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In this paper we propose algorithmic strategies, Lander-Waterman-like statistical estimates, and
genome-wide software for haplotype phasing by multi-assembly of shared haplotypes. Specifically, we
consider four types of results which together provide a comprehensive workflow of GWAS data sets:
(1) statistics of multi-assembly of shared haplotypes (2) graph theoretic algorithms for haplotype
assembly based on conflict graphs of sequencing reads (3) inference of pedigree structure through
haplotype sharing via tract finding algorithms and (4) multi-assembly of shared haplotypes of cases,
controls, and trios. The input for the workflows that we consider are any of the combination of: (A)
genotype data (B) next generation sequencing (NGS) (C) pedigree information.

(1) We present Lander-Waterman-like statistics for NGS projects for the multi-assembly of
shared haplotypes. Results are presented in Sec. 2. (2) In Sec. 3, we present algorithmic strategies
for haplotype assembly using NGS, NGS + genotype data, and NGS + pedigree information. (3)
This work builds on algorithms presented in Halldérsson et al.' and are part of the same library of
tools co-developed for GWAS workflows. (4) Section 3.3.1 contains algorithmic strategies for multi-
assembly of GWAS data. We present algorithms for assembling large data sets and for determining
and using shared haplotypes to more reliably assemble and phase the data. Workflows 1-4 provide a
set of rigorous algorithms which have the potential to identify phase-dependent interactions between
rare variants in linkage equilibrium which are associated with cases. They build on our extensive
work on haplotype phasing,! 3 haplotype assembly,*® and whole genome assembly comparison.®
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1. Introduction

Improving data quality is crucial, because if a human gemome cannot be independently as-
sembled then the sequence data cannot be sorted into the two sets of parental chromosomes,
or haplotypes. This process — haplotype phasing — will become one of the most useful tools in

genomic medicine. — J. Craig Venter, 20107

A genome-wide association study (GWAS) is a leading approach to find genetic deter-
minants associated with a particular phenotype.® ' GWAS proceed by identifying a set of
individuals carrying a disease or trait (cases) and a set of individuals that do not (controls).

*corresponding authors are Bjarni V. Halldérsson bjarnivh@ru.is and Sorin Istrail sorin@cs.brown.edu
f Authors contributed equally to this work
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The cases and controls are then genotyped for a large number of common single nucleotide
polymorphism (SNP) genetic variants which are then statistically tested for association to
some disease or trait. GWAS have been successful in identifying many common genetic risk
variants to many diseases,®!'12 but many associations appear to have no known connection
to biological mechanisms and thus cannot be targeted for clinical intervention. Furthermore,
some of these studies reveal a paradoxically encouraging and, at the same time, disappointing
theme for complex traits: a set of SNPs are found to be highly statistically significant (and
are often replicated in subsequent studies) yet individually, and in aggregate, these SNPs only
explain a very small proportion of genetic variance.!3

The problem of interpreting the low explicative and predictive power of these variants has
been deemed the “missing heritability” problem. Many hypotheses have been presented to
explain the missing heritability.'* Most echo caveats frequently associated with GWAS such
as difficulties with defining phenotypes of cases and controls, cryptic population stratification,
common variation that is often left out of GWAS (copy number variation or gaps in SNP
coverage), or environmental factors.!*'5 We concern ourselves with two explanations that
have received much attention recently: phase-dependent interactions and rare variation.

Knowledge of haplotypes can greatly increase the power of GWAS studies and also high-
light associations that are impossible to detect without haplotype phase (e.g. loss of heterozy-
gosity). Even more complicated phase-dependent interactions of variants in linkage equilibrium
have also been suggested as possible causes of missing heritability.!* The actual haplotypes in
the typed region can be obtained only at considerably higher experimental cost or via compu-
tational haplotype phasing for which most algorithms fail to work on genome-wide data. For
these reasons, GWAS have generally ignored phase-dependent interactions or associations.

Although the significance of phase-dependent interactions is yet to be determined, rare
variation is now accepted as playing a significant role in many common diseases'¢ 18
rare diseases.!??9 SNP arrays used for GWAS are designed to tag common variants only, thus
rare variant associations are ignored. However, with cost of next-generation sequencing de-
creasing rapidly and the sequencing of tens of thousands of individuals already underway,?!2
GWAS are likely to develop novel approaches for association. Anticipating this data will soon
be available, we have developed algorithms to simultaneously identify rare variation and de-
termine the haplotype phase of a number of individuals using sequence reads.

