
RATE-INDEPENDENT CONSTRUCTS FOR CHEMICAL COMPUTATION∗

PHILLIP SENUM and MARC RIEDEL

Electrical and Computer Engineering, University of Minnesota
Minneapolis, MN 55455
http://cctbio.ece.umn.edu

E-mail: {senu0004, mriedel}@umn.edu

This paper presents a collection of computational modules implemented with chemical reactions:
an inverter, an incrementer, a decrementer, a copier, a comparator, and a multiplier. Unlike previous
schemes for chemical computation, ours produces designs that are dependent only on coarse rate
categories for the reactions (“fast” vs. “slow”). Given such categories, the computation is exact and
independent of the specific reaction rates. We validate our designs through stochastic simulations
of the chemical kinetics. Although conceptual for the time being, our methodology has potential
applications in domains of synthetic biology such as biochemical sensing and drug delivery. We are
exploring DNA-based computation via strand displacement as a possible experimental chassis.

Keywords: synthetic biology; molecular programming; molecular computing; chemical reaction net-
works

1. Introduction

The theory of reaction kinetics underpins our understanding of biological and chemical sys-
tems.1 It is a simple and elegant formalism: chemical reactions define rules according to which
reactants form products; each rule fires at a rate that is proportional to the quantities of
the corresponding reactants that are present. On the computational front, there has been a
wealth of research into efficient methods for simulating chemical reactions, ranging from or-
dinary differential equations (ODEs)2 to stochastic simulation.3 On the mathematical front,
entirely new branches of theory have been developed to characterize the dynamics of chemical
reaction networks.4

Most of this work is from the vantage point of analysis: a set of chemical reaction exists,
designed by nature and perhaps modified by human engineers; the objective is to understand
and characterize its behavior. Comparatively little work has been done at a conceptual level
in tackling the inverse problem of synthesis: how can one design a set of chemical reactions
that implement specific behavior?

Of course, chemical engineers, genetic engineers and other practitioners strive to create
novel functionality all the time. Generally, they begin with existing processes and pathways,
and modify these experimentally to achieve the desired new functionality.5,6 In a sense, much
of the theoretical work on the dynamics of chemical reactions also addresses the synthesis
problem by delineating the range of behaviors that are possible. For instance, theoretical work
has shown that fascinating oscillatory and chaotic behaviors can occur in chemical reaction
networks.7,8

Perhaps the most profound theoretical observation is that chemical reaction networks are,
in fact, computational processes: regardless of the complexity of the dynamics or the subtlety of

∗This research is supported an NSF CAREER Award, #0845650.



the timing, such networks transform input quantities of chemical species into output quantities
through simple primitive operations. The question of the computational power of chemical
reactions has been considered.9 (The answer is interesting and subtle: stochastic chemical
reactions can compute any function – they are “Turing-universal” in the jargon of computer
science. However, deterministic chemical reactions are not so powerful – they are not Turing-
universal.)

One of the great successes of integrated circuit design has been in abstracting and scaling
the design problem. The physical behavior of transistors is understood in terms of differential
equations – say, with models found in tools such as SPICE.10 However, the design of circuits
occurs at more abstract levels – in terms of switches, gates, and modules. Many analogous
levels of abstraction exist for biological systems. These range from molecular dynamics, to
protein networks, to genetic regulatory networks, to signaling pathways, to complete cellular
systems, to multicellular organisms. Several authors have made implicit or explicit connections
between biochemical reactions and digital electronics.11–13

Our contribution is tackle the problem of computation with chemical reactions from a
conceptual vantage point focusing on robustness. Unlike previous schemes for chemical com-
putation, ours produces designs that are dependent only on coarse rate categories for the
reactions (“fast” and “slow”). Given such categories, the computation is exact and indepen-
dent of the specific reaction rates. In particular, it does not matter how fast any “fast” reaction
is relative to another, or how slow any “slow” reaction is relative to another – only that “fast”
reactions are fast relative to “slow” reactions.

