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The p38 MAP kinases play a critical role in regulating stress-activated pathways, and serve as molecular 

targets for controlling inflammatory diseases. Computer-aided efforts for developing p38 inhibitors have 

been hampered by the necessity to include the enzyme conformational flexibility in ligand docking 

simulations. A useful strategy in such complicated cases is to perform ensemble-docking provided that a 

representative set of conformers is available for the target protein either from computations or experiments. 

We explore here the abilities of two computational approaches, molecular dynamics (MD) simulations and 

anisotropic network model (ANM) normal mode analysis, for generating potential ligand-bound conformers 

starting from the apo state of p38, and benchmark them against the space of conformers (or the reference 

modes of structural changes) inferred from principal component analysis of 134 experimentally resolved p38 

kinase structures. ANM-generated conformations are found to provide a significantly better coverage of the 

inhibitor-bound conformational space observed experimentally, compared to MD simulations performed in 

explicit water, suggesting that ANM-based sampling of conformations can be advantageously employed as 

input structural models in docking simulations. 

 

1. Introduction 

The p38 mitogen-activated protein (MAP) kinase, referred to as p38, is a key signaling protein 

activated in response to external stress; it regulates the production of proinflammatory cytokines, 

and as such serves as an important target for the treatment of inflammatory diseases (1).  The 

structure of p38 in the presence of a variety of inhibitors/ligands has been resolved.  However, the 

intrinsic flexibility of the enzyme has been a major challenge in accurate design and docking of 

potent inhibitors, and the necessity to gain a better understanding of the conformational variability 

of p38 has been pointed out (2). Our recent analysis of a set of p38 X-ray structures suggests that 

the structural changes observed in different ligand-bound forms of the enzyme correlate with its 

conformational motions intrinsically accessible in the ligand-free form (3). Effective generation of 

a representative set of conformers that would be utilized for flexible docking appears therefore as 

a feasible task. The development of such efficient tools for generating representative subsets of 

potentially bound conformers would greatly facilitate computational efforts for drug discovery, not 

only for this particular family, but for many target proteins, especially in the absence of sufficient 

structural data on their alternative conformers (4).   

There is a multitude of approaches at different resolutions for generating conformational 

ensembles. Molecular dynamics (MD) simulations are broadly used in investigating specific 

interactions and structural changes at atomic scale, but they may be prohibitively time consuming 
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if large-scale changes are explored (5). Elastic network models (ENMs), on the other hand, 

efficiently explore large-scale changes for large systems, but this comes at the cost of losing 

atomic precision, and the observed changes are restricted to the neighborhood of the global energy 

minimum (6, 7). With the ever growing size of Protein Data Bank (PDB) (8), we are able to assess 

the utility of these methods by benchmarking them against the structural changes detected for 

well-studied proteins in the presence of different inhibitors. 

We use here an ensemble of 134 X-ray structures resolved for p38 in different forms as the 

reference for the conformational space accessible to p38 upon binding its ligands. p38 has two 

small-molecule binding sites (Fig. 1A): the ATP-binding site where competitive binding of 

inhibitors takes place, and the lipid/compound binding site at the MAPK insert, which offers 

alternative targeting strategies (9). p38 is bound to a structurally diverse set of inhibitors in this 

dataset. To gain a simplified view of the dataset structural variability, we identified dominant 

directions of structural changes (modes) via principal component analysis (PCA) (10) (Fig. 1 

panels B - E). PCA is a powerful technique for extracting recurrent modes of structural changes 

from sets of structures (11).  Its use in assessing functional dynamics is clearly demonstrated by a 

recent study of substrate-bound X-ray structures of ubiquitin (12). Hereafter, we will refer to the 

modes identified by PCA as reference modes. 

 
 

Fig. 1. p38 structure and reference modes. A. p38 structure (PDB id: 1ZYJ) is shown as a ribbon diagram colored 

by residue index from blue to red. The upper and lower lobes are referred to as the N- and C-terminal lobes. Two 

ligand-binding sites are distinguished: ATP-binding site, with the bound inhibitor shown in blue spheres; and the site 

at the MAPK insert, marked by the bound lipid (n-octyl-β-D-glucoside) in black/red space filling representation. B-E.  

