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16S rRNA gene sequencing has been widely used for probing the species structure of a variety of
environmental bacterial communities. Alternatively, 16S rRNA gene fragments can be retrieved from
shotgun metagenomic sequences (metagenomes) and used for species profiling. Both approaches have
their limitations—16S rRNA sequencing may be biased because of unequal amplification of species’
16S rRNA genes, whereas shotgun metagenomic sequencing may not be deep enough to detect
the 16S rRNA genes of rare species in a community. However, previous studies showed that these
two approaches give largely similar species profiles for a few bacterial communities. To investigate
this problem in greater detail, we conducted a systematic comparison of these two approaches. We
developed PHYLOSHOP, a pipeline that predicts 16S rRNA gene fragments in metagenomes, reports
the taxonomic assignment of these fragments, and visualizes their taxonomy distribution. Using
PHYLOSHOP, we analyzed 33 metagenomic datasets of human-associated bacterial communities,
and compared the bacterial community structures derived from these metagenomic datasets with
the community structure derived from 16S rRNA gene sequencing (71 datasets). Based on several
statistical tests (including a statistical test proposed here that takes into consideration differences in
sample size), we observed that these two approaches give significantly different community structures
for nearly all the bacterial communities collected from different locations on and in human body,
and that these differences cannot be be explained by differences in sample size and are likely to be
attributed by experimental method.
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1. Introduction

Metagenomics is the study of microbial communities sampled directly from their natural
environment, without prior culturing.1 There has been remarkable progress in this field of
research due to the recent advances of Next Generation Sequencing (NGS) technologies.2

Since over 99.8% of the microbes in some environments cannot be cultured,3 metagenomics
offers a path to the study of their community structures, phylogenetic composition, species
diversity, metabolic capacity, and functional diversity. A motivation for the field is medi-
cal: human microbial flora have long been recognized to be important to human disease and
health, and the human gastrointenstinal tract is one of the most thoroughly surveyed bacte-
rial ecosystems in nature,4 although this ecosystem remains incompletely characterized and
its diversity poorly defined.5 It is essential to evaluate not only the species diversity of micro-
bial communities but also to analyze how the species structures of those communities change
over time and space.6 The National Institute of Health has initiated the Human Microbiome
Project (HMP) with the mission of generating resources enabling comprehensive character-
ization of the human microbiota and the analysis of its role in human health and disease
(http://nihroadmap.nih.gov/hmp/).7

16S rRNA gene profiling has been applied to the analysis of the genetic diversity of com-
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plex bacterial populations since the middle 1990s,8 and is one of the primary steps in any
metagenomics project. The application of 16S rRNA profiling has recently been boosted by ad-
vances in DNA sequencing techniques and the application of barcoded pyrosequencing.9 NGS
technologies—including 454 and Illumina sequencers—use 16S rRNA amplification primers
targetting hypervariable regions, although it is still arguable which regions are best for species
profiling: 16S rRNA genes contain nine hypervariable regions (V1–V9) that demonstrate con-
siderable and differential sequence diversity among different bacteria. Although no single hy-
pervariable region is able to distinguish among all the bacteria,10 hypervariable regions V2
(nuceotides 137–242), V3 (nucleotides 433-497) and V6 (nucleotides 986–1043) contain the
maximum heterogeneity and provide the maximum discriminating power for analyzing bacte-
rial groups10 . Barcoded pyrosequencing can produce large 16S rRNA datasets that contain
hundreds of thousands of 16S RNAs fragments,11 enabling deep views into hundreds of bac-
terial communities simultaneously, and have revealed much greater species diversity in many
environments (e.g., soil, ocean water, and human bodies) than previously anticipated.

16S rRNA based analysis of metagenomic samples is complicated by several artifacts, in-
cluding chimeric sequences caused by PCR amplification and sequencing errors.12 According
to a study by Ashelford K.E et al, at least 1 in 20 16S rRNA sequences currently in pub-
lic repositories contains substantial anomalies,13 and it was shown in one study12 that some
metagenomics projects may overestimate the species diversity because of the presence of se-
quencing errors and chimeric sequences.