In our prior and related work, we have described a variety of computational constructs
with chemical reaction networks, including programming constructs such as “for” and “while”
loops,14 signal processing operations such as filtering,15 and arithmetic operations such as
multiplication, exponentiation and logarithms.14

In this paper, we present designs of chemical reaction networks that implement specific
computational modules: inverters, incrementers, decrementers, copiers, comparators, and mul-
tipliers. In contrast to some of our earlier published constructs, all of these constructs depend
on only two rate categories. Although conceptual for the time being, our methodology has
potential applications in domains of synthetic biology such as biochemical sensing and drug
delivery.

2. Chemical Model

We adopt the model of discrete, stochastic chemical kinetics.3,16 Molecular quantities are
whole numbers (i.e., non-negative integers). Reactions fire and alter these quantities by integer
amounts. The reaction rates are proportional to (1) the quantities of the reacting molecular
types; and (2) rate constants. We aim for robust constructs: systems that compute exact
results independently of specific rate constants. All of our designs are formulated in terms
of two coarse rate constant categories (e.g., “fast” and “slow”). Given such categories, the
computation is exact and independent of the specific reaction rates.

Consider the reaction

X1
fast−−→ X2 + X3. (1)



When this reaction fires, one molecule of X1 is consumed, one of X2 is produced, and one of
X3 is produced. (Accordingly, X1 is called a reactant and X2 and X3 the products.) Consider
what this reaction accomplishes from a computational standpoint. Suppose that it fires until
all molecules of X1 have been consumed. This results in quantities of X2 and X3 equal to the
original quantity of X1, and a new quantity of X1 equal to zero:

X2 = X1

X3 = X1

X1 = 0

Consider the reaction

X1 + X2
fast−−→ X3. (2)

Suppose that it fires until either all molecules of X1 or all molecules of X2 have been consumed.
This results in a quantity of X3 equal to the lesser of the two original quantities:

X3 = min(X1, X2)

X1 = X1 - min(X1, X2)

X2 = X2 - min(X1, X2)

We will present constructs different arithmetical and logical operations in this vein. Each
sets the final quantity of some molecular type as a function of the initial quantities of other
types. The challenge in setting up computation with chemical reactions is that they execute
asynchronously and at variable rates, dependent on factors such as temperature. In spite of
this, we aim to implement computation that does not depend on the rates. We will only speak
of rates in qualitative terms, e.g., “fast” vs. “slow” (in our notation, such qualitative rates are
listed above the arrows for reactions.)

We validate our designs through stochastic simulations of the chemical kinetics.17 First
proposed by Gillespie, stochastic simulation has become the workhorse of computational bi-
ology – the equivalent, one might say, of SPICE for electrical engineering.10 Such simulation
tracks integer quantities of the molecular species, executing reactions at random based on
propensity calculations. Repeated trials are performed and the probability distribution of
different outcomes is estimated by averaging the results.

3. Computational Constructs

In this section, we present a collection of constituent constructs for rate-independent com-
putation: an inverter, an incrementer/decrementer, a copier, and a comparator. In the next
section, we use some of these constructs to implement a multiplier.

An Inverter

We implement an operation that is analogous to that performed by an inverter (i.e., a NOT
gate) in a digital system: given a non-zero quantity (corresponding to logical “1”) we produce



a zero quantity (corresponding to logical “0”). Conversely, given a zero quantity we produce
a non-zero quantity. We accomplish this with a pair of chemical types: the given type, call it
a, and a corresponding “absence indicator” type, call it aab. The reactions generating the
absence indicator are:

∅ slow−−→ aab (3)

a + aab
fast−−→ a (4)

2 aab
fast−−→ aab (5)

Here the symbol ∅ as a reactant indicates that the reaction does not alter the quantity of the
reactant types, perhaps because the quantity of these is large or replenishable.

