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Personal genome resequencing has provided promising lead to personalized medicine. However, due to the
limited samples and the lack of case/control design, current interpretation of personal genome sequences has
been mainly focused on the identification and functional annotation of the DNA variants that are different
from the reference genome. The reference genome was deduced from a collection of DNAs from anonymous
individuals, some of whom might be carriers of disease risk alleles. We queried the reference genome against
a large high-quality disease-SNP association database and found 3,556 disease-susceptible variants, including
15 rare variants. We assessed the likelihood ratio for risk for the reference genome on 104 diseases and found
high risk for type 1 diabetes (T1D) and hypertension. We further demonstrated that the risk of T1D was
significantly higher in the reference genome than those in a healthy patient with a whole human genome
sequence. We found that the high T1D risk was mainly driven by a R260W mutation in PTPN22 in the
reference genome. Therefore, we recommend that the disease-susceptible variants in the reference genome
should be taken into consideration and future genome sequences should be interpreted with curated and
predicted disease-susceptible loci to assess personal disease risk.



1. Introduction

With the advance of sequencing technology and assembling tools, whole genome sequencing has
become a commodity with 10,000 personal genomes being sequenced in the next two years. An
urgent question is how to interpret personal genome sequences to comprehensively assess disease
risk and optimize personalized treatment. Sixteen personal genomes (1-13) have been fully
sequenced and described in the literature, while companies state they are sequencing as many as
500 individuals per month. However, due to the limited samples and lack of case/control design,
the current interpretation of these genomes had been mainly focused on the identification and
functional annotation of the DNA variants that are different from the reference genome sequence,
with an aim to find interesting genomic features. The reference genome was not from a single
normal individual; instead, the reference was deduced from a collection of DNAs from anonymous
individuals with primarily European origins and assembled into a mosaic haploid genome (14, 15).
To our knowledge, the clinical and phenotypic information of the participants had never been
published. Although they were very likely to be healthy at the time of study, some of them might
be carriers of disease risk alleles. The identification of biologically and clinically important rare
and common disease variants in the reference genome and a comprehensive disease risk
assessment will improve our understanding of the reference to better assemble and interpret future
genome sequences.

We have previously developed a method to assess the risk of a patient for 55 diseases using a
quantitative human disease-SNP association database, and showed that we could suggest useful
and clinical relevant information using his personal genome sequence (16). Here, we queried the
reference genome sequence against our database and identified 3,556 disease-susceptibility
variants, including 15 rare variants. We comprehensively assessed the risk of the reference
genome for 104 diseases and found high risk for type 1 diabetes (T1D) and hypertension. We
further demonstrated that the risk of T1D was also significantly higher in the reference genome
than in the genome of the healthy male we previously described (16). Comparing all contributing
alleles, we found that the high T1D risk was mainly driven by a R260W mutation in the
intracellular tyrosine phosphatase (PTPN22) in the reference genome.

2. Methods

2.1 ldentifying the disease susceptible/protective alleles in the reference genome

We downloaded the alleles at 24.5 million SNPs (dbSNP 131 on hg19) of the reference genome
from the UCSC genome browser (17, 18), and removed all SNPs that were mapped to multiple
locations.

As described previously (16), we manually curated quantitative human disease-SNP
associations from the full text, figures, tables, and supplemental materials of 3,333 human genetics
papers, and recorded more than 100 features from each paper, including the disease name (e.g.
coronary artery disease), specific phenotype (e.g. acute coronary syndrome in coronary artery



disease), study population (e.g. Finnish individuals), case and control population (e.g. 2,508
patients with coronary artery disease proven by angiography), gender distribution, genotyping
technology, major/minor risk alleles, odds ratio, 95% confidence interval of the odds ratio,
published p-value, and genetic model. Studies on similar diseases were categorized and mapped to
the Concept Unique Identifiers (CUI) in the Unified Medical Language System (UMLS) (19). For
each study, the frequency of each genotype and allele in the case and control populations was
recorded.

