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This article explains the statistical and computational methodology used to analyze species abun-
dances collected using the LNBL Phylochip in a study of Irritable Bowel Syndrome (IBS) in rats.

Some tools already available for the analysis of ordinary microarray data are useful in this type
of statistical analysis. For instance in correcting for multiple testing we use Family Wise Error rate
control and step-down tests (available in the multtest package). Once the most significant species
are chosen we use the hypergeometric tests familiar for testing GO categories to test specific phyla
and families.

We provide examples of normalization, multivariate projections, batch effect detection and in-
tegration of phylogenetic covariation, as well as tree equalization and robustification methods.
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1. Introduction

We present here some examples of using robust multivariate methods for the specific challenges
of microbiome studies. We use as a running example a comparative study of microbiological
communities in healthy and IBS rats sampled at different locations in the intestine. The
results of the biological analysis have been submitted elsewhere,1 we concentrate here on the
statistical and computational challenges involved in such a project.



September 20, 2010 15:55 WSPC - Proceedings Trim Size: 11in x 8.5in phylochip09n

1.1. IBS in humans and rats

It is believed that alterations in the microflora of humans with IBS comes from changes in
colonic fermentation patterns as has been described in King et al.2 Recently, some research
groups have been able to use culture-independent methods and deep high throughput 16S ri-
bosomal RNA gene sequencing to demonstrate significant differences in the microbiome of IBS
patients.3,4 The complexity induced by high individual variation of the microbiome suggested
that a good starting point in this comparative study would be a rodent model that mimics
the human condition. We have as our working hypothesis that the enteric microflora of adult
rats with colonic hypersensitivity would differ from that of controls. We use a comprehensive
and relatively simple way of studying the microflora using a 16S rRNA gene DNA microar-
ray called the Phylochip.5 The Phylochip has the advantage over high-throughput sequencing
assays in that it is designed to detect presence and abundance of individual species. A major
drawback of utilizing the Phylochip platform for this project was that the chip design was not
specific to the intestinal microbiome and as a consequence there is a very unequal resolution in
certain phyla, representing unequal knowledge about prokaryotic constituents of these phyla.

1.2. The data and software platform

Data were collected on the microbial community of different sections of the large bowel of
rats with colonic hypersensitivity induced by neonatal acetic acid irritation. This microar-
ray consists of 500,000 oligonucleotide probes capable of identifying 8743 of bacteria and
archaea and provides a comprehensive census for presence and relative abundance of most
known prokaryotes in a massive parallel assay. This array uses the the GeneChip (Affymetrix
Corporation) technology, thus we could use the Bioconductor6 suite of tools for annotation7

and normalization of the data in the same way as is usual for microarray studies.8 We then
used multivariate methods to visualize comparisons between different groupings of the data
enabling us to enhance our quality control of the experimental protocol.

We then separated the data into consistently present species and those presenting higher
variability. Previous computational approaches include the use of the weighted unifrac

(Wasserstein distance9) between communities.10 Here we take a geometrical approach to the vi-
sualization and detection of various multidimensional biases and changes in variability, as well
as the combination of phylogenetic and low rank information. This is more akin to Purdom11

who also combines phylogenetic and abundance data, but for PCR sequenced phylotypes.
Figure 1(a) shows a diagram of the data analysis workflow we chose to follow.

2. Details of the Data Analysis Procedures

2.1. Prefiltering and Normalization of the Microarray Data

We created and used a custom-tailored package containing the annotation of all the probes
on the Phylochip using the makecdfenv7 package. As with standard expression data, the data
need to be preprocessed to ensure that the variance was independent of the level of abundance
as described in Durbin et al12 and implemented in the vsn package8 in the Bioconductor6 suite
of R13 packages. Figure 1 (b) shows the densities of each of the arrays in the two groups after
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variance stabilizing normalization.
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(a) Different stages of Data Analysis
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(b) Density after variance stabilizing transformations.