The first reaction continuously generates molecules of aab, so in the absence of molecules
of a we will have a non-zero quantity of aab in the system. If there are molecules of a present,
then second reaction quickly clobbers any molecules of aab that are generated, so the quantity
of aab will be close to zero. The third reaction ensures that the quantity aab remains small.

We use this simple construct in many of our computational modules.15,18 In general, it can
be used to synchronize steps. Suppose that we want to perform the following:

a → b (6)

b → [operate on b] (7)

Here the second step is an operation that depends on the quantity of b. We do not want
to start consuming molecules of b until the full quantity of it is generated from a. We can
accomplish this with an absence indicator aab:

a → b (8)

aab + b → [operate on b] (9)

3.1. Increment and Decrement Operations

We describe constructs to implement incrementation and decrementation. These operations
form the basis of more complex arithmetical operations, such as multiplication. The inputs
consist of two molecular types g, the “start signal,” and x, the quantity to be incremented
or decremented. We assume that some external source injects molecules of g. Any quantity
can be injected; regardless, the quantity of x is incremented or decremented by exactly one.
The system consumes all the molecules g. Once the quantity reaches zero, another incre-
ment/decrement operation can be performed. The operations proceed as follows:

1) The system waits for the start signal g to be some non-zero quantity.
2) It transfer the quantity of x to a temporary type x′.
3) It sets g to zero.
4) It transfers all but one molecule of x′ back to x.

5a) For a decrement, it removes the last molecule x′.
5b) For an increment, it removes the last molecule of x′ and adds to two molecules to x.



The following reactions implement this scheme. Given molecules of g, a reaction transfers
molecules of x to molecules of x′:

x + g
slow−−→ x′ + g (10)

The following reaction sets the quantity of g to zero. Using the absence indicator mechanism
described in the preceding section, it does so only once all molecules of x have been transfered
to x′:

g + xab
slow−−→ ∅ (11)

Reactions of the form of 3– 5 are needed to generated xab; we omit them here. The following
reaction transfers all but one molecule of x′ back to x. It does so by repeatedly selecting pairs
of x′. In essence, this is a repeated integer division by two. Again, using the absence indicator
mechanism, it proceeds only once all molecules of g have been removed:

g′
ab + 2 x′ fast−−→ x + x′ + x′′ (12)

This reaction also produces molecules of a supplementary type x′′. Note that this reaction is
in the “fast” category. The new type x′′ is consumed by the reaction:

x′′ slow−−→ ∅. (13)

Note that this reaction is in the “slow” category. We introduce x′′ because we cannot directly
use an absence indicator for x′ to detect when Reaction 12 has completed; here x′ is not
completed consumed. Instead, in reactions below we use an absence indicator for x′′. Again,
reactions of the form of 3– 5 are needed to generated x′′

ab; we omit them here.
In Reaction 12, we do not directly use an absence indicator for gab, since that reaction is

in the “fast” rate category. A design restriction for the absence indicator types is that they
should never be directly involved in “fast” reactions. They are produced slowly and consumed
quickly if the corresponding type is present in the system; if they were involved in a “fast”
reaction, there would be competition. We avoid this by transferring the corresponding absence
indicator gab to a secondary type g′

ab via a “slow” reaction:

∅ slow−−→ gab (14)

gab
slow−−→ g′

ab (15)

We setup the absence indicator reactions for both types:

g + gab
fast−−→ g (16)

g + g′
ab

fast−−→ g (17)

2 gab
fast−−→ gab (18)

2 g′
ab

fast−−→ g′
ab. (19)

Finally, we include the following reaction to perform a decrement:

x′′
ab + x′ + g′

ab
slow−−→ ∅ [Decrement] (20)

Or we include the following reaction to perform an increment:

x′′
ab + x′ + g′

ab
slow−−→ 2 x [Increment] (21)



3.2. A Copier

In digital computation, one of the most basic operations is copying a quantity from one register
into another. The programming construct is “set the value of b to be the value of a”:

let b = a;

To implement an equivalent operation with chemical reactions, we could use a reaction that
simply transfers the quantity of a to b:

a → b (22)

However, this is not ideal because this reaction consumes all the molecules of a, setting its
quantity to zero. We would like a chemical construct that copies the quantity without altering
it. The following reaction does not work either:

a → a + b (23)

It just creates more and more molecules of b in the presence of a. A more sophisticated
construct is needed.