Whole genome shotgun (WGS) sequencing of environmental DNA can also be used to study
the species composition and diversity of natural bacterial communities,14–16 and an increasing
numbers of shotgun metagenomic sequencing datasets have been produced for various bac-
terial communities. Although shotgun metagenomic sequencing does not involve the biased
amplification of 16S rRNA genes, the relative organism abundances inferred from metage-
nomic sequences vary significantly depending on the DNA extraction and sequencing protocol
utilized.17 Furthermore, shotgun metagenomic sequencing is generally not deep enough to de-
tect rare species in complex communities.18 Still, previous studies have shown that these two
approaches give largely similar (although not identical in detail) pictures of the species struc-
ture for bacterial communities; for instance, Kalyuzhnaya et al18 reported that the taxonomic
distribution of 16S rRNA gene sequences derived from metagenomes is similar to distributions
inferred from PCR-amplified libraries.19

Here we carry out a systematic comparison of these two approaches. We developed PHY-
LOSHOP, a pipeline that extracts 16S rRNA gene fragments from metagenomic sequences,
reports the taxonomic assignment of the identified 16S rRNA fragments, and visualizes the
taxonomy distribution. The bacterial community of a sample inferred from the identified 16S
rRNA gene fragments can then be compared to the community derived from 16S rRNA gene
sequencing, using the UniFrac metric,20 which measures the phylogenetic distance between
two sets of taxa, one for each community, on a phylogenetic tree as the fraction of the branch
length of the tree that leads to descendants from one environment or the other. For a group of
communities, a matrix of pairwise UniFrac measures can be prepared, and further subjected
to Principal Coordinates Analysis (PCoA, a multivariate method that represents distance, or
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similarity measures, in the space of principal coordinates)21 to study the relationship between
communities. We used a P test, a commonly used phylogenetic approach to assess commu-
nity differentiation.20,22 For a given set of sequences sampled from multiple communitites, the
P test estimates the minimum number of changes (switch from one community to another)
required to explain the observed species distribution, and computes the significance of the
difference by determining the expected number of changes, under the null hypothesis that the
communities from which the sequences are sampled do not covary with phylogeny.22 Since a
significantly smaller number of 16S rRNA gene fragments can be extracted from metagenomic
datasets, as compared to a 16S rRNA gene sequencing project, we also propose a new sta-
tistical test for comparing the community diversities that are inferred from collections of 16S
rRNA gene fragments with vastly different numbers.

2. Methods

2.1. PHYLOSHOP: extracting and annotating 16S rRNA gene fragments
from metagenomes

The PHYLOSHOP pipeline (Figure 1) includes the following steps.

(a) 16S rRNA sequence calling. If the given sequences are metagenomic sequences, 16S rRNA
gene fragments are predicted by a HMMER search (see 2.1.1).23,24

(b) Chimeric sequence checking. 16S rRNA gene fragments are examined for chimeras using
ChimeraSlayer and putative chimeras are removed (see 2.1.2)

(c) Mapping of 16S rRNA gene fragments. Filtered 16Sr RNA gene fragments are mapped to
a phylogenetic tree of the Greengenes25 core set of 4,938 16S rRNA genes (as of May 2009)
using MEGABLAST (with a default E-valule cutoff of 1e-30). The tree and the sequences
of the core set were downloaded from the Fast UniFrac website (http://128.138.212.
43/fastunifrac). The taxonomic assignments of the core set sequences were obtained
from the Greengenes website (http://greengenes.lbl.gov).

(d) Taxonomic assignment of 16S rRNA gene fragments. PHYLOSHOP classifies the 16S
rRNA gene fragments based on their mapping to the phylogenetic tree of 16S rRNA
genes.

2.1.1. 16S rRNA gene fragment prediction

We used the bacterial 16S rRNA Hidden Markov Model (HMM) of Huang et al23 (downloaded
from http://tools.camera.calit2.net/camera/meta_rna/), which was constructed from
16S rRNA sequences in the European rRNA database. 16S rRNA gene fragments can then
be predicted using HMM scanner (HMMER 3.0 package26) against a dataset of metagenomic
sequences.

2.1.2. Checking chimeric sequences

ChimeraSlayer (http://microbiomeutil.sourceforge.net/) is included in PHYLOSHOP
for detecting chimeric sequences in the samples used for this analysis. As chimeric sequence
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Fig. 1. Schematic representation of the PHYLOSHOP pipeline.

checkers do not work with very short reads (e.g., 100 bps), this option is only available for
relatively long 16S rRNA gene fragments.