Directions of PCA modes 1-4 (green arrows) retrieved from the analysis of 134 X-ray crystallographically resolved 

p38 structures in different forms.  Coloring is based on mobility along the mode directions, red being most mobile.  

 



We generated alternative conformations by two approaches: MD simulations, subjected to 

essential dynamics analysis (EDA), (13) and anisotropic network model (ANM) (14-16) analysis. 

MD simulations were repeated in the presence of explicit water and in solutions of water and 

probe molecules (small organic molecules to mimic the effects of drugs/inhibitors, as recently 

performed to investigate target protein druggability (17, 18)).  We examined (i) the coverage of 

reference conformational space by MD and ANM, and (ii) the correspondence of the modes 

observed in MD-EDA and predicted by ANM to those (Figure 1 B-E) inferred from experiments.  

2. Materials and Methods 

2.1. Structural data 

Using the human p38 sequence (GenBank id: CAG38743.1) in Biopython (http://biopython.org) 

protein Blast module, we retrieved from the PDB a set of 134 p38 MAP kinase isoform 

structures, with 95% or more sequence identity (human or mouse proteins). Most structures 

contained a ligand bound to ATP binding site and/or MAPK insert (Table 1). 

 

Table 1. Summary of p38 structural ensemble(*). 
 

 

(*) Counts of different forms of p38 structures are listed. Markers refer to Figs 2 and 3. 

2.2. MD simulations 

We performed two types of 20 ns simulations, each repeated twice.  The 1
st
 type contained water 

and counter ions, in addition to p38. The 2
nd

 was performed in a solution of water and small-

organic molecules at a fixed ratio of 20:1, summarized in Table 2. The ligand-free p38 structure 

resolved by Wang et al.(19) (PDB id: 1P38) was used. Missing atoms were modeled using 

PSFGEN (20). Solvent box padding distance was at least 6 Å. Solvated system coordinates were 

prepared using VMD (20).  Prior to the productive runs, probe-free systems were equilibrated for 

30 ps. For probe-containing systems were subjected to 450 ps simulated annealing to achieve 

uniform spatial distributions of probes, followed by 300 ps equilibration. All simulations were 

performed using NAMD (21) software with CHARMM (22) force field. 

 

Table 2. Description of MD simulations performed for p38 in different solvent environments. 

MD Sim Atoms(*) Water Isopropanol Isopropylamine Acetate Acetamide 

1 26454 6929 - - - - 

2 26454 6929 - - - - 

3 28515 6360 318 - - - 

4 28563 6400 224 32 32 32 

(*)protein and non-protein molecules. All simulations contained 9 sodium ions to balance the charge. 

 MAPK insert  

Unbound Lipid Compound  Total 

ATP site 
Unbound   4 ● 10 ♦   14 

Inhibitor 87 ● 20 ♦ 8▲  115 

Peptide/protein bound    5 ● 5 

Total 91 30 8 5 134 

http://biopython.org/


2.3. PCA/EDA of data from experiments/simulations 

The PCA of ensembles of structures is an orthogonal linear transformation that projects data from 

Cartesian coordinate space onto a space of collective coordinates uniquely defined by the 

examined ensemble (10). The new coordinate system is such that the greatest variance in the 

dataset lies along the first principal component (PC) axis, shortly referred to as PC1, followed by 

PC2, PC3 and so on. The method of approach is identical in the EDA of MD trajectories (13), with 

the only exception that the analyzed set of conformers consists of MD snapshots, rather than the 

experimentally resolved structures collected from the PDB.   

Both analyses are based on the cross-correlations (or covariance) observed (in experiments or 

simulations) between the fluctuations of C

-atoms. Here, we used 324 C


-atoms (residues 5-31, 

36-116, 121-168,185-352) that were structurally resolved in at least 90% of the examined dataset. 