Fig. 1: Tools were transposed from the standard microarray analyses

3. Batch Effect Detection using projections on Principal Planes

A standard principal component analysis was done on the centered and scaled abundance
data. In the first set of data, we had originally 24 samples, 12 from IBS, 12 from healthy
controls that we wanted to compare, the 12 samples for each group came from 4 locations in
the large intestine, however the first apparent differences came from batch groups. We had a
first batch of samples corresponding to analyses that were done on day 1 consisted of 6 arrays
(3 IBS/3CTL), a second batch 18 arrays (9IBS and 9CTL), done on a second date with a
different protocol and array batch. We used the additional ability provided by the projection
of supplementary group means and variance as in the function s.class in the ade414 package
to explore these batch effects in the laboratory methods used to generate the data. The ellipses
are computed using the means, variances and covariance of each group of points on both axes,
and are drawn with these parameters: the center of the ellipse is centered on the means, its
width and height are given by the variances, and the covariance sets the slope of the main axis
of the ellipse. In Figure 2, on the left we see the first two batches although both balanced with
regards to IBS and healthy rats were extremely different in variability and overall multivariate
location. In order to explore this further, a third batch was generated with the same arrays as
batch 2 but the same experimental protocol as batch 1. We see that the third group faithfully
overlaps with batch 1 thus showing that the batch effect was not due to a difference in arrays
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but to the experimental protocol. This shows the utility of PCA in quality control. After
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Fig. 2: On the left the first plane of the PCA shows the first set of data with two batches and
on the right the third set of arrays was added.

finding this particular effect we redid part of the data collection procedure, using only the
protocol used in batches 1 and 3, we analyzed 24 samples. We also added 8 samples from
mucosal linings, 4 from IBS , 4 for control in each of the 4 intestinal locations. We combined
the data into a 32 column matrix of abundance of 8364 species. Since the abundance data
were extremely variable and we had seen the sensitivity of the data to varying conditions and
protocols we decided to pair the data by location and type. For each pair we had an IBS and
a CTL rat, for a sample collected in the location and in the same way, we used the pairing
design to minimize the biases from experimental artifacts.

3.1. Ranking and Thresholding

In order to deliver a more robust statistical analysis, we ranked the species abundances within
each array: the ranks go from 1 (small) to 8364 (large). This is a standard non parametric
statistical procedure that enhances the stability of the results because a few outliers cannot
bias the analyses. We considered that there were not more than 2000 species present so we
set a threshold at 6000 (this is conservative as for instance a recent study in humans places
the estimate of numbers of species in the human gut at between 1,000 and 1,20015). We thus
suppose that all ranks smaller than 6000 were just noise and set them all to be equal to 6000.
This avoids finding large differences in ranks for species that are only present at the noise level.
We restrict the first part of our analysis here to the species that appeared present in almost
all 32 arrays, ie those that had a ranking larger than 6000 in all but one of the arrays. We
can see the distribution patterns with varying thresholds from 5000 to 8400 in Table 1. As in
microarray studies, it is important to prefilter the species so that only those yielding consistent
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#Arrays 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# > 5000 3997 241 144 91 64 60 55 43 43 37 45 46 41 28 28 38 23
# > 6000 5180 207 136 71 62 48 32 39 38 31 34 25 25 24 24 24 22
# > 7000 6492 120 82 40 32 27 31 13 33 22 22 18 19 12 13 20 17
# > 8000 7737 70 35 25 9 9 10 12 13 12 15 14 9 11 9 11 7
# > 8400 8235 36 24 21 14 6 6 11 10 5 8 5 5 5 6 2 6

#Arrays 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

# > 5000 26 26 38 42 41 33 40 47 56 54 47 59 80 88 167 2766
# > 6000 24 20 22 20 26 28 46 43 41 41 45 40 46 72 109 1989
# > 7000 14 18 18 25 18 20 26 22 18 21 19 26 30 59 83 1204
# > 8000 11 7 11 11 11 10 9 16 9 12 13 12 18 23 38 415
# > 8400 7 2 8 4 5 7 6 13 10 5 5 5 6 16 18 112

Table 1: Tables showing the number of species present at a given level of abundance as
measured by ranks in 0,1,2,. . . ,32 arrays. We can see in particular that there are about 2,000
species present at least at the rank 6000 in all 32 arrays and about 415 which are highly
abundant (> 8000) in all arrays.

signals enter the analysis. In particular, this is important for various testing procedures we will
use later (testing for differences between IBS and CTL), where having extra non-meaningful
species costs us extra power requiring us to perform more tests than necessary. Table 1 is the
basis of most of the prefiltering presented in the paper.