We queried the reference genome against this disease-SNP database using dbSNP identifiers
(17), and identified all disease susceptible or protective alleles in the reference. We then retrieved
the Minor Allele Frequency (MAF) from the HapMap Il and Il projects (20) and identified rare
disease-susceptible alleles in the reference that had an MAF<1% in the CEU population.

2.2 Assessing the risk of the reference genome on 104 diseases

We had previously reported the medical assessment of a personal genome sequence from a healthy
40-year-old male by calculating his pre-test probability, likelihood ratio (LR), and post-test
probability across 55 diseases (16) using a curated high-quality quantitative human disease-SNP
association database. Similarly, for each of 104 diseases, we queried the reference genome
sequence against our database, identified all independent disease-associated loci, treated the
genotype at each locus as an independent genetic test, and calculated the LR as the increased
disease odds from all tests.

For each disease, we identified all SNPs that had been significantly associated with the disease
with a p value 010  in Genome-Wide Association Studies on more than 5000 individuals, or
with a p value 0&K0.01 in candidate gene studies on more than 1000 individuals. We estimated
genetic risk using a likelihood ratio for each SNP defined by the relative frequency of the
individual’s genotype in the diseased vs. healthy control populations (e.g., given an allele “A”, LR
= Pr(A|diseased)/Pr(A|control)). The LR incorporates both the sensitivity and specificity of the test
and provides a direct estimate of how much a test result will change the odds of having a
disease (21). In addition, the likelihood ratio is taught to medical students and physicians in
training(22).

We excluded studies with diseased patients in the control group, and included studies across
all ethnicities and genders, because the reference genome was deduced from a mixture of people
with different ethnicities and genders. For each allele, we averaged the LRs from multiple studies
with a weight of the square root of the sample size to give higher confidence to studies with larger
sample size. After removing SNPs in high linkage disequilibrium (R%>0.8 in HapMap CEU
populations), we assumed each locus as an independent genetic test and multiplied LRs to report
the combined LR or risk.

2.3 Comparing the disease risk between the reference genome and a healthy patient



We plotted the log(LR) of a 40-year-old healthy male (16) against the log(LR) of the reference
genome across 62 shared diseases to identify the diseases where the reference genome had
significantly higher risk. All contributing SNPs were plotted for the disease to identify SNPs that
drove the observed risk difference between the two genomes. For each SNP, its associated gene
was identified using the NCBI Entrez dbSNP (17), and annotated using the UCSC genome
browser (18) for its functional type and chromosome location.

3. Results:

3.1 Disease susceptible and protective alleles in the reference genome

The reference genome (hg19) contains 21.8 million SNPs, with 17,429 of them known to associate
with human disease and other phenotypes, and 12,190 of them known to associate with human
diseases (Table 1). It contains slightly more diseases-protective alleles and genotypes (4,052 SNPs
for 381 diseases) than disease-susceptible alleles and genotypes (3,556 SNPs for 349 diseases).

Table 1: Number of disease susceptible and protective alleles in the reference genome
SNPs  Phenotypes PubMed count

Diseaseftraits” 17,429 1026 3333
_Associated with disease 12,190 561 2695
_Susceptibility to disease 3,556 349 1416
Protection from disease 4,052 381 1,600

# Non-disease phenotypes included drug response and clinical measurements

3.2 Rare disease-susceptible variants in the reference genome

The reference genome carries minor alleles at 0.93 million SNPs in the CEU population, and 0.15
million of them were rare variants with MAF<1% in the HapMap Il and Ill projects (20). We
found that 15 rare alleles in the reference genome are known to increase the risk of a variety of
diseases (Table 2). For example, rs10849033 is close to the 5’ end of C12orf5, a TP53-induced
glycolysis and apoptosis regulator. The reference genome has a rare G allele at rs10849033 with
an MAF of 0.8%. The G allele had been found to significantly increase the risk of acute
lymphoblastic leukemia (ALL) by 2.55 fold, with a p value of 8.5x10° in a study on 317 children
with ALL and 17,958 non-ALL individuals in a control group (23). This rare ALL-susceptibility
variant would likely be missed by recent personal genome resequencing efforts focusing on
reporting and studying only those variants different from the reference genome.