The approach in either case is to diagonalize the covariance matrix and examine the dominant 

modes of structural changes (eigenvectors) which are associated with the largest eigenvalues. Prior 

to PCA/EDA, structures/snapshots are superposed using the Kabsch algorithm (23) in an iterative 

procedure (3). Mean positions <Ri> = [<xi> <yi> <zi>]
T
 are determined for each -carbon i. The 

departures of -carbons from their mean positions, Ri
s
 = [xi

s
 yi

s
 zi

s
]

T
 (where xi

s
 = xi

s
 –<xi >) 

are organized in a 3N-dimensional deformation vector R
s
 where (R

s
)
T
 = [(R1

s
)
T
 (R2

s
)
T 

 …. 

(RN
s
)
T
]), for each structure, s, in the dataset; and their cross-correlations, averaged over the entire 

set are organized in a 3N x 3N covariance matrix C. C may be written in terms of N x N 

submatrices C
(ij) 

(1≤ i, j ≤ N), each of size 3 x 3, given by 
 

      [

〈      〉 〈      〉 〈      〉

〈      〉 〈      〉 〈      〉

〈      〉 〈      〉 〈      〉

]   (1) 

 

Here 〈      〉 represents the cross-correlation between the x-component of Ri
s
 and the y-

component of Rj
s
 averaged over all structures (1 ≤ s  ≤  Stot) in the dataset. The trace of C

(ij) 
gives 

the cross-correlations between the fluctuations of residues i and j as tr{C
(ij)

} = <Ri •Rj >, and 

that of the i
th

 diagonal block C
(ii) 

gives the mean-square fluctuations <Ri

> of -carbon i. 

Principal/essential modes are obtained by decomposing C for the dataset of conformers 

(PDB/MD) as   ∑   
 
     p

(i)
 p

(i)T  
where p

(i)
 and i, are the i

th
 eigenvector and eigenvalue of C, 

respectively, and m is the total number of nonzero eigenvalues (m = 3N-6 if Stot > 3N-6, and m = 

Stot otherwise). 1 corresponds to the largest variance component (i.e. 1 ≥ 2 ≥ …≥ m). The 

fractional contribution of fluctuations along p
(i)

 to the overall structural variance in the dataset is 

given by fi = i /jj where the summation is performed over all m components.  

2.4. ANM analysis and sampling of conformers using ANM modes 

In contrast to PCA and EDA, the ANM analysis is performed for a single structure (e.g., the apo 

structure), not an ensemble.  In the ANM, the second-order partial derivatives of the potential 



energy function (a sum over uniform pairwise harmonic potentials of force constant  between all 

‘connected’ residues in the network) are organized in the Hessian matrix H, which, in turn, is 

decomposed into 3N-6 nonzero eigenvalues i and corresponding eigenvectors u
i
,
 

i.e., H 

=∑   
    
    u

(i)
u

(i)T
(14, 16). 

 
H is written in terms of N x N submatrices each of size 3 x 3. The ij

th
 

submatrix is given by 

       
    

(   
 )

 [

                  

                  

                  

]   (2) 

 

and        ∑       
     . Here    

  is the equilibrium distance between the -carbons i and j, and 

Xij, Yij and Zij are its components;     is the ij
th

 element of the Kirchhoff matrix    equal to 1 if i 

and j are connected (or within a distance rcut), zero otherwise.  The ANM covariance matrix is 

CANM = H
-1

 such that 1/1 is the counterpart of the PCA 1, and u
(i)

 is the counterpart of p
(i)

.  

ANM conformations along mode i are generated using the relation            
    

  , 

where s is a scaling parameter proportional to (kBT/)
½

 (24). Thus, the structural changes along the 

slowest/softest mode (u1) are the largest in size (1 ≤ 2 ≤ …≤ 3N-6).  We generated ensembles 

around the initial conformation R
0
, using the pseudocode given in Textbox 1, with M = 3 modes 

and s = K(kBT/)
½
 where K varies as 1 ≤ K ≤ 7 and kBT/= 2Å

2
, to obtain 15

3 
= 3375 conformers, 

the spread of which matches that of the reference space.  The root-mean-square deviations 

(RMSDs) between nearest conformers along modes 1, 2 and 3, were 0.25, 0.21, and 0.14 Å, 

approximately. Calculations were repeated with different structures to confirm the robustness of 

the predicted ANM modes. Results obtained with unliganded (PDB id: 1P38 (19)) and inhibitor-

bound p38  (PDB id: 2BAJ (25)) yielded practically indistinguishable results. 