2.1.3. PHYLOSHOP output

PHYLOSHOP reports the following results, summarizing the taxonomic assignments of 16S
rRNA sequences at different phylogenetic levels.

(a) Extracted 16S rRNA gene fragments, if the input is a metagenome in FASTA format.
(b) Classified 16S rRNA sequences, with an option for the user to choose the taxonomy

systems—RDP,27 NCBI or Hugenholtz.28

(c) Length distribution of the 16S rRNA sequences classified/extracted in a png figure.
(d) Phylum and genus disribution of the sequences mapped to the Greengenes tree.
(e) Rooted and unrooted trees in png format, showing the number of reads mapped to each

identified species.

2.2. Comparison of bacterial communities

We used Fast UniFrac6 to compare the structure and composition of bacterial communities.

2.3. Statistical test of community structure differences by sampling

A typical 16S rRNA gene sequencing dataset contains many more 16S rRNA gene fragments
than those retrieved from a metagenome, so it is necessary to devise a measure that can be
used to test if the observed difference in species structure between bacterial communities is
statistically different, or if the difference is more likely to be caused by the dramatic difference
in the numbers of 16S rRNA fragments used for inferring the bacterial communities. We pro-
pose a significance test based on multiple random sampling of subsets of 16S rRNA sequences
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from the larger 16S rRNA dataset. Assume there is a sample that has both a metagenomic
and a 16S rRNA sequencing dataset. From the shotgun metagenomic dataset, we extract 16S
rRNA gene fragments and infer the bacterial community (denote as community-m). Denote
the community inferred from the 16S rRNA sequencing dataset as community-s0. From the
16S rRNA sequencing dataset, we generate n subsets of 16S rRNA sequences by random sam-
pling and the inferred bacterial communities are denoted as community-s1, community-s2,
and so on. We use the UniFrac metric to define the distance between two communities; de-
note the UniFrac distance between community-m and community-s0 as d0, and the distance
between the community-m and simulated community-s1, ..., community-sn as d1, d2, ..., and
dn. We define the P-value of the difference between the communities inferred from metage-
nomic sequences and from 16S rRNA sequencing dataset as the fraction of random sampling
experiments that result in distance larger than d0; this value can then be used to evaluate the
significance of observed community differences, when comparing communities that have been
characterized by separate methods.

2.4. Data sets

We analyzed 104 datasets, including 33 (32 gut and 1 oral) shotgun metagenomic datasets
and 71 (42 gut and 29 oral) 16S rRNA sequencing datasets of human-associated bacterial
communities; see Supplementary Tables 1–4 for the details of the datasets. The sequences
were downloaded from CAMERA (http://camera.calit2.net/),29 NIH Sequence Read
Archive (http://www.ncbi.nlm.nih.gov/sra), and MG–RAST (http://metagenomics.
nmpdr.org/).30 Among these datasets, the twin study16 has sequence datasets from both
techniques—shotgun and 16S rRNA sequencing—for 18 individuals (see Table 1).

3. Results

Using PHYLOSHOP, we analyzed 33 metagenomic datasets of human-associated bacterial
communities. We further compared the bacterial community structures derived from these
metagenomic datasets to community structures inferred from 16S rRNA sequencing datasets,
and observed clear differences in the inferred species structures associated with the different
approaches (shotgun metagenomics versus 16S rRNA gene sequencing), in addition to the
differences due to the different human body locations from which the samples were collected.

3.1. Evaluation of 16S rRNA gene fragment prediction

We first need to predict 16S rRNA gene fragments from metagneomic datasets. We com-
pared the performance of 16S rRNA gene prediction by HMMER search23 (implemented in
the PHYLOSHOP pipeline) to predictions from the MG-RAST server, which uses BLAST
searches against the Greengenes sequences. The comparison shows that HMMER searchs pre-
dicted slightly more 16S rRNA gene fragments in 11 out of the 17 metagenomic datasets
shown in Figure 2. The difference is not significant, but considering that the HMMER search
method is efficient and has shown high specificity and sensitivity in predicting 16S rRNA gene
fragments,23 we chose to use this method in the PHYLOSHOP pipeline. We then used 16S
rRNA gene predictions from the PHYLOSHOP pipeline for the following analysis.
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Table 1. Summary of the 18 gut samples that have both metagenomic datasets and 16S rRNA se-
quencing datasets.