The class of algorithms that use sequence reads to infer the haplotypes of a diploid organism
are called haplotype assembly algorithms.>?? Early formulations focused on assembling the
haplotypes from the reads of one individual. Because most bases on a read are identical
regardless of the chromosome of origin, the reads can be mapped to a reference genome. After
mapping, reads are translated into haplotype fragments containing only the polymorphic (SNP)
sites. A fragment covers a site if the corresponding read contains the SNP. Fragments that
cover more than one SNP site provide valuable phase information, that is, if two SNPs co-
occur on one fragment then they exist on the same haplotype. Thus, the input to the haplotype
assembly problem is an m x n SNP matrix M whose m rows correspond to fragments f1, ..., fin
and each fragment f; covers at least 2 of the n SNP sites. Formally, we define a fragment f; as
a vector of {0,1,—} where 0 and 1 represent the major and minor alleles at some site and ’-’

as well as
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represent a lack of information either because the read does not cover the SNP site or there
was a technical failure (e.g. in mapping or sequencing). Two fragments i and j conflict if they
cover a common SNP and have different alleles at that site (Fig. 1).

Haplotype A: 11001101~ ~ %™+ %~

-10--10 -

Haplotype B:01111100

Fig. 1. Fragment conflict graph. Major and minor alleles are denoted by 0 and 1 respectively. Fragments from
haplotype A (11001101) appear above the dotted line while fragments from haplotype B (01111100) appear
below. The bipartition which separates the two sets of fragments is denoted by the dotted line. The haplotypes
may be reconstructed by combining the shores of the bipartite graph.

Most haplotype assembly algorithms refer to an abstraction on M called the fragment
conflict graph. The fragment conflict graph, Gp(M) = (V, E), has nodes f; € V Vi and edges
{fi. f;} € E if f; and f; conflict Vi, j. Figure 1 demonstrates the translation from fragments to
the fragment conflict graph. If the data is free of errors then, for each connected component
in the fragment conflict graph, the vertices can be divided into two independent sets, that
is, the graph is bipartite. Therefore, haplotype assembly of one individual can be expressed
as: Given the fragment conflict graph Grp(M), find the underlying bipartite graph whose shores
define the haplotypes of the individual.

We present a novel approach to GWAS with sequence data of assembling the haplotypes
of cases and controls using paired end sequencing reads and long range sharing information.
Multi-assembly of GWAS sequence data has the power to enhance the discrepancies between
cases and controls by phasing haplotypes using shared haplotype tracts. By assembling the
cases and controls together, we can avoid missing marginal SNP variation at the level of
misassembly that are associated with rare SNP variants. If the pedigree structure is known
or long-range sharing information can be inferred, we can strengthen the multi-assembly by
using the combined fragment coverage on the shared haplotype. First, we give a formula that
relates a number of statistics/parameters with the coverage of SNPs on the haplotypes of
many individuals. We present an efficient algorithm for finding the shared haplotype of two
individuals in the fragment conflict graph. In addition, we present an efficient algorithmic
strategy to resolve errors and assemble fragment conflict graph components that is capable
of assembling genome-wide data. We employ methods that have been previously used for
haplotype assembly as well as methods that have been applied to haplotype phasing.

2. Multi-Assembly of Shared Haplotypes
The input for the haplotype assembly of multiple individuals problem is the same m xn matrix
M in the case of one individual with an additional annotation on the fragments denoting the

person of origin. In this section, we estimate the coverage needed to assemble haplotypes of
multiple individuals. Consider the parameters:
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G The length of the genome

S The number of SNPs in the genome
L The average length of a read

N The number of reads

_ LN
c Coverage = =+

For these calculations we assume the distance between SNPs and sequence reads follow a
Poisson distribution (A = 400 and A = 10000 respectively). A read is considered a “good-read”
if it covers at least two SNPs. The intuition behind good-reads is that they determine the
haplotype phase of two or more SNPs (they are on the same haplotype). The probability
that a paired read covers at least 2 SNPs is > (ﬁ)% L is assumed to be < 400. Let s; be a
SNP on chromosome i in position p. s; is covered if a read starts in the interval (p — L, p] on

chromosome i. The expected number of reads starting in the interval (p— L, p] on chromosome
L

iis > LNgé?) = (%) (HLO)Q. The probability that no reads start in (p — L, p] is e~ (5)()",

