implementations including the McCaskill model21 based on the Boltzmann free energy and the
CONTRAfold model22 based on a machine learning technique.

CentroidFold can also predict a common secondary structure of a multiple alignment of RNAs by
using averaged γ-centroid estimators. The optimal common secondary structure which maximizes the sum
of the expected gain (2) for all x ∈ A, that is,

ŷ = arg max
y∈S(A)

∑
x∈A

Ep(θ|x)[Gγ(θ, y)]

can similarly be calculated by using (4) with the averaged base-pairing probability23 defined as

p̄ij =
1

#A

∑
x∈A

Ep(θ|x)[θij ],
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instead of pij .
The weight γ in the definition (2) controls the number of predicted base-pairs, that is, the trade-off

between specificity and sensitivity of predicted base-pairs. If γ = 1, this estimator is equivalent to the
centroid estimator.24,25

CentroidFold has been shown to be more accurate than other existing tools.9 Especially, Centroid-

Fold can predict much more accurate common secondary structures than RNAalifold for low quality multiple
alignments produced by CLUSTAL W.

2.3. The C-SCI

Now, we propose an improved measurement of secondary structure conservation based on the SCI by em-
ploying CentroidFold for (common) secondary structure prediction, instead of RNAfold and RNAalifold,
to incorporate the robustness against low quality multiple alignments.

At first, we predict the consensus centroid structure for an alignment A, denoted by yC
A , and centroid

structures for each sequence x ∈ A, denoted by yC
x , by using CentroidFold. For a single sequence, we

map a predicted structure onto each sequence x and calculate its free energy E(yC
x ) for all of the sequences.

For an alignment, we map a predicted consensus structure onto each sequence x and get rid of gaps and
corresponding parts of the structure. In removing a gap, if the part of structure corresponding to the gap is
represented as unpaired, the compartment is removed, whereas if the corresponding part is represented as
paired, the compartment is removed and its pair is removed or converted to unpaired depending on whether
the pair corresponds gap or not. To calculate the energy, we use RNAeval11 with the predicted structure on
the sequence. The free energy of a consensus secondary structure is calculated from the averaged free energy
for all sequences and the covariance score which is implemented according to RNAalifold.12

Then, the C-SCI is calculated as follows:

C-SCI(A) =
EAlign(yC

A)
1

#A

∑
x∈A E(yC

x )
. (5)

The C-SCI has two parameters which affect the discrimination capability of the C-SCI. We denote γA as the
parameter γ for predicting consensus secondary structures on multiple alignments, and γS as γ for predicting
secondary structures on single sequences. These parameters were determined by 10-fold cross-validation with
the grid search on γ ∈ {2k : −10 ≤ k ≤ 10, k ∈ Z} for γA and γS . The detail of how the 10-fold cross-validation
was performed is written in the section 3.1. Furthermore, the C-SCI has a modification that if the predicted
structure is unstable and the energy has positive value, the energy is treated as 0. This is because C-SCI
may get a high value regardless of secondary structure conservation, if the numerator and the denominator
of C-SCI are positive.

3. Result

3.1. Evaluation

To confirm the discrimination capability of the C-SCI, we performed the experiments along with the previous
study26 on BRAliBase 2.1 data set,27 which is constituted with 18,990 reference alignments of 36 RNA
families and the same number of the corresponding sets of sequences which are not aligned. Reference
alignments included in BRAliBase 2.1 are human-curated alignments which are made from Rfam database28

aiming for evaluating structural alignments. We also produced multiple alignments using CLUSTAL W19

version 1.83 with standard settings to investigate the discrimination capability on low quality alignments.
For each alignment, we generated negative controls by utilizing shuffle-aln.pl.29 This program shuffles
columns of a given alignment to destroy its secondary structure, while maintaining gap patterns, nucleotide
compositions and sequence length. We generated five negative controls for each alignment. These alignments
were binned according to their normalized Shannon entropy by the size of 0.05. The normalized Shannon
entropy is defined as the average of the Shannon entropy for the individual column over all columns in the
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Table 1. Detail information about reference alignments.

entropy number of alignments average pairwise sequence identity
2 3 5 7 10 15 2 3 5 7 10 15