Table 2: Rare disease-susceptible variants (MAF<1%" in Caucasian) in the reference genome
Disease Gene SNP Allele  Type PubMed
Acute lymphoblastic leukemia C12orf5 rs10849033 G near 5' 19684603




_Breastcancer ___________RRPIE rs9306160 T missense 19825179
Coronary arterydisease __ PON2 rs7493 ____G____missense 12588779
_Focal segmental glomerulosclerosis  WT1 rs2234591 T __intron 15687485
Juvenile idiopathic arthritis __ SL.C26A2  rs30832 T  missense 17393463
Malaria _____FAMS3B  rs7076268 _ C _ intron 19465909
Ol 57173766 A __unknown 19584900
arkinsos disease ADHIC  rs283413 A nonsense 15642852
e NUCKST || rsB23128 G Inton 19915575
_Placental abruption _____F5 rs6025 T ____coding-synon 18277167
Prostatecancer  ______GDFIS rs1058567  C _missense 16775185
Sehizophrenia rs4568102 A _unknown 18347602
_Type2diabetes ARHGEF11 rs861086 G nears 17369523
Venous thrombosis F5 rs6025 T coding-synon 17284699

* MAF (minor allele frequency) was retrieved from the HapMap 11 and 111 projects

We further found two rare variants in the reference genome increasing the risk of Parkinson’s
disease (Table 2). One of them is rs283413, containing an A allele in the reference genome, which
leads to the early truncation of ADH1C protein, and has been known to increase the risk of
Parkinson’s disease by 3.25 fold (p=0.007) in multiple Swedish and Caucasian studies (24).

A large survey across 17,429 disease SNPs in our database showed that the effect sizes or the
odds ratio of disease SNP associations were consistently and negatively associated with the MAF
in Caucasian, African, Chinese, and Japanese. This indicated that rare disease-associated SNPs
conveyed significantly larger effect size to the observed genetic association across human
diseases. With the discovery of several rare alleles known to be associated with disease in the
reference genome, we suggest that whole genome resequencing would very likely identify other
causal SNPs, possibly explaining some of the currently missing genetic heritability of complex
diseases (25). As such, some of the other 0.15 million rare variants in the reference genome could
also potentially be associated with disease. Comparing genome sequences against curated disease
and rare variants would likely discover many causal variants.

3.3 Risk likelihood ratio of the reference genome on 104 diseases

We analyzed the risk likelihood ratio (LR) of the reference genome on 104 diseases using the
independent test likelihood ratio model. We found that the reference genome had an increased risk
on 48 diseases (LR>1) and a decreased risk on 56 diseases (LR<1). The LR ranged from 0.14 to
5.14 with a mean LR close to 1.0 (p=0.39, t-test). Strikingly, T1D demonstrated the highest risk
with a product LR of 5.14. This LR was calculated from 31 T1D-susceptible alleles and 14 T1D-
protective alleles in the reference genome.



The reference genome also had a high likelihood ratio of risk for hypertension with 11 risk and
3 protective alleles. The high risk of hypertension was mainly driven by a G allele at rs3741691 in
THAP2 with a LR of 1.26 (26), an A allele at rs2106809 in ACE2 with a LR of 1.26 (27), and an
A risk allele at rs3761987 with a LR of 1.21 (26). Table 3 lists the LR and the number of
susceptible and protective SNPs on just the 44 diseases with 10 or more SNPs.

Table 3: Disease risk profile of the reference genome on 44 diseases with>10 SNPs

Disease LR  Susceptible SNPs Protective SNPs
_Typeldiabetes 514 81 14
_Hypertension 288 10 3
_Ankylosing spondylitis 180 S 5
_Myocardial infarction 178 10 3
_Prostatecancer 156 22 ¥
_Breastcancer 128 & LY
_Multiplesclerosis 125 10 A
_Inflammatory bowel disease 121 7 8
_Colorectal cancer 120 9 12
_Lungcancer 103 6 5.
_Parkinson'sdisease 101 14 T
_Alzheimersdisease 089 10 8
_Coronary arterydisease 08 8 9
_Celiacdisease 08 9 0
_Rheumatoid arthritis 076 12 n_
_Bipolardisorder 075 5 5
_Schizophwenia 071 5 . 0
_Ulcerativecoliis 070 6 . 12
__Systemic lupus erythematosus _ 066 26 29 ..
_Type2diabetes 061 84 ] 37 ..
_Crohnsdisease 05 12 YA
_Glioma .08 5.
Psoriasis o .0aAr W 10 .
Obesity .04 6 14
_Basal cell carcinoma.______ 0.33 S 8