In our construct, we have a “request-to-copy” type cr. When an external source injects
molecules of cr, the copy operation proceeds. (The quantity of cr that is injected is irrelevant.)
It produces an output quantity of b equal to the input quantity of a. It leaves the quantity of
a unchanged. The reactions for the copier construct are as follows. Firstly, in the presence of
cr, a reaction transfers the quantity of a to a′:

cr + a
slow−−→ cr + a′ (24)

After all molecules of a have been transferred to a′, the system removes all the molecules of
cr:

cr + aab
slow−−→ ∅ (25)

Here, again, we are using the concept of an absence indicator. (The symbol ∅ as a product
indicates “nothing”, meaning that the type degrades into products that are no longer tracked
or used.) Removing cr ensures that a is copied exactly once. After cr has been removed, a
reaction transfers the quantity of a′ back to a and also creates this same quantity of b:

crab + a′ slow−−→ a + b (26)

We also generate absence indicators aab and crab by the method described above. We note
that, while this construct leaves the quantity of a unchanged after it has finished executing, it
temporarily consumes molecules a, transferring the quantity of these to a′, before transferring
it back. Accordingly, no other constructs should use a in the interim.

3.3. A Comparator

Using our copier construct, we can create a construct that compares the quantities of two
input types and produces an output type if one is greater than the other. For example, let us
assume that we want to compare the quantities of two types a and b:



if (a > b) {
t = TRUE

} else {
t = FALSE

}

If the quantity of a is greater than the quantity of b, the system should produce molecules of
an output type t; otherwise, it should not produce any molecules of t.

Our construct for a comparator is as follows. First, we create temporary copies, c and d, of
the types that we wish to compare, a and b, respectively, using the copier construct described
in the previous section. (We omit these reactions; they are two verbatim copies of the copier
construct, one with a as an input and c as an output, the other with b as an input and d as
an output.) We split the copy request so that the two copiers are not competing for it:

cr
fast−−→ cr1 + cr2 (27)

Now we compare a and b via their respective copies c and d. To start, we first consume
pairs of c and d:

c + d
fast−−→ ∅ (28)

Note that this is a fast reaction; we assume that it fires to completion. The result is that there
are only molecules of c left, or only molecules of d left, or no molecules of c nor d left. Molecules
of the type that originally had a larger quantity have persisted. If the quantities were equal,
then both types were annihilated. We use absence indicators cab and dab to determine which
type was annihilated:

∅ slow−−→ cab (29)

c + cab
fast−−→ c (30)

2 cab
fast−−→ cab (31)

∅ slow−−→ dab (32)

d + dab
fast−−→ d (33)

2 dab
fast−−→ dab (34)

If a was originally greater than b, there will now be a presence of c and an absence of d. We
produce molecules of type t if this condition is met. We preserve the quantities of c and dab;
the amount t that we produce depends on the quantity of a fuel type:

fuel + c + dab
slow−−→ c + dab + t (35)

For robustness, we also add a reaction to destroy t in the case that the asserted condition is
not true:

cab + d + t
slow−−→ cab + d (36)

cab + dab + t
slow−−→ cab + dab (37)

We can readily generalize the construct to all types of logical comparisons. Table 1 lists these
operations and their corresponding reactions.



Table 1. Logical operations via chemical reactions.