0.10 827 111 11 2 0 0 92.3 93.8 94.7 94.9 — —
0.15 922 329 48 27 16 6 87.5 90.9 93.1 93.6 93.9 94.0

0.20 974 502 148 50 16 8 83.1 87.4 89.9 91.0 91.7 92.8
0.25 432 479 253 158 58 18 77.6 84.1 87.2 88.3 89.2 89.4
0.30 391 178 262 138 108 65 72.6 80.6 84.6 86.0 87.0 87.7

0.35 456 108 71 95 71 47 67.4 76.6 81.8 83.7 84.8 85.5
0.40 554 134 32 23 16 14 62.6 72.7 78.3 80.6 82.4 83.3
0.45 588 194 48 10 8 3 57.4 68.5 74.2 75.8 79.5 77.8
0.50 559 195 68 38 13 5 52.6 64.5 69.9 71.0 72.1 75.0

0.55 739 194 83 53 27 16 47.5 61.1 65.8 67.0 69.3 69.5
0.60 797 196 82 44 34 20 42.5 58.0 64.1 65.0 66.6 67.2
0.65 589 234 61 21 10 3 37.7 55.1 63.9 62.7 64.2 63.4
0.70 478 320 43 10 5 2 32.5 51.7 61.6 63.1 64.6 63.8

0.75 244 274 39 18 2 1 27.8 48.2 57.9 62.9 59.6 58.9
0.80 126 313 71 17 8 6 22.6 44.3 54.6 56.4 61.6 59.5
0.85 37 326 117 22 11 2 18.2 40.9 53.2 56.1 59.4 60.5
0.90 2 227 139 39 12 2 14.1 37.1 49.9 55.1 56.6 56.2

0.95 0 130 125 68 24 2 — 33.8 46.4 51.2 54.2 58.9
1.00 0 131 168 62 25 13 — 31.0 43.6 49.2 51.8 53.8
1.05 0 41 141 79 46 18 — 29.2 41.6 45.3 49.4 52.2
1.10 0 4 100 99 34 18 — 26.2 39.1 42.7 45.9 51.1

1.15 0 2 61 92 48 25 — 24.0 37.5 40.5 42.7 44.2

In the content of “number of alignments”, each column corresponds to the number of alignments
constituted with the designated number of sequences (2, 3, 5, 7, 10 or 15 sequences). Similarly in
the content of “average pairwise sequence identity”, each column means the average of average
pairwise sequence identity in the alignments with the designated number of sequences.

alignment whose length is |A|,

H = − 1
|A|

|A|∑
i=1

∑
j∈Σ

pi
j log2 pi

j , (6)

where j is in the alphabet Σ = {A, U, G, C, -} constituted with the four nucleotides and the gap character
“-”, and pi

j is the probability observing the character j in column i. We used the alignments in the bins
from 0.1 to 1.15 of normalized Shannon entropy according to Ref. 26. The number of alignments and the
average of averaged pairwise sequence identity (APSI) on reference alignments for each normalized Shannon
entropy bin are summarized in Tab. 1. This shows that higher entropy regions tend to include the alignments
with lower APSI or with larger number of sequences. Therefore, most of alignments with small number of
sequences appear in low entropy region.

To evaluate the performance of the various strategies, we performed the receiver operating characteristic
(ROC) curve analysis. An ROC curve is a plot of true positive rate versus false positive rate in varying the
discrimination threshold of a classifier. The area under the ROC curve (AUC) is used for evaluation of the
discrimination: the shift of AUC to 1 means better discrimination capability. Calculation of AUC for each
entropy subset was done by using ROCR package.30

In our study, we compared the C-SCI with the original SCI and the measurement “base-pairing distance”
(pairwise, consensus), which have been reported to achieve as high AUC as the SCI.26 Base-pairing distance
is a measurement to compare two single structures by using the Hamming distance. Here “pairwise” means
the comparison of each structure of a single sequence with each other, and “consensus” means the comparison
of each structure of a single sequence with the consensus structure. For the structures compared in base-
pairing distance, we adopted MFE structures. The SCI and base-pairing distance were implemented by using
RNAfold with options “-d2” and RNAalifold with options “-d2”. RNAalifold has recently been updated
by replacing the simple covariance scores with a more sophisticated RIBOSUM31-like scoring matrices.32

However, it has been reported that the new covariance scoring matrices failed to improve the accuracy of
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Table 2. Averaged AUC of each measurement.