Individuals Metagenomic datasets 16S rRNA datasets Significantly different?d

Readsa Lengthb 16S rRNAc Reads Length P teste Our methodf

TS1 217,386 238 464 25,140 126 Yes Yes
TS2 443,526 178 658 42,186 126 Yes Yes
TS3 510,972 201 871 17,726 126 Yes Yes
TS4 414,754 229 731 25,705 126 Yes Yes
TS5 490,776 205 1,108 26,608 126 Yes Yes
TS6 535,763 221 1,207 27,007 126 Yes Yes
TS7 555,853 243 1,310 17,469 126 Yes Yes
TS8 414,497 243 1,036 17,170 126 Yes Yes
TS9 499,499 250 1,024 14,787 126 Yes Yes
TS19 498,880 165 767 43,639 126 Yes Yes
TS20 495,039 198 1045 13,476 126 Yes Yes
TS21 413,772 215 905 23,714 126 Yes Yes
TS28 302,772 335 734 20,905 126 Yes Yes
TS29 502,399 345 1,301 15,698 126 Yes Yes
TS30 495,865 190 961 32,083 126 Yes Yes
TS49 519,072 177 1,028 22,201 126 Yes Yes
TS50 549,700 204 1,446 30,498 126 Yes Yes
TS51 434,187 187 756 22,691 126 Yes Yes

a: the total number of reads. b: the average length of reads. c: the total number of 16S rRNA gene frag-
ments extracted from the metagenomic datasets. d: statistical significance of the difference between two
communities, one inferred from the 16S rRNA sequencing dataset, and the other from the metagenomic
dataset for the same individual. e: P-values for the P test22 (computed using the Fast UniFrac website)
are 0 for all the 18 individuals. f : P-values (computed using our method; see section 2.3) are < 1e-4 for
all the 18 individuals, based on 10,000 sampling experiments for each.
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Fig. 2. Comparison of 16S rRNA prediction methods. The number of reads in each metagenome is shown
above the corresponding bars.
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Fig. 3. Phylum distributions of 18 gut-associated bacterial communities, inferred from 16S rRNA gene se-
quencing and shotgun metagenomics, in the four major (a) and other phyla (b). X-axis shows the percentage,
and the phylum distribution for each individual is shown as a horizontal bar in each plot. Note that some
communities (e.g., the communities in individual 6) have no reads assigned to the minor phya. The NCBI
taxonomy was used, and reads assigned to “Unclassified” taxa were excluded in this analysis.

3.2. 16S rRNA gene sequencing reveals more species

We analyzed the bacterial communities inferred from the 18 gut-associated individuals (see
Table 1) that have both shotgun metagenomic and 16S rRNA gene sequencing datasets. Phylo-
genetic distributions of these samples show that there are clear differences in the relative abun-
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dance of the four major phylum (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacte-
ria) (Figure 3a); e.g., for individual 12 (TS21), the 16S rRNA gene sequencing dataset contains
more reads from Firmicutes as compared to the metagenomic dataset. Figure 3b shows that,
for most of the individuals, 16S rRNA sequencing also reveals more diverse phyla than whole
genome shotgun sequencing. 16S rRNA sequencing data also found a greater diversity within
genera; e.g., 35 Firmicutes genera were identified by 16S rRNA sequencing reads, whereas only
22 genera were identified by metagenomics for individual TS1 (see Supplementary Figure 1).

3.3. Bacterial communities inferred from metagenomes are different from
those inferred from 16S rRNA sequencing reads

P tests for the 18 gut-associated samples show that, for each of these samples, the bacterial
communities inferred from the metagenome and from the corresponding 16S rRNA sequenc-
ing dataset are significantly different (see Table 1). Our sampling-based tests showed similar
results—the difference between the inferred communities can not be explained by the differ-
ent numbers of 16S rRNA sequences. Here we use individual TS50 as an example. The TS50
metagenome includes 549,700 reads with 1,446 16S rRNA gene fragments, while its 16S rRNA
gene sequencing dataset contains 30,498 16S rRNA gene fragments. The UniFrac distance
(weighted) between the communities inferred from the two methods is 0.164. We simulated
10,000 subsets of 16S rRNA gene fragments from the 16S rRNA gene sequencing dataset,
each containing the same number of 16S rRNA gene sequences as in the metagenome, and
computed the community distances between the sampled subsets and the complete 16S rRNA
gene sequencing dataset. The species structures inferred from these sampled subsets are all
significantly more similar to the structure inferred from the complete 16S rRNA gene sequenc-
ing dataset (with an average UniFrac distance of 0.021; see Figure 4 for the distribution of
the distances) than the complete data set is to the metagenomic dataset (0.164).
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Fig. 4. Distribution of the UniFrac distance between a subset and the complete set of 16S rRNA sequencing
data for the TS50 sample, based on 10,000 sampling experiments.
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3.4. Both body location and experimental technique matter