Operation Creation Destruction Operation Creation Destruction
a == b aab + bab a + bab a >= b a + bab aab + b

aab + b aab + bab

a > b a + bab aab + b a <= b aab + b a + bab

aab + bab aab + bab

a < b aab + b a + bab a != b aab + b aab + bab

aab + bab a + bab

4. A Multiplier

Building upon the constructs in the last section, we show a construct that multiplies the
quantities of two input types. Multiplication, of course, consists of iterative addition. Consider
the following lines of pseudo-code:

while x > 0 {
z = z + y
x = x - 1

}

The result is that z is equal to x times y. We implement multiplication chemically using
the constructs described in the previous sections: the line z = z + y is implemented with a
copy operation; the line x = x - 1 is implemented using a decrement operation. Only one
additional reaction is needed to handle the while statement.

Firstly, we have reactions that copy the quantity of y to z. We use a “copy-request” sa

type to synchronize iterations; it is supplied from the controlling reaction 52 below.

sa + y
slow−−→ sa + y′ (38)

sa + yab
slow−−→ ∅ (39)

saab + y′ slow−−→ y + z (40)

Secondly, we have reactions that decrement the value of x. We use sb as the signal to begin
the decrement.

x + sb
fast−−→ x′ + sb (41)

sb + xab
slow−−→ ∅ (42)

sbab
slow−−→ sb′

ab (43)

2 x′ + sb′
ab

fast−−→ x′ + x + x′′ (44)

x′′ slow−−→ ∅ (45)

x′ + x′′
ab + sb′

ab
slow−−→ ∅ (46)

2 sb′
ab

fast−−→ sb′
ab (47)

sb′
ab + sb

fast−−→ sb (48)

Thirdly, we have a controlling set of reactions to implement the while statement. This set



generates sa and sb to begin the next iteration, preserving the quantity of x:

x + x′
ab + y′

ab
slow−−→ x + start (49)

start + x′ fast−−→ x′ (50)

start + y′ fast−−→ y′ (51)

start
slow−−→ sa + sb (52)

This set initiates the next iteration of the loop if such an iteration is not already in progress
and if there are still molecules of x in the system. The types x′ and y′ are present when we are
decrementing x or copying y, respectively; thus, they can be used to decide whether we are
currently inside the loop or not. Finally, we generate the four absence indicators according to
the template in Reactions 3– 5.

5. Simulation Results

We validated our constructs using stochastic simulation. Specifically, we performed a time
homogeneous simulation using Gillespie’s “Direct Method”3 with the software package “Cain”
from Caltech.19 In each case, the simulation was run until the quantities of all types except the
absence indicators converged to a steady state. We used a rate constant of 1 for the “slow”
reactions. We tried rate constants between two to four orders of magnitude higher for the
“fast” reactions. (We refer to the ratio of “fast” to “slow” as the rate separation.) For each
of the graphs below, the initial quantity of each type is zero, with the exception of the types
specified.

5.1. Multiplier

Graph 1 shows the output of a single simulated trajectory for our multiplier. We observe
exactly the behavior that we are looking for: the quantity of y cycles exactly 10 times as it
exchanges with y′ and is copied to z; the quantity of z grows steadily up to 100; the quantity
of x decreases once each cycle down to 0. Table 2 presents detailed simulation results, this
time tested for accuracy. Errors generally occur if the system executes too many or too few
iterations. As can be seen, the larger the quantity of x, the more accurate the result, in relative
terms. As expected, the larger the rate separation, the fewer errors we get.