Method Reference CLUSTAL W

C-SCI (McCaskill model) 0.950 0.899
C-SCI (CONTRAfold model) 0.955 0.912
SCI 0.927 0.853

Base-pair distance (consensus) 0.905 0.849
Base-pair distance (pairwise) 0.900 0.854

the SCI although this update improved the accuracy of common secondary structure predictions. Therefore,
we employed the previous covariance scores described in Ref. 12. For implementing the C-SCI, we used
CentroidFold version 0.0.4 for predicting secondary structures, and RNAeval11 from Vienna RNA Package
version 1.7.2 for calculating the free energy of predicted structures. The C-SCI has two parameters γA and
γS , and we performed 10-fold cross-validation for each bin of normalized Shannon entropy. We determined
γA and γS which maximize AUC on the 90% of the dataset in each bin, and calculate AUC on the rest 10%
of the dataset. As for evaluation we adopted the average of 10 AUCs.

3.2. Discrimination capability

Figure 1 shows the results of AUC analysis of the C-SCI (McCaskill model, CONTRAfold model), the SCI
and base-pair distance (consensus, pairwise) on reference alignments and CLUSTAL W alignments for each
bin of normalized Shannon entropy, indicating that the C-SCI achieved the highest AUC, especially on low
entropy region. Table 2 shows the summarized result by averaging AUC values in all bins. This indicates
that the C-SCI achieves higher AUC on both alignments than the other measurements. Especially with
CONTRAfold model, the C-SCI achieved the highest AUC in the C-SCI variants. The parameters γA and
γS used in 10-fold cross-validation are written in Table S1 in the Supplemental material.

Furthermore, to investigate the reason why on the low entropy region the C-SCI could achieve extremely
higher AUC than the other measurements on both alignments, we plotted the behavior of the median value
of the score on reference alignments for each bin of normalized Shannon entropy. To clarify the difference
between the SCI and the C-SCI, we show the result of two measurements: the SCI and the C-SCI with
CONTRAfold model which has the highest averaged AUC as shown in Fig. 2. For the SCI, the score
distribution of the positive data and that of the negative data is so close that even 25%-quantile of the
positives and 75%-quantile of the negatives overlap on low entropy region. On the other hand, the C-SCI
could clearly separate these score distributions well with γA and γS optimized by 10-fold cross-validation for
each bin of normalized Shannon entropy. This suggests that the C-SCI has higher discriminant power than
the SCI, especially, on low entropy region.

3.3. Computational complexity

To address the genome-wide search, the computational cost is a serious problem. It is obvious that the
use of reference alignments which are structurally corrected by human curation is impractical although all
the measurements achieve high accuracy on reference alignments. Two alternative approaches are to use
structural aligners which can align RNA sequences with conserving their secondary structures, and to use
the standard aligners like CLUSTAL W. We produced the structural alignments using RAF18 version 1.00
with default settings. RAF is one of the most efficient structural aligners based on the Sankoff algorithm33

which simultaneously aligns and folds given RNA sequences. All the experiments was executed on a Linux
machine with AMD Opteron 2200SE (2.8GHz).

As shown in Tab. 3, all the measurements on RAF alignments achieve as high accuracy as those on
reference alignments, and much higher than those on CLUSTAL W alignments. However, huge computational
time is required for producing structural alignments even by RAF (the elapsed time: 1.86 seconds on average),
which is known as the most efficient structural aligner, comparing with CLUSTAL W (0.0147 seconds on
average). On the other hand, our approach the C-SCI, has an advanced property of robustness against low
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Fig. 1. The discrimination capacity of the C-SCI, the SCI and base-pair distance in AUC on reference alignments and
CLUSTAL W alignments for each bin of normalized Shannon entropy.