Melanoma 0.14 4 11

We then plotted the histogram of log(LR) across all 198 diseases, and observed a symmetric
distribution with no significant difference from the mean of zero (p=0.07, t-test). This suggests
that our method is unbiased towards overcalling susceptibility or protection across all diseases.

3.4 Disease risk comparison between the reference and a personal genome



We plotted the log(LR) of a 40-year-old healthy Caucasian male against the log(LR) of the
reference genome across 104 shared diseases (Figure 2). Interestingly, the reference genome
showed a strikingly increased risk on T1D than the healthy male, and a decreased risk on
Melanoma. This indicats that the high T1D risk was likely a result of T1D-susceptible alleles in
the reference genome instead of biased T1D-susceptible alleles in the database. Although the
reference genome was deduced from a group of healthy persons, some of them might be carriers
of T1D-sueceptible alleles. Therefore, the reference genome is not free of predicted disease-risk
and these disease-susceptible alleles in the reference genome need to be taken into consideration in
interpreting future genome sequences.
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Fig. 1: The disease risk comparison between the personal genome of a healthy male and the reference
genome. Each circle represents the genetic risk of a disease for the patient and the reference genome.

3.5 T1D-susceptible alleles in the reference genome

To identity the specific alleles that led to the striking difference on predicted T1D risk between the
reference genome and the healthy male, we plotted all contributing T1D susceptible and protective
alleles in both the reference genome (Figure 2) and the previously studied 40 year old patient
(Figure 3).



Reference genome

Genotype Test LR Studies Samples Mult{LR)

1.00

IFIH1 rel950760 C . 0.90 3 39795 0.90
CD226 rs763361 T 1.06 3 36040 0.85
CTLA4 rs3087243 G i 1.10 3 29326 1.05
PTPNZ2Z rs2476601 A 1.85 3 16734 1.85
CLEC2D rs3764021 C 1.06 2 17200 2.06
Cl2orf30 rs17696736 A 0.89 2 17200 1.84
CLEC16A rs725613 T 1.07 2 TT43 1.97
SH2ZB3 rs3184504 T 1.05 1 16033 2.06
IL10 re3024505 G 0.995 1 13026 2.04
rsl0508540 T 0.94 1 13026 1.93

CD69 rs4763879 G : 1.04 1 13026 2.00
Cliorflsl relde5788 T ! 1.05 1 13028 2.10
rs4900384 A 1.02 1 13026 2.14
rsd4788084 C 0.98 1 13026 2.10
re7202877 T ¢ 1.00 1 13026 2.11

GSDMB rs2290400 T | 1.03 1 13026 2.17
rs7221109 T 1.03 1 11026 2.24

PRKD2 rs425105 T ! 0.98 1 13026 2.21
SIRPG rs2281808 T : 1.06 1 13026 2.35
LOC729%80 re5753037 C 1.03 1 13026 2.42
rs10517086 G 1.02 1 13026 2.48
rs9388489 A 1.03 1 13026 2.54
re4948088 A 1.14 1 13026 2.90

SKAP2 rs7804356 T 0.99 1 13026 2.88
GLIS3 rs7020673 C 1.01 1 13026 2.92
GAB3 rs2664170 G ; 0.97 1 13026 2.84
rs380421 T 0.94 1 125800 2.67

LBP rs2232613 C 1.01 1 12900 2.69
CAPSL rsl4458%8 C ¢ 1.05 1 12900 2.83
IL7R rs6897%32 C 1.03 1 12900 2.92
CFTR rs213950 G 0.96 1 12900 2.81
re2666236 G 0.96 1 12200 2.70