We further analyzed and compared 104 bacterial communities for different body sites inferred
from metagenomes and 16S rRNA sequences, using PCoA. All of the 16S rRNA sequences
(from the 16S rRNA gene sequencing, and extracted from metagenomes) were mapped to
the phylogenetic tree of the core gene set of Greengenes to derive phylogenetic distributions
of 16S rRNA sequences, from which UniFrac distances between any two communities can
be computed. We used both weighted and unweighted UniFrac distances (weighted UniFrac
weights the branches based on abundance information)20 to derive UniFrac distance matrices.
The PCoA results of the two matrices (Figure 5) show that there are at least two factors that
affect community clustering: the body location, and the experimental method. The separation
of the communities by experimental technique is more prominent when unweighted UniFrac
distances were used (Figure 5b). For example, gut samples derived from 16S rRNA gene
sequencing and whole genome shotgun sequencing (note there are 18 gut samples that have
both, see Table 1) are far away from each other in the two-dimensional projection of the
communities.

4. Discussion

Our comparative studies revealed significant differences in the bacterial diversities derived from
16S rRNA gene sequencing and whole genome shotgun sequencing (metagenomics) of the same
sample. These differences are not due simply to the different depths of sampling in the two
methods, and indicate that 16S rRNA gene sequencing can profile the bacterial communities
in a greater detail than can metagenomics. Our results indicate that even when corrected
for depth, conclusions derived from 16S rRNA gene sequencing and shotgun metagenome
sequencing cannot be directly compared. In addition, low abundance species are best identified
through 16S rRNA gene sequencing.

There can be other factors that cause the differences observed between bacterial communi-
ties inferred from 16S rRNA gene sequencing and metagenomics. For example, the 16S rRNA
gene fragments derived from metagenomic datasets may cover different regions as compared to
the 16S rRNA gene fragments from PCA-based pyrosequencing (which often targets a certain
region of 16S rRNA gene). And it has been shown that different regions of 16S rRNA gene
have different sequence diversity,10 and therefore a certain region may serve well for profiling
a certain spectrum of bacteria but not all. Ideally we could do the comparison using only the
16S rRNA gene fragments that cover the same region, but we were only able to extract a small
number of such 16S rRNA gene fragments from the metagenomic datasets we tested. When
bigger metagenomic datasets become available, it will be interesting and necessary to do such
a comparison, using the fragments spanning the same region of 16S rRNA gene derived from
different experimental techniques.

We focused on bacterial communities in this paper, but the PHYLOSHOP pipeline can
easily be extended by incorporating HMMs of other phyla’s RNA genes, such as archarea or
fungi. Notably, the reference tree in this analysis contains only the core set of Greengenes
16sRNA genes, and thus can be further refined. Finally, the rapidly growing numbers of
metagenomic samples in the public domain will provide a more comprehensive resource to
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Fig. 5. Two-dimensional projection of metagenomic samples by using PCoA of the weighted (a) and un-
weighted (b) UniFrac distance matrices of their bacterial communities. The labels of the samples indicate the
source (gut or oral), the research group involved (Gordon,16 Gill,31 and Kurokawa32), and the technique that
was used (shotgun metagenomics in capital letters, and 16S rRNA gene sequencing in lower case letters). For
instance, GUT (Gordon) and gut (Gordon) represent gut-associated metagenome and 16S rRNA datasets,
respectively, which were produced from the same research lab. The gut (Arizona) datasets were downloaded
from the NIH SRA website (accession number: SRP001377).
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conduct our analysis more thoroughly and elaborately, but we suggest that for the foreseeable
future metagenomic projects should be paired with 16S rRNA gene sequencing.

5. Availability

PHYLOSHOP is implemented in Python and the source codes are available for download
at http://omics.informatics.indiana.edu/mg/phyloshop. The supplementary tables and figure
also available in the same website.
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