P (>0 reads start in (p — L,p]) =1 — e (5)(58)° (1)
Thus, the number of the SNPs covered by good-reads is approximately
(1_6*(5)(ﬁ)2> 29 2)

Enhanced coverage due to sharing. The coverage needed greatly depends on the probability
of a good-read. A high good-read probability may be obtained through targeted sequencing,
mate pairs, or larger read lengths. When multiple individuals are considered, the coverage
needed may be greatly reduced if the haplotype sharing is high. Sequence reads from differ-
ent individuals, but on a shared haplotype, can be considered as originating from the same
chromosome and assembled together. This increases the effective coverage in Equation 2. For
example, three unrelated individuals have 6 unique haplotypes for an effective genome size of
6G. A trio of individuals consisting of a child, mother, and father have 4 unique haplotypes
for an effective genome size of 4G. Thus, for the same amount of reads you can achieve 50%
more coverage on trios than unrelated individuals.

Building on the Lander-Waterman type of statistical analysis,?* we can estimate two im-
portant statistical parameters of haplotype assemblies that guide our algorithms: (1) What is
the coverage needed so that we cover X% of SNPs on both haplotypes of a single individual
with a good sequence read? (2) What is the coverage needed so that we cover X% of SNPs on
both haplotypes of a trio of individuals with a good sequence read? Table 1 shows estimates
of coverage needed to cover a percentage of SNPs for a single individual and trios for different

4

parameters.

3. Algorithmic Strategies

Finding haplotype assemblies for a single individual has been considered by several re-
searchers.?2>27 This can be formulated as an approximate bipartition problem, where the
bipartition stems from the fact that an individual is expected to have two chromosomes of
each type and the approximation stems from the fact that some of the graph edges or vertices
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G — 8% 109,

Table 1. Length of genome G = 3.2 x 10?. Number of SNPs § = ;%

Number of Individuals Read Length Coverage Mean % of SNPs Covered

1 100 1 3
1 100 2 6
1 100 4 12
1 100 10 27
1 100 20 46
1 200 1 12
1 200 2 22
1 200 4 39
1 200 10 71
1 200 20 92
3 (trio) 200 1 17
3 (trio) 200 2 31
3 (trio) 200 4 53
3 (trio) 200 10 85
3 (trio) 200 20 08

are spurious. Spurious edges occur when there is a genotyping error, some sort of error in the
lab protocol or an error in the mapping of reads.

Extensions of the single individual haplotype assembly include those that employ genotype
data.?830 In these algorithms, genotype data is used to correct errors after sequence reads are
mapped. However, genotype data is prone to errors and probe common SNPs only which are
not helpful regarding rare and other non-probed variation. For multiple individuals, genotype
data can be used to infer evolutionary relationships between haplotypes where pedigree data
is not available.!-31:32

3.1. Optimization Formulations

The minimum fragment removal formulation introduced in Lancia et al.> and minimum error
correction formulation (sometimes referred to as minimum letter flip) introduced in Lippert
et al* are two optimization formulations useful for the purposes of generalizing to multiple
individuals. For k individuals, Li et al. show that a fragment conflict graph is feasible if and
only if it is 2k-colorable. However, in the case of identical by descent haplotype sharing, there
are less than 2k unique haplotypes. Given some haplotype sharing is likely to exist, we can
rewrite the optimization problems for multiple individuals.

(1) Minimum Fragment Removal for k Individuals (k-MFR): Given a SNP matrix M of frag-
ments from k individuals, remove the minimum number of fragments (rows) such that the
resulting fragments can be combined to form at most 2k haplotypes.

(2) Minimum Error Correction for k Individuals (k-MEC): Given a SNP matrix M of frag-
ments from k individuals, correct the minimum number of errors in fragments such that
the resulting fragments can be combined to form at most 2k haplotypes.
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A correction of an error is defined as a flip from 0 to 1 or 1 to 0. A gapless fragment is a
fragment covering a contiguous set of SNPs. MFR, MEC, k-MFR, and k-MEC using gapless
fragments are tractable and useful problems when the read length is long enough to cover
multiple SNPs. However, given the smaller read length sizes of next-generation sequencing,
haplotype assembly is most effective with mate paired reads. MFR, MEC, k-MFR, and k-MEC
using gapped fragments have been shown to be NP-hard.?33

3.2. Problem Formulations

Problem 3.1. Given a set of reads from k individuals, determine the minimum number of
fragments to be removed such that the remaining fragments can be assembled into 2k haplotypes.