Table 2. Statistical simulation results for “Multiplier” construct

Trial Rate Separation Trajectories x y z Expected z Error
1 100 100 100 50 4954.35 5000 0.91%
2 100 100 50 100 4893.18 5000 2.14%
3 1000 100 100 50 4991.56 5000 0.17%
4 1000 100 50 100 4995.78 5000 0.08%
5 10000 100 100 50 4998.69 5000 < 0.01%
6 10000 100 50 100 4999.14 5000 < 0.01%
7 10000 100 10 20 200.04 200 < 0.01%
8 10000 100 20 10 200.03 200 < 0.01%



5.2. Copier

Graph 2 shows an average simulated trajectory for our copier. Again, we observe exactly the
behavior we expect: the quantity of a drops to 0 almost immediately as it turns into a′; this
is followed by the removal of cr from the system. When the quantity of cr drops to nearly
zero, both a and b rise steadily back to the original quantity of a. Table 3 shows additional
simulation results from our copier, this time tested for accuracy. The copier construct appears
to be quite robust to errors; however, large rate separations do not help as much as they do
for the multiplier. The system seems to prefer a larger injection quantity of cr, but whether
it is larger or smaller than the initial quantity of a is irrelevant.

Table 3. Statistical simulation results for “Copier” construct

Trial Rate Separation Trajectories cr a b Expected b Error
1 100 500 5 100 102.45 100 2.45%
2 100 500 50 100 104.826 100 4.826%
3 1000 500 5 100 100.312 100 0.312%
4 1000 500 50 100 100.516 100 0.516%
5 10000 500 5 100 100.022 100 0.022%
6 10000 500 50 100 100.034 100 0.034%
7 10000 500 5 5000 4938.39 5000 1.232%
8 10000 500 50 5000 4967.26 2 0.655%
9 10000 500 200 5000 4796.38 2 4.072%
10 10000 500 50 2 2 2 4.072%

5.3. Decrementer and Comparator

Graph 3 shows the output of a single simulated trajectory of our decrementer. Exactly twenty
peaks can be seen in the graph, including the initial peak on the far-left margin of the graph.
This is exactly the behavior we are looking for – a decrement by exactly one each cycle. Graphs
4 and 5 display simulation results from our comparator. In Graph 4, t is asserted as we would
expect; in Graph 5, t is not asserted, also as we would expect.

0

20

40

60

80

100

0 50 100 150 200 250

N
u
m

b
er

of
M

ol
ec

u
le

s

Time

Graph 1: Simulated Multiplier, x = 10, y = 10

x
y
z

0

5

10

15

20

0 10 20 30 40 50 60

N
u
m

b
er

of
M

ol
ec

u
le

s

Time

Graph 2: Simulated Copier, a = 20, cr = 10

a
cr
a′

?

??????????????
???

?
??
???

?????????????????????????????????????

?
b

++++++++++++
++
++
++
++
++
++
++
++
++
+++

+++++++++++
+++++++++++++++++

+



0

5

10

15

20

0 50 100 150 200 250 300 350 400

N
u
m

b
er

of
M

ol
ec

u
le

s

Time

Graph 3: Simulated Decrement, x = 20

x

0
100
200
300
400
500
600
700
800
900

0 1 2 3 4 5 6

N
u
m

b
er

of
M

ol
ec

u
le

s

Time

Graph 4: Comparator (a > b), a = 100, b = 50

a
b
t

0

20

40

60

80

100

0 1 2 3 4 5 6

N
u
m

b
er

of
M

ol
ec

u
le

s

Time

Graph 5: Comparator (a > b), a = 50, b = 100

a
b
t

6. Discussion

Our contribution is to tackle the problem of synthesizing computation at a conceptual level,
working not with actual molecular types but rather with abstract types. One might question
whether actual chemical reactions matching our templates can be found. Certainly, engineering
complex new reaction mechanisms through genetic engineering is a formidable task; for in vivo
systems, there are likely to be many experimental constraints on the choice of reactions.20

However, we point to recent work on in vitro computation as a potential application domain
for our ideas.

Through a mechanism called DNA strand-displacement, a group at Caltech has shown
that DNA reactions can emulate the chemical kinetics of nearly any chemical reaction net-
work. Indeed, they provide a compiler that translates abstract chemical reactions of the sort
that we design into specific DNA reactions.21 Recent work has demonstrated both the scale
of computation that is possible with DNA-based computing,22 as well as exciting applica-
tions.23 While conceptual, our work suggest a de novo approach to the design of biological
functions. Potentially this approach is more general in its applicability than methods based
on appropriating and reusing existing biological modules.