 

Textbox 1. Pseudocode for ANM sampling. 

2.6. Comparison of dominant modes from PCA, EDA and ANM 

In this section, we define the metrics for comparing the modes from ANM (predicted) and PCA 

(experiments); similar expressions hold for the comparison of EDA (simulations) and PCA modes, 

as well as EDA and ANM modes.  The overlap between ANM and PCA modes is given by the 

Initialize a list to store conformations, and append the initial conformation:  

L =  𝑹   

Do for ANM modes 1 ≤ i ≤ M 

Do for each conformation  𝑹𝐶  in L 

Initialize a list to store conformations generated at this step, L_temp = [ ] 

Do for k in [-K, -(K-1), …, -1, 1, …, K-1, K] 

 𝑹𝑘  𝑹𝑐 + 𝑘𝑠 𝜆𝑖
    

𝒖𝑖  

 Append 𝑹𝑘  to L_temp 

Append conformations in L_temp to L 



correlation cosine Oij = p
(i)

. u
(j)

 (26). The cumulative overlap,    
  *∑      

  
   +

 
 ⁄
measures how 

well a subset of J low frequency ANM modes reproduces the PCA mode i(27). Note that for J = 

3N -6, COi
J
 = 1 by definition, i.e., the complete set of 3N-6 ANM eigenvectors form an 

orthonormal basis set.  Finally, the essential subspace overlap between the PCA and ANM 

subspaces spanned by top K modes is evaluated using      *
 

 
∑ ∑      

  
   

 
   +

 
 ⁄
 (13). Finally, 

the degrees of collectivity of the principal modes derived from either computations (ANM or 

EDA) or experiments (PCA) were calculated using the definition proposed by Brüschweiler (28).  

2.7. Projection of conformations onto a reference subspace and normality test   

The projection of a given conformational change R
s
 onto p

(i)
 is found from ci

s
 =(R

s
)
T
 p

(i)
. The 

points in Figs 2 and 3 represent the projections onto the subspaces spanned by PC1, PC2, PC3, 

and/or PC4. In the extreme case of (R
s
)
T 

perfectly aligned along p
(i)

, ci
s
 = ||R

s
||, where the 

double bars designate the magnitude of the enclosed vector.  The normality of projections of PDB 

structures onto the principal modes were tested using A’Agostino and Pearson’s test (29, 30) 

where skewness and kurtosis are combined into an omnibus test (using SciPy, http://scipy.org/).  

3. Results and Discussion 

3.1. p38 reference modes derived from X-ray crystallographic data 

The ensemble of 134 p38 structures provides a rich representation of the conformational space 

accessible to this enzyme under a wide variety of conditions, e.g., differences in ligands, crystal 

conditions, or mutations. The dominant changes observed in this dataset were extracted by PCA as 

described above, and displayed in Fig. 1B-E. Table 3 (columns 1-5) provides more information on 

these modes, including the size of the associated conformational variance, 
2
, their contribution to 

structural variation, and their degree of collectivity. The first mode, PC1 (Fig. 1B) for example, 

accounts for 24.5% of the structural variability in the dataset (Table 3). The fluctuations along this 

mode correspond to the anti-correlated movements of the N- and C-terminal lobes of p38. Motions 

along the PC1 axis in the positive direction (indicated by the arrows in Fig. 1B) favor ‘open’ 

conformers, and those in the negative direction favor ‘closed’ forms. Movements along PC1 thus 

directly affect the size of the ATP/inhibitor-binding pocket in the N-terminal lobe.  

 

Table 3. Properties of the reference (PCA) modes from experiments, and projection of MD snapshots onto them. 