Li et al.3® give an IP formulation and a parameterized algorithm which is exponential in
the number of individuals. The problem formulation is somewhat simplistic as it does not
assume that it is known from which individual the reads are from.

Problem 3.2. Given a set of reads from k individuals, with each read labeled with an indi-
vidual, determine the minimum number of fragments to be removed such that the remaining
fragments can be assembled into 2k haplotypes and the individual associated with the haplotypes
and fragments agree.

The equivalent IP formulation can be seen by adding the following constraint to the Li
et al.?® formulation: reads labeled with an individual must be included in the assembly of
that individual. For problem instances with no errors, the integer program has a very nice
decomposition, since the set of constraints for each individual require it to perform a bipartite
graphs. It is also likely to be quite efficient since finding bipartite graphs is easy. However,
real data contains errors from miscalls and erroneous read mappings.

Problem 3.3. Given a set of reads, each labeled with an individual, find the minimum number
of haplotypes such that (1) each individual is phased with exactly two haplotypes, (2) a mini-
mum number of fragments are removed and (3) the individual associated with the haplotypes
and fragments agree.

For general graphs, this problem is NP-hard.>32 We suggest a heuristic algorithm which
exploits the specific signatures of sequence read errors that we can find in the data and correct.
Errors in the fragment conflict graph fall into three categories.

Category 1: A fragment would otherwise conflict with another fragment from the opposite
chromosome but, due to an error, is consistent with fragments on the opposite chromosome
but conflicts with fragments from the chromosome of origin.

Category 2: A fragment would otherwise not be included in the fragment conflict graph but
acquires an error.

Category 3: Due to an error, a fragment conflicts with fragments from both haplotypes of
the individual.

Category 1 has little effect on the fragment conflict graph. We would interpret the fragment
as belonging to the wrong haplotype but this does not remove the bipartiteness of the graph.
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Category 2 and Category 3 can remove bipartiteness of the graph and make the general
MFR and MEC problem hard. However, given a high coverage, these two cases produce
regular signatures in the fragment conflict graph; namely high degree nodes that conflict with
fragments of both haplotypes.

An algorithmic strategy based on the architecture of these errors was implemented in
Java and works well on simulations derived from HapMap and Hudson simulated data.?*
The algorithm begins by attempting to create a breadth first search tree of the fragment
conflict graph. When the algorithm encounters a level of the BFS tree that does not fit in
the biparition, it computes the 3-cliques (small conflicting sub-graphs of the fragment conflict
graph) in the current BFS level and subsequent levels until zero 3-cliques are found by the
addition of a BFS level. It then removes the fragment belonging to the most 3-clique conflicts.
As a tie breaker, the algorithm removes the node with the highest degree. Since an erroneous
fragment conflicts with fragments from both chromosomes it should belong to many 3-cliques
and/or have a high degree. Also, because the number of conflicting fragments in a dataset is
usually small, the algorithm runs in speed comparable to BF'S.

3.3. Assembly when Haplotype Sharing is Known

If sharing information is unknown, assembling multiple individuals can help identify Category
1 errors. If haplotype sharing information is known or can be inferred, assembling multi-
ple individuals simultaneously provides additional information on the coverage of haplotypes.
The sharing of haplotypes between individuals could be known from pedigree data® or in-

ferred 1,31,32,36

Problem 3.4. We are given a set of individuals and for each pair of individuals, haplotype
sharing information is known or can be inferred. We are also given a set of paired end se-
quencing reads for each individual. Output a pair of haplotypes for each individual such that
each individual sharing a haplotype do so.

If haplotype sharing information is unknown, we begin by inferring pedigree information
using the tract finding algorithm! or similar methods.332 We then build the fragment conflict
graph. The only edges that are informative are edges between fragments from the same indi-
vidual and other individuals who share a haplotype identical by descent (IBD).% If a segment,
of a haplotype is shared identical by state (IBS) then it is likely to conflict in other places
on the haplotype and can yield a feasible but erroneous assembly. In addition, if we interpret
these non conflicts as IBD, then can obtain the wrong coverage estimate on the haplotype
which is essential for phasing the assembly.