References

1. F. Horn and R. Jackson, “General mass action kinetics,” Archive for Rational Mechanics and
Analysis, vol. 47, pp. 81–116, 1972.



2. P. Érdi and J. Tóth, Mathematical Models of Chemical Reactions: Theory and Applications of
Deterministic and Stochastic Models. Manchester University Press, 1989.

3. D. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” Journal of Physical
Chemistry, vol. 81, no. 25, pp. 2340–2361, 1977.

4. S. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry,
and Engineering. Perseus Books, 1994.

5. M. Win, J. Liang, and C. Smolke, “Frameworks for programming biological function through
RNA parts and devices,” Chemistry & Biology, vol. 16, pp. 298–310, 2009.

6. J. Keasling, “Synthetic biology for synthetic chemistry,” ACS Chemical Biology, vol. 3, pp. 64–76,
2008.

7. I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations,
Waves, Patterns, and Chaos. Oxford Univ Press, 1998.

8. K. D. Willamowski and O. E. Rössler, “Irregular oscillations in a realistic abstract quadratic
mass action system,” Zeitschrift fur Naturforschung Section A – A Journal of Physical Sciences,
vol. 35, pp. 317–318, 1980.

9. D. Soloveichik, M. Cook, E. Winfree, and J. Bruck, “Computation with finite stochastic chemical
reaction networks,” Natural Computing, vol. 7, no. 4, 2008.

10. L. Nagel and D. Pederson, “Simulation program with integrated circuit emphasis,” in Midwest
Symposium on Circuit Theory, 1973.

11. R. Weiss, G. E. Homsy, and T. F. Knight, “Toward in vivo digital circuits,” in DIMACS Workshop
on Evolution as Computation, 1999, pp. 1–18.

12. J. C. Anderson, C. A. Voigt, and A. P. Arkin, “A genetic AND gate based on translation control,”
Molecular Systems Biology, vol. 3, no. 133, 2007.

13. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, “An autonomous molecular computer
for logical control of gene expression,” Nature, vol. 429, no. 6990, pp. 423–429, 2004.

14. A. Shea, B. Fett, M. D. Riedel, and K. Parhi, “Writing and compiling code into biochemistry,”
in Proceedings of the Pacific Symposium on Biocomputing, 2010, pp. 456–464.

15. H. Jiang, A. P. Kharam, M. D. Riedel, and K. K. Parhi, “A synthesis flow for digital signal
processing with biomolecular reactions,” in IEEE International Conference on Computer-Aided
Design, 2010.

16. D. T. Gillespie, “Stochastic simulation of chemical kinetics,” Annual Review of Physical Chem-
istry, vol. 58, pp. 35–55, 2006.

17. ——, “A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions,” Journal of Computational Physics, vol. 22, no. 4, pp. 403–434, 1976.

18. A. Kharam, H. Jiang, M. D. Riedel, and K. Parhi, “Binary counting with chemical reactions,”
in Pacific Symposium on Biocomputing, 2011.

19. S. Mauch and M. Stalzer, “Efficient formulations for exact stochastic simulation of chemical
systems,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 99, 2009.

20. R. Weiss, “Cellular computation and communications using engineering genetic regulatory net-
works,” Ph.D. dissertation, MIT, 2003.

21. D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate for chemical kinetics,”
Proceedings of the National Academy of Sciences, vol. 107, no. 12, pp. 5393–5398, 2010.

22. L. Qian and E. Winfree, “A simple DNA gate motif for synthesizing large-scale circuits,” in DNA
Computing, 2009, pp. 70–89.

23. S. Venkataramana, R. M. Dirks, C. T. Ueda, and N. A. Pierce, “Selective cell death mediated
by small conditional RNAs,” Proceedings of the National Academy of Sciences, 2010 (in press).