PCA 

Mode 

PCA of PDB ensemble Sim1 Sim2 Sim3 Sim4 

σ
2(a)

 %
(b)

 p-value
(c)

 Collectivity
(d)

 µ
(e)

 σ
2(f) 

µ σ
2
 µ σ

2
 µ µ 

1 44.5 24.5 0.26 0.49 6.9 40.1 6.4 74.8 9.9 59.7 15.4 43.6 

2 37.6 20.7 0.00 0.36 6.3 30.6 9.9 46.9 11.0 43.9 8.3 31.1 

3 25.6 14.1 0.00 0.58 -8.2 25.0 -0.6 20.5 0.5 20.2 0.9 14.1 

4 11.1   6.1 0.63 0.52 9.4 20.8 3.2 27.1 0.8 19.9 2.7 12.9 
(a) Variance along the reference mode in the PDB dataset. (b) Percent of total structural heterogeneity accounted for by the reference 

mode. (c) The probability that the projection of structures along the reference mode obeys a normal distribution. (d) Degree of 

collectivity. (e) Mean position of MD snapshots along the reference mode. (f) Variance of MD snapshots along the reference mode. 



Figure 2 displays the projections of the 134 structures, each indicated by a color/shape coded 

symbol (described in Table 1), on the subspace spanned by PC1 and PC2. The unliganded 

structures (red dots in Fig. 2A) occupy the region PC1 > 0 of the subspace, consistent with their 

tendency to assume a relatively open form. Upon inhibitor binding, p38 tends to close down.  

Normality test of the projection onto PC1 (upper bars plot in Fig. 2A) shows that an approximately 

Gaussian distribution is obtained. The ensemble is not separated into distinct clusters in this case, 

suggesting that a continuous spectrum of conformers is visited rather than two distinctive ‘open’ 

and ‘closed’ states, with the unbound structures exhibiting a tendency to be open. 

 

    
Fig. 2. Distribution of the PDB ensemble of structures on the subspaces spanned by reference modes. 134 p38 

structures are projected onto PC1-PC2 (A) and PC3-PC4 (B) subspaces. Markers are described in Table 1. The 

distributions of structures along the individual modes are shown by the histograms.. A conformation on the positive 

portion of these projections corresponds to a deformation along the direction indicated by the arrows in Fig. 1B-E. 

 

The second reference mode (PC2), on the other hand, describes the structural changes in the 

secondary lipid/compound binding pocket at the MAPK insert. This mode explains 20.7% of the 

structural variability in the dataset. As shown in Fig. 2A, this mode divides the ensemble into two 

groups: (i) structures with a bound ligand (lipid) molecule at the MAPK insert (red and blue 

diamonds, mostly clustered in the positive PC2 region), and (ii) structures with empty MAPK 

inserts (red and blue circles). Normality test confirms that the PDB structures exhibit a bimodal 

distribution along this mode. Compared to PC1, changes are slightly more localized and 

pronounced near the lipid-binding site at the C-terminal lobe. The collectivity of this mode is 

lower (0.36) compared to that of the first mode (0.49). 

The structural changes along the 3
rd

 and 4
th

 reference modes (Fig. 1D and E) account for the 

respective 14.1% and 6.1% of the total variance. Both of these modes are highly collective (Table 

2) as may also be seen from the uniform distribution of movements across the enzyme. Lipid-

bound structures (diamonds) tend to move toward the negative direction along PC3. This behavior 

is particularly distinctive in inhibitor-bound structures, which results in a skewed, non-Gaussian 

distribution. The movements along PC4, on the other hand, exhibit a normal distribution.  



In summary, the first four modes provide a description of structural changes associated with 

binding of ligands (ATP and/or inhibitors) at the ATP-binding sites (PC1), binding of lipids to the 

MAPK insert (PC2), and the collective rearrangements of the entire enzyme to accommodate 

different bound forms (PC3 and PC4). Notably, local changes at the binding sites are coupled to 

global changes in the enzyme structure (Fig. 1 panels C and D), pointing to the functional 

significance of the global modes favored by the p38 architecture. 