EREB3 rs2292239 T 1.21 1 12200 3.27
rs2542151 G ¢ 1.23 1 12200 4.00
re9e53442 C ¢ 1.06 1 12200 4.24

ADAD1 rs17388558 G ! 0.97 1 12200 4.11
re7722135 C 1.02 1 12200 4.20

MAGI3 rsl2306581 A 1.27 1 5000 5.34
BCL2L15 rs2358994 G | 0.92 1 5000 4.90
CLEC16A rs2041670 G 1.07 1 5000 5.27
HLA-DQAl rs9272346 G 0.39 1 5000 2.04
INS, INS-IGF2 rs689 A 1.12 1 1718 2.29
CBorf22 re22092389 A 1.26 1 1356 2.89
re6822844 G 1.06 1 1279 3.06

STAT4 rs7574865 T 1.68 1 638 5.14

01 05 1 5 10

Fig. 2: Contribution of individual alleles to overall risk LR of T1D of the reference genome. Alleles and
their associated genes are listed on the left, ordered from top to bottom by the number of studies in which
each was published and the total sum of cohort sizes across those papers. The LR of each independent
SNP/allele is listed. A user of this figure could draw a horizontal line at a given threshold of belief,
include and exclude alleles, and retrieve the accumulated LR at the right column and shown graphically in
the middle. The central graph displays the change in accumulated LR, with darker squares representing
more publications and larger squares representing larger sample size.



A healthy Caucasian male

Genotype Test LR Studies Samples Mult (LE)
1.00
IFIH1 rs1990760 TT 1.16 4 33090 1.16
CTLA4 rs3087243 AR 0.68 3 29326 0.78
PTPN22 rs2476601 GG 0.83 2 14618 0.65
CDE9 rs4763879 AR 0.93 1 13026 0.61
Cl4orflBl resldeb788 CC 2 : : Q.98 1 13026 0.60
rs7202877 TT . ; . 1.00 1 13026 0.60
PREDZ2 rsd425105 TT 0.98 1 13026 0.59
SIRPG rs2281808 CC . : o : 0.986 1 13026 0.57
reo388480 AR B 1003 L 13026 o.ss
re4948088 cC M 0.99 1 13026 0.58
GAB3 rs2664170 1 1.01 1 13026 0.59
CD226 re763361 0.88 1 12800 0.51
re380421 1.00 1 12500 Q.52
LBP rs2232613 0.87 1 12500 0.45
CAPSL rsl4458%8 0.98 1 12800 0.43
IL7R rs6897932 0.95 1 12900 0.41
CFTR rs213950 0.93 1 12900 0.38
rs2666236 0.88 1 12200 0.33
ERBE3 rs2292239 1.09 1 12200 0.36
CLEC2D rs3764021 1.06 1 12200 0.38
Cl2orf30 rsl7696736 1.00 1 12200 0.38
CLEC16A rsl2708716 0.92 1 12200 0.35
rs2542151 1.22 1 12200 0.43
rs9653442 1.09 1 12200 0.47
rs7722135 1.04 1 12200 0.49
HLA-DOALl rs5272346 I 0.39 1 5000 0.19
TCF7LZ rs790314¢ 1.10 1 2422 0.21
INS, INS-IGF2 rs689 ! 0.59 1 1718 0.12
KIAR1109 rs4505848 I 0.85 1 1279 0.10
rs6822844 1.17 1 1279 0.12
STAT4 rs7574865 . 1.44 1 638 0.17

I T T T 1
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Fig. 3: Contribution of individual genotypes to the overall risk LR of T1D for a previously published 40-
year-old healthy Caucasian male. See Figure 3 for details on the graphical elements.