4. Incorporating and adjusting the phylogenetic information

4.1. Difficulty with the Original Tree: heterogeneous levels of resolution

We entered the complete phylogeny of 16sRNA provided by GreenGenes into the R13 package
ape.16 We can see in the left tree of Figure 3 that the phylogenetic tree of all the bacteria
tested for on the microarrays is not ultra-metric. That is, not every species is at the same
distance from the root. When looking at the phylogenetic tree (Figure 3), it is evident that
some areas of the tree have much greater resolution than others. The problem with this is that
some species of bacteria are probed multiple times by the array. Therefore, they have more
chances than other bacteria of showing significance under the null hypothesis. For example, of
the 158 bacteria found to be significantly over- or under-abundant in IBS rats at the α = 0.05
level in the first dataset (excluding the mucosal samples), nine are C. leptum, ten are R.
hansenii, and ten are P. ruminicola. One of the questions that must be answered is whether
or not higher resolution in certain areas of the phylogenetic tree caused these species to be
over-represented among the bacteria of interest. We will see below that the hypergeometric
test provides a way to control the phylogenetic bias at the higher-order level, but there is a lot
of information lost when we look only at phyla. In an attempt to conserve information while
correcting for this oversampling in certain regions, we also propose a method for collapsing
the tree by merging the tips of related species with similar microarray intensities.
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Fig. 3: On the left, we have the tree of all operational taxonomic units (otus) present on the
Phylochip, we can observe that the distance to the root of many of the otus is variable, thus
indicating a heterogeneous degree of resolution. The two trees on the right are filtered trees
representing only the 400 most abundant species. The blue tree on the right was computed
by using the collapsing algorithm presented in this section, we see that the long right clade
at the bottom of the middle tree has disappeared.

The idea is to control for over-resolution by merging tips of the clades that are more
resolved, creating a more level playing field for the multiple testing. We used the length
from the root of the tree as the main parameter for collapsing tips. That is, for any two
species further from the root than the given maximum distance, we try to merge the two tips.
However, merging is only done if the microarray data from the two species are similar enough
to be merged. Tips are only merged if there is a low enough variance across the bacteria for
each microarray measurement. What is a low enough variance, however, is difficult to define.
For the purposes of the analysis here, we used a bootstrap procedure17 that estimated the
q = 0.9-quantile for a random collection of groups of size n bacteria. This served as the cutoff
of what could be considered a small enough variability within that clade. A collection of n
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bacteria is merged only when all their tips are farther than the maximum length from root
and p = 80% of the 32 variances across the collection (one for each microarray) are below the
computed thresholds. These were arbitrary thresholds that we have only evaluated empirically
by running the algorithm with varying values for n, q and p.

4.2. Consistently Abundant Species and their place on the Tree

Here we chose about the top 100 most consistently abundant species following the choice
of a threshold of about 8400 as in Table 1. Here we show how we can use the enhanced
plotting facilities in R through the Lattice compatible packages, we can plot the complete
tree, identifying the part of the tree which is covered by a subset of species.
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Fig. 4: The left tree shows the complete tree on all species in black with the subtree of most
abundant species in red, this subtree is the one plotted on the next panel. Values of abundance
in CTL and IBS rats are plotted in the next two columns, the pink/blue scaled variables are
the truncated rank differences between the two groups.
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4.3. Highly variable species

We concentrate now on the species which are abundant enough to be considered consistently
present (more than 15 out of 32 arrays over 7800) but that also show high variability (standard
deviation above 150). These values were arbitrarily chosen to retain about 100 species. There
were actually 99 such species for which we had complete annotation information. We then
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Fig. 5: Principal component analysis of top most abundant and variable species, we see the
Mucosal location is the explanation for the first component, all the mucosal samples have
negative loadings on this factor.

took the results of the PCA analysis and combined them with the tree information by using
the loadings on the first two components (which account for 55% variance) and plotted them
alongside the phylogenetic sub tree of the species we had retained as most variable. This plot
is much easier to read than the projections of long species names in the two dimensional
principal plane. We have colored in red the species that are more abundant in the mucosal
samples.