quality alignments. In fact, Tab. 3 indicates that averaged AUC of the C-SCI with CONTRAfold model on
CLUSTAL W alignments is comparable with that of the SCI on RAF alignments. Furthermore, the elapsed
time for calculating the SCI through RAF alignments was 1.99 seconds for each alignment on average,
whereas that of the C-SCI with CONTRAfold model through CLUSTAL W alignments was only 0.426
seconds for each alignment on average. In case that structural alignments might be unavailable such as the
genome-wide search, the C-SCI is practical to use and is expected to have as high discriminant power as the
SCI on structural alignments.
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Fig. 2. The behavior of median of the SCI and the C-SCI distribution along with the entropy on reference alignments. In each
of positive and negative line sets, the solid line means the median of the distribution and the lower and upper dashed lines

mean 25%-quantile and 75%-quantile of the distribution.

4. Discussion

We proposed the C-SCI, an improved measurement of secondary structure conservation, and examined its
performance. The result was summarized in Tab. 2, which shows that the C-SCI is much more discriminative
than the SCI and other measurements. This is because the C-SCI outperforms others in low entropy area
as shown in Fig. 1. By the observation that important genes have high sequence identities between related
species on the sequence alignment, the alignments with high sequence identity can be in the major part of
data on which calculation of the measurement are performed. Therefore, the improvement of the accuracy
on low entropy will be of great benefit. Table 2 also shows that the C-SCI with CONTRAfold model exceeds
the C-SCI with McCaskill model. This is because CONTRAfold model has more appropriate parameters to
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Table 3. Calculation time and AUC of each measurement. The result of calculation time is shown on
the second scale.

RAF CLUSTAL W
Method AUC Timea Total timeb AUC Timea Total timeb

C-SCI (McCaskill model) 0.953 0.241 2.10 0.899 0.222 0.237

C-SCI (CONTRAfold model) 0.957 0.445 2.30 0.912 0.411 0.426
SCI 0.923 0.130 1.99 0.853 0.135 0.150
Base-pair distance (consensus) 0.908 0.195 2.06 0.849 0.188 0.203

Base-pair distance (pairwise) 0.901 0.179 2.04 0.854 0.166 0.181

Timea: elapsed time for calculating the SCI or the C-SCI only. Total timeb: total elapsed time for

aligning sequences and calculating the SCI or the C-SCI.

estimate a secondary structure.
To examine the reason why the improvement on low entropy region occurs, we further calculated the

score distribution of positive data and negative data of each measurement and showed that the C-SCI could
separate these data more clearly in Fig. 2. This also shows that the median of the C-SCI on negative controls
gets close to 0, whereas that of the SCI does not in low entropy region. We can discuss two things: why
the C-SCI on negative controls tends to get close to 0 and why the C-SCI exhibits higher discrimination
capability than the SCI. For the former question, we suppose that this is because the tendency that the
consensus secondary structure is the open chain or an unstable structure is strong on the negative controls
whereas not on the positive data with the proper γA and γS . For the latter one, we suppose that this is
because MFE of consensus structure does not increase so much by shuffling columns, whereas the energy
of the consensus structure calculated by a γ-centroid estimator increase significantly. Note that we cannot
exclude the possibility that the shuffling algorithm used in our experiments does not work uniformly for all
the bin of the entropy to preserve gap patterns and conservation patterns of columns. The number of possible
pairs of columns to be shuffled depends on the gap patterns and conservation patterns which are reflected in
the entropy. Further investigation should be done by using more sophisticated negative controls generating
algorithms such as SISSIz10 which can preserve dinucleotide composition in alignments in expectation.

Moreover, we investigated the computational time for calculating measurement and alignment shown
in Tab. 3. This shows that the C-SCI on CLUSTAL W alignment is expected to be as discriminative as
the SCI on structural alignment although the C-SCI through CLUSTAL W alignment is 4.7 times faster.
Hence the C-SCI is practical, also considering that calculating structural alignments is not reasonable for
genome-wide search. We can conclude that the C-SCI is computationally practical to use as well as much
more discriminative than the SCI.

Supplemental materials

The parameters γA and γS optimized by 10-fold cross-validation for each bin of normalized Shannon entropy
in CLUSTAL W alignments are written in the supplemental material. See the following file.
http://www.dna.bio.keio.ac.jp/˜okada/psb2010/supplemental1.pdf
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