3.2. Do MD snapshots provide good coverage of reference space? 

Of interest is to assess how close MD- or ANM-generated conformations are to known PDB 

structures.  In Fig. 3, we show the projection of computationally generated conformations onto the 

subspace spanned by top three reference modes (PC1-PC3). Panels A-C compare the snapshots 

from three MD runs (see Table 2), shown by the black dots, to PDB structures (indicated by the 

symbols in Table 1). In all three cases, we see that the conformations sampled during MD runs 

drift away from the large majority of the experimentally detected structures. This is also evident 

from the mean positions of MD snapshots along these three principal axes reported in Table 3. For 

example, along PC1, the mean position sampled by MD snapshots varies between 6.4 (Sim2) and 

15.4 Å (Sim4), which correspond to 0.36 and 0.85 Å RMSD. Likewise, along PC2, the average 

positions of MD snapshots depart from the experimental dataset by up to 11.0 Å (Sim3). Overall, 

four independent runs starting from a ‘central’ experimental structure ended up sampling 

conformational subspaces that do not encompass the majority of experimental structures. 

3.3. Do ANM predictions provide good coverage of reference space? 

In sharp contrast to results from MD runs, Panel D in Figure 3 shows that conformers 

generated by deforming the starting structure along ANM modes 1, 2 and 3 are able to cover the 

reference subspace of conformations comprehensively. In this case ANM sampling is performed 

using only the slowest three modes. The present comparison clearly shows that the subspace 

sampled by the three softest ANM modes overlaps with the experimentally accessed subspace of 

conformations. This remarkable coverage of reference space (from experiments) by ANM 

predictions also translates into the minimum RMSD plot shown in Fig. 4. In this plot, for each 

PDB structure, the lowest RMSDs with respect to (i) all other PDB structures (black curve with 

black dots), (ii) MD snapshots in four different runs (colored as labeled), and (iii) ANM 

conformations generated along the softest three modes (purple) are shown. The plot for pairs of 

PDB structures yields an average value of 0.4 Å; ANM sampling yields 0.6 Å. MD runs, on the 

other hand, yield an average of 1.0Å at least.  Simulations performed in the presence of probe 

molecules (Sim3 and Sim4) yield slightly better results, although the improvement is not 

significant. 
 



 
Fig. 3. Projections of MD and ANM ensembles onto the subspace spanned by the reference modes PC1-PC3. 

Ensembles from Sim2, Sim3, Sim4, and ANM are shown in panels A, B, C, and D, respectively. PDB structures are 

marked as in Fig. 2. Conformations generated by computations are shown by gray points. The perspective is the same 

in all panels for ease of comparison. 

 

 
Fig. 4. Minimum RMSD from PDB structures. Results are shown for all PDB structures (indexed in alphabetical 

order along the abscissa). The black curve refers to the RMSDs from the PDB structures themselves (experimental 

data); the purple curve displays the min RMSDs achieved by ANM sampling; and other curves (labeled) refer to MD 

runs Mean and standard deviations are given in the legend.  

3.4. Correspondence of ANM and MD-PCA Modes to Reference Modes 

We performed the EDA of the four MD trajectories, and compared the essential modes derived 

from these runs to the reference modes obtained from the experimental dataset.  Fig. 5 panels A 

and C show for the runs Sim2, Sim3 and Sim4 the overlap (correlation cosine) between each of the 

essential 10 modes (from EDA of MD) and the top 10-ranking reference modes (from PCA of 



PDB structures).  Panel D displays the correlation between the ANM and PCA modes. If we focus 

in particular on the top two pairs of modes, the lowest overlaps are observed in Sim2 (53% or less) 

and similar observations (not shown) were made for Sim1. In both of these two cases, the protein 

was simulated in water. In Sim3 and Sim4, the correlations with the first two reference modes 

increase to 63%. This is due to the existence of probe molecules which were able to find either 

binding pocket on p38, and assisted in the stabilization of bound conformers. 
 

 
Fig. 5. Correlations between experimentally observed and computationally obtained modes of structural 

changes. Panels A-C show the overlap between top-ranking PCA modes (from 134 PDB structures) and the modes 

yielded by MD runs EDA. Panel D displays the overlaps between ANM and PCA modes. 
 