4.4. Multiple Testing for finding differentially expressed species

The first set of analyses showed that the main differences were batch effects and differences
between the mucosal and other samples, so we decided to proceed by pairing the data by
location, batch and mucosal types, thus removing the extra variance due to these factors.
Thus we proceed into the testing phase using a paired design and we will use corrections made
on the paired t-test rather than the ordinary one. We will use truncated paired differences
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Fig. 6: Complete tree with the subtree of most variable among the consistently abundant
species and the loadings on the first two principal components.

in ranks as input to standard multiple testing programs for finding the adjusted p-values. To
control for false discovery due to multiple testing, p-values were adjusted according to the
Benjamini-Hochberg procedure, which is able to control for FDR given some assumptions on
the expression levels of the bacteria on the microarray. We used the multtest package from
Bioconductor.6

4.5. Significant differences projected onto the Tree

In order to visualize the parts of the phylogenetic tree most influenced by changes in species
abundance between groups we retained the most significantly changed species (up in IBS or
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up in CTL) on the tree and used the facilities available through the ape18 and the lattice19

packages.
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Ruc.gnavus_subgroup clone A11.

Ruc.gnavus_subgroup clone HuCA28

Ruc.hansenii_subgroup GA36

Clostridium boltei

C.xylanolyticum_subgroup equine intestin

Ruc.gnavus_subgroup clone p-57-a5

Lcn.multipara_subgroup clone p-1594-c5

C.aminovalericum_subgroup from anoxic bu

C.thermocellum_subgroup clone p-1062-a5

Btv.fibrisolvens_subgroup Butyrate-produ

C.leptum_subgroup clone p-2573-9F5

C.leptum_subgroup ckncm326-B4-13

Anr.thermoterrenum_group Flexistipes sp.

p-value Species

Fig. 7: The left tree shows the complete tree on all species in black with the subtree of set
of species that show the most significantly differences between CTL and IBS in red in the
second panel. Values of abundance in CTL and IBS rats are plotted in the next two columns,
the next column shows the − log(pvalue), so the largest bars represent the most significantly
different species.

4.6. Category Based Comparisons

We chose as the list of most significant species those that had adjusted p-values lower than
0.05 in the multiple testing procedure detailed above. We created two lists, one for which
the ranked abundances were larger in the IBS, the other for which the ranked abundances
were larger in the CTL group. We wanted to find specific families or phyla that are over-
represented in either of the lists. This is a similar situation as that of testing significance
of Gene Ontology categories for expression studies. We recall that in both situations the
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relevant test is the hypergeometric and that Fisher’s exact test and the hypergeometric test
formulation are equivalent.20 We define the set of prefiltered species (species universe) as
those that passed the threshold test of being present (> 6000) in at least 31 of the arrays (see
Table 1). The chosen species (universe and significant) are then binned by phyla or families,
these categories replace the Gene Ontology categories used in microarray studies. We are
looking for overrepresentation of certain families or phyla. This method is especially relevant
here as the chip does not have equal representation of different families and phyla.

The results and details of the hypergeometric tests can be consulted in Nelson et al, 20101

where we conclude in particular that the IBS had significantly more Bacteriodetes and on the
other hand there is an overrepresentation of Firmicutes in the healthy controls. At the family
level, the results showed that the families of Oxalobacteraceae, Prevotellaceae, Burkholderi-
aceae, Sphingobacteriaceae were significantly overrepresented in IBS rat. Conversely, the most
significantly enriched family in control rats were Lachnospiraceae, including Ruminococcus sp.,
followed by Erysipelotrichaeceae and Clostridiaceae.

5. Summary

Some methods developed for standard microarray studies can be useful in Phylochip studies,
examples shown here include variance stabilization, prefiltering, multiple testing and hyper-
geometric tests.

Batch effects can be detected through multivariate projections using methods such as PCA
complemented with the projections of the relevant means, variance and covariance ellipses on
the principal planes. We concluded that the best way to counter batch effects was then to use
paired differences between subjects if a comparative design is available.

High between subject variability in bacterial abundances suggests the use of ranks is more
effective than the original intensities. This method is known to be robust in the sense that if
some of the abundance values are on very different scales, their effect on the overall outcome
can be minimized by replacing the original values by the ranks within each array. We have
provided an example of such an approach here.

Finally the integration of complex phylogenetic structure is possible through the conjoint
use of the many available packages in R for doing phylogenetics and community analysis. We
have provided an example of a complex combination of plotting trees and results from PCA.
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