Comparing Figure 2 and 3, we found that the increased T1D risk in the reference genome was
mainly due to a highly T1D-susceptible allele A at rs2476601, causing a R260W mutation in the
intracellular tyrosine phosphatase (PTPN22). This SNP had been reported to increase the risk of
T1D by 2 fold in more than nine studies (28-31). Comparing with the patient, the reference



genome also has increased risk of T1D due to the lack of two T1D-protective alleles at rs3087243
in cytotoxic T-lymphocyte-associated protein 4 (CTLA4) (32) and at rs689 in the insulin (INS)
(28). These three alleles increased the T1D risk for the reference genome by 6.8 fold comparing
with our previously published patient. Interestingly, for rs2476601 in PTPN22, the T1D
susceptible allele in the reference genome is the minor allele in most population. The 3,556 known
disease-susceptible variants and many unknown ones especially rare variants could be potentially
missed if only variants different from the reference were analyzed.

3.6 Disease-susceptible alleles deleted in the reference genome

The reference genome also contains a deletion at 2.7M SNPs with a dbSNP identifier in the
dbSNP build 131 (17). We found that 16 SNPs that are known to associate with human diseases at
these points of deletion. The clinical relevance of these missing base pairs is not clear.

4. Discussion

We identified 3,556 disease-susceptible variants including 15 rare variants (MAF<1%) in the
reference human genome, which provides a useful tool for the annotation of personal genome
sequences. Using a curated high-quality quantitative human disease-SNP association database, we
assessed the likelihood ratio of increased risk over healthy population on 104 diseases for the
reference genome and found the high predictive T1D risk with a R260W mutation in the
intracellular tyrosine phosphatase (PTPN22). It reminded us that the reference genome was not
from a regular person and was certainly not disease free. Although it had dramatically accelerated
personal genome sequencing efforts, focusing on variants different from the reference will likely
miss many disease causal variants including rare variants.

With the likely incoming deluge of 10,000 personal genome sequences arriving within the next
two years, a method to estimate personal disease risk is urgently needed. Here, we described a
method to estimate personal genetic risk using a likelihood ratio for each SNP as the relative
frequency of the individual’s genotype in the diseased vs. healthy control populations. We further
described a very simple method to treat multiple disease loci outside the linkage disequilibrium as
independent genetic test, and estimated their combined effect. We acknowledge that assuming
independence of tests is actually a different assumption than assuming that each variant
contributes independently to risk. If each measured variant is viewed as an independent test
probing disease state, this is arguably closer to our understanding of their use as markers
associated with disease instead of actual causal variants (22). We admit that it is likely to be too
simple to accurately model the risk of many common diseases, especially those like T1D, which
are also influenced by unknown environmental and gene-environmental factors, and we are
currently investigating different models to estimate combined effects.

The accurate assessment on personal disease risk is also dependent on the quality and coverage
of the genotype/allele frequency in the disease and control population in the literature. We found



that many studies, including genome-wide association studies (GWAS) only reported the odds
ratio of disease risk between genotypes/alleles, and not their frequencies in the case and control
population, which were required for the calculation of the likelihood ratio. For studies reporting
both the odds ratio and the minor allele frequency in the control group, we recalculated their allele
frequencies. We excluded studies reporting only the odds ratio, and we are investigating the
possibility of estimating the genotype/allele frequencies in the control group using the data in the
HapMap 111 project (33). There have been many debates on whether the aggregated genotype
frequency data should be published in GWASs (34). Analyses showing association of a single
biomarker with disease typically report very detailed characteristic of the populations studied; this
is radically different from typical genetic association studies, which often report almost nothing
about the subjects (22). Therefore, we strongly recommend the release of the genotype frequency
in future GWAS studies as it is critical for us to quantitatively evaluate the disease-SNP
association, enabling an accurate personal risk assessment.

We further found that many disease SNPs had been reported as the genotypes in the negative
strand without indicating their strand directions. We had identified the strand direction by
comparing the major/minor alleles in the study with the major/minor alleles in similar population
in the HapMap projects. However, the identification process became difficult when the C/G or
AJT alleles share similar frequencies. Therefore, we strongly recommend investigators to report
the genotype frequencies in the case and control population and their strand direction in the future
GWAS publications. With exponentially increasing personal genome sequences with phenotype
information, we will likely to discover more rare causal variants and comprehensively predict
personal risk on a variety of diseases.
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