3.3.1. Haplotype sharing algorithm

When there are no errors in the reads of an individual the fragment reads will form a bipartite
graph.® The fragments belonging to one of the two shores of the bipartite graph will form one of
the haplotypes and the fragments belonging to the other shore will form the other haplotype.
In the case when the bipartite graph is disconnected then each connected component may
be considered separately. Given fragments from two individuals which are known to share a
haplotype, we propose the following algorithm for the joint haplotype assembly of the two
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individuals. Let the two individuals be denoted by ¢ and j. In our algorithm a corresponds to
the shared haplotype and  corresponds to the non-shared haplotype. We note that o; = o,

Algorithm 3.1.

def Branch( s )

For each edge with an endpoint in the oy and other endpoint, e,

in H, identify the connected component, t, of G; or G; that contains e.
Label the color of t that is connected to e as (.
Label the other color of t as «.
H<+—H-t
Branch( t )

For each tree, t € H that has a color ¢ that has edges connecting to «s and [
Label ¢ as 3
Label the other color as «
H<+—H-t
Branch( t )

Determine Sharing

Construct the fragment conflict graph, G. Let G; and G; be

the restriction of G to i and j.
Color each component G; and G; with two colors.
If no such coloring exists, the algorithms fails.

H+—G

While H # ()
Find connected components t,s, s.t. s€cG;NH and t€G,NH or secG;NH
and t € G;NH and a color B of s with an edge to both colors of t.

If no such tree exists, choose s arbitrarily from G; or G,
Arbitrarily label the colors of s as a and (3.

H+—— H-s.
Branch( s)

The algorithm is motivated by the key observation that a haplotype cannot be shared if
one of its fragments is connected to a color that is shared. We may observe a connection to a
color that is shared either from the fact that the color is labeled as shared or it is connected
to both colors.

Lemma 3.1. The algorithm runs in O(n+mn) time, where n is the number of fragments and
m is the number of edges between the fragments.

Proof. The initial step of coloring of a bipartite graph of each individual can be done in time
O(n+m). The edges that lie between two individuals can then be labeled with the component
and color that they belong to. We then loop over each component of i in an outer loop and
each component of j in an inner loop, followed by a loop over each component of j in an outer
loop and each component of i in the inner loop. We determine whether there exists an edge
from the component in the outer loop to both colors of the component in the inner loop. We
observe that each edge will be visited at most as many times as there components in G. The
number of components is upper bounded by n, for a total upper bound of nm. O

This algorithm presents an approach that may be generalized to more complex patterns
of haplotype sharing.
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3.4. Phasing Components in the Fragment Conflict Graph

Even with error-free data we aren’t guaranteed to be able to assemble and phase the data.
Long runs of homozygosity form disconnected components in the fragment conflict graph. Runs
of homozygosity, which are paradoxically simple to phase, cause problems when assembling
haplotypes. If the run of homozygosity is longer than the mate pair length no read can connect
the two components as there wont be any conflicts in homozygous regions (Fig. 2). The more
connected the graph is, the easier it is to phase because you have to eventually phase the
shores of each component into two haplotypes. The number of valid haplotype phasings may
therefore be large once the haplotypes of each individual have been assembled; if the haplotype
assembly of a single individual consists of k& disconnected bipartite components then there
are 2¢~1 unique ways to map the shores to haplotypes. Varying the mate pair read length,
increasing the read length, adding coverage, or adding more individuals who may share a
haplotype IBD help connect components together.

Fragments from haplotypes that are identical by descent can be considered when con-
structing bipartitions for both individuals. If two components need to be phased and one
haplotype is shared then we’d expect the shared haplotype to have twice the coverage of the
non-shared haplotype in both components, thus we phase the two shores with greater coverage
from different components together. For example, Fig. 2 shows fragments from two haplotypes
of two individuals one of which (10000001) is shared. The phasing of the two components is
ambiguous but we know that the shared haplotype is likely to have approximately 50% more
coverage. Therefore, it is more likely to phase the components such that we maximize the dif-
ference of cardinality between the phasings. For Fig. 2 the first phasing (10000001,/00000000)
yields |6 — 3] = 3 while the second phasing (10000000/00000001) yields |5 — 4| = 1. When
phasing disconnected components where sharing is not known, the resulting phasing should
try to minimize the difference of cardinality in the overall phasing.