The comparison of ANM modes with the reference modes shows, on the other hand, a much 

stronger correlation. The slowest mode (ANM1) alone exhibits an overlap of 75% with PC1. Thus, 

the most prominent conformational variation experimentally observed for p38 upon binding its 

ligands is in remarkable agreement with the softest mode of motion intrinsically accessible to the 

enzyme in the unbound state. That is, it is easiest to deform the protein along this ANM mode, or 

the protein is most likely to sample alternative conformations along this mode under native state 

conditions (presumably within time scales of the order of µs). In addition, the cumulative overlap 

between top reference mode and first three ANM modes reaches 87%. We also found significant 

overlaps between reference modes PC2, PC3, and PC4 and the low frequency ANM modes 1, 2 

and 3: PC2 overlaps with ANM1 and ANM3 by 0.49 and 0.55, respectively, yielding a cumulative 

overlap of 0.74 with these two modes. PC3 correlates with ANM2 by 57%, and PC4 correlates 

with ANM2 by 52%. It is not thus surprising to see that the alternative conformations generated 

along ANM1-3 provided a satisfactory coverage of the experimentally observed dataset (Fig. 3D). 



Apparently, 65% of the variability in the PDB ensemble is well explained by slowest three 

ANM modes. A measure of such correspondence is the essential subspace overlap (13). Using 

three modes, we find that the essential subspace overlap between ANM and reference dataset is 

75%.  This value is 62% for MD runs Sim1 and Sim2, and increases to 67 and 68%, respectively 

for Sim3 and Sim4. This suggests that the directions of structural changes observed in MD, 

represented by EDA modes 1-3, exhibit some correlations with the PCA modes 1-3 extracted from 

experiments, but there is a drift away from the original subspace during MD runs such that the 

conformations sampled by MD deviate from the reference state, leading to the relatively high 

RMSD values shown in Figure 4.   

4. Conclusion 

We presented a detailed analysis of the structural variations in a large ensemble of p38 MAP 

kinase X-ray structures, compared to those predicted by snapshots/models generated by MD 

simulations and by ANM methodology.  Our results show that ANM is able to capture the modes 

of motion that are relevant to ligand/inhibitor/ lipid binding much better than MD simulations. The 

use of probe molecules that mimic the interactions of the protein with inhibitor molecules 

improves the ability of MD to sample the relevant modes (Fig. 5B-C). Yet, the conformers 

sampled by MD trajectories of tens of nanoseconds generally fell short of encompassing the space 

of inhibitor-bound PDB conformations (Fig. 4). MD simulations of 20 ns take about 2 weeks using 

12 processors for a typical kinase. Generating a broader MD ensemble would take longer and 

would demand considerably larger numbers of processors, and this might not prevent the drift 

away from the experimental structures. The generation of conformers along ANM soft modes, on 

the other hand, is achieved within minutes, if not seconds, and provides an accurate sampling of 

experimentally detected subspace. Notably, the latter does not necessitate expensive computations, 

nor knowledge of multiple structures. 

Our work is the most comprehensive comparative analysis of a protein kinase (p38) dynamics 

using multi-resolution methods. In a previous study, based on small sets of PDB structures for four 

different kinases, local changes in the glycine rich loop (a -hairpin that interacts with inhibitors) 

of the N-terminal lobe were observed (2), and the fast modes were deemed to be used to capture 

the conformational variability in ligand-bound structures (31). Our current and previous (3) results 

show that up to 65% of the changes experimentally observed in p38 MAP kinases are actually 

collective changes explained by 2-3 softest modes. The local motions at ligand-binding site are an 

integral part of these global movements, and the structural variations observed in different ligand-

bound conformers are well represented by the structural rearrangements along the global modes. 

These observations are in line with work of May and Zacharias (32) in which relaxing a protein 

kinase along global modes during docking simulations improved the prediction of bound 

conformers. Their approach circumvents the problem of dealing with conformations potentially 

irrelevant to ligand binding (decoys). Such decoys are generated by both computational methods, 

but eliminating ANM conformations with RMSD larger than a threshold to the initial structure can 



improve the accuracy of sampling. Furthermore, current results are important as they suggest a key 

coupling between global motions and local binding events, which will need to be systematically 

examined for a series of proteins. The method and application set forth in the present study may be 

readily extended to perform such a critical assessment for a large set of proteins. 
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