Partial Haplotype Assemblies Partial Haplotype Assemblies
10-000 - - (3 frags) - -00--01 (3 frags)
00--00-- (1 frag) - -00--00 (2 frags)

Fig. 2. Fragment conflict graph separated by a run of homozygosity. We assume the maximum distance
between fragments is 2 SNPs.

4. Results on Simulated Data

We ran simulations on individuals of the CEU and JPT populations from HapMap®. First
we sampled individuals randomly and then isolated a subset of the haplotype (30 SNPs for

°CEU denotes Utah residents with Northern and Western European ancestry and JPT denotes Japanese
individuals from Tokyo, Japan.
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visualization purposes). We placed the SNPs from the phased HapMap haplotypes a uni-
form distance from each other (500bp). Genome length is calculated by number of SNPs x
distance between SNPs. The distance between sequence reads is calculated using a Poisson
distribution and is varied under different models because most NGS technologies are capable
of varying the distances between reads (e.g. Solexa or SOLiD). The average read length and
coverage are also varied. Figures 3 and 4 show simulations on two unrelated individuals (one
from CEU colored green, one from JPT colored red) while Fig. 5 shows simulations from two
related individuals.

Fig. 3. Fragment conflict graph for unrelated individuals with coverage ¢ = 4, read length L = 50, and

distance between reads is Poisson with A = 2000. Green vertices denote fragments originating from the CEU
individual.

Figure 3 has many disconnected components due to the low probability of a good-read and
regular distance between reads. Figure 4 shows the effect of changing the read length, coverage,
and distance between reads. Read length, coverage, and variation of mate pair length correlate
strongly with connectivity of the fragment conflict graph. In Fig. 5 two related individuals
are shown with the same parameters used in Fig 3. It is clear the more sharing existing in the
population, the easier it is to assemble and phase the data.

We also used our haplotype assembly simulator to test the accuracy and scalability of our
minimum fragment removal heuristic. The first dataset we tested is the same 30 SNP segment
from the HapMap CEU individual; the second dataset is a Hudson simulated chromosome of
length 3434 SNPs. We decided to use the ratio of the number of erroneous fragments removed
to the number of non-erroneous fragments removed as our metric. After the fragment conflict
graph is generated, it may be advantageous to remove non-erroneous fragments to minimize
our objective function. Nevertheless, this ratio is a good indicator of the quality of the output.
For 1000 runs of the 30 SNP dataset we observed an overall ratio of 6.73; and for 100 runs
of the 3434 SNP dataset we observed a ratio of 5.72. Further improvements to this type of
algorithmic strategy for this problem is the subject of future work.

We've presented statistical estimates of coverage needed to cover a percentage of SNPs on
a genome. These estimates could provide valuable insight when deciding sequence coverage
per individual in association studies employing NGS technology. We’ve suggested a practical
algorithmic strategy that exploits the high coverage possible with next-generation sequencing
technology and the structure of errors in the fragment conflict graph. This algorithm produces
promising results on the simulated fragment conflict graphs. We have presented an algorithm
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Fig. 4. Fragment conflict graph for two unrelated individuals. Green vertices denote fragments originating
from the CEU individual. The baseline for each graph is: Read length L = 50; Coverage ¢ = 4; distance
between reads is Poisson with A = 2000. From bottom left clockwise: (1) Distance between reads is Poisson
with A = {1000, 2000, 5000, 10000} which is selected uniformly at random. (2) Coverage is changed to ¢ = 10.
(3) Read length is changed to L = 1000. (4) Coverage is ¢ = 10, read length is L = 1000, and distance between
reads is varied from {1000, 2000, 5000, 10000} .

Fig. 5. Fragment conflict graph for two individuals sharing one haplotype. Green and red vertices denote
fragments originating from different individuals. Read length L = 50. Coverage ¢ = 4. The distance between
reads is Poisson with A = 2000.

for finding and exploiting haplotype sharing in the fragment conflict graph to enable the
reliable phasing of disconnected components. We’ve also shown through simulation how various
genomic and experimental parameters impact the quality of the haplotype assembly.
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