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Understanding how genetic variants impact the regulation gmekgsion of genes is important for forging
mechanistic links between variants and phenotypes in persamainics studies. In this work, we investigate
statistical interactions among variants that alter gexgression and identify 79 genes showing highly
significant interaction effects consistent with genegtehogeneity. Of the 79 genes, 28 have been linked to
phenotypes through previous genomic studies. We characteeizgrtictural and statistical nature of these
79 cis-epistasis models, and show that interacting regulatory SNé&s lie far apart from each other and can
be quite distant from the gene they regulate. By usmgpistasis models that account for more variance in
gene expression, investigators may improve the power afidafgfity of their genomics studies, and more
accurately estimate an individual's gene expression liewetpving phenotype prediction.

1. Introduction

Epistasis, or gene-gene interaction, is thoughtbéo an important component of complex,
multifactorial diseases due to the monumental ceripyl of biological systems [1]. Over the past
10 years, a wealth of data from model organisms swggported a role for epistasis, [2].
Furthermore, epistasis is one way to account ferpitoblem of “missing heritability”, where the
analysis of single SNPs (single nucleotide polyrhiams) has explained very little of the
heritability estimated from twin and adoption seslifor complex traits [45]. Accounting for
interactions among SNPs may explain a larger portid this heritability [6], expanding our
understanding of the genomics of human diseas@arstnalized medicine.

One often cited potentially causal mechanism ofeggene interaction is due to variation in
multiple genes in similar pathways, protein fansjier genes with similar or redundant biological
function [7, 8]. This generally implies that interaction occbetween genes scattered throughout
the genome due to taans-epistasis effect. Several approaches have bedredyp investigate
these effects in genome-wide association studid2[9

The occurrence of epistatic interactions, howeigenot restricted to variation between distant
genes. Epistatic interactions could also occur betwgenetic variants in close proximity which
may impact transcriptional regulation. Recent wimkestigating the transcriptome of HapMap-
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based cell lines has led to the identification xjfression quantitative trait loci (eQTLS) - genetic
variants that influence the expression of a geBel4]. Veyrieras et al. published an analysis of
gene expression for 11,446 genes from HapMap-bagaghoblastoid cell lines leveraging
genotypes for roughly 3 million single nucleotideymorphisms (SNPs) to identify eQTL SNPs
in a 500 kilobase (kb) window both upstream oftifamscription start site and downstream of the
transcription end site [15]. This work discovere#d lgenes containing at least one significant
eQTL SNP (p<7x18). The single-SNP analysis, however, does not ashesvariance in gene
expression that can be explained by the interacifomultiple SNPs in regulatory regions of the
gene. It has been shown that the underlying mesmsnof gene expression are incredibly
complex, involving the binding of multiple factols DNA to facilitate transcription and mRNA
stability [16]. Furthermore, polymorphisms withime binding sites of multiple factors may alter
binding affinities to various degrees, exertingan4iinear influence on gene expression due to
synergistic effects [1,718]. This principle has been demonstrated withtiplel sclerosis where
severity is impacted by functional effects of twielas in close proximity in the MHC region [19].
Despite the known complexity of gene regulation,|tF®BNP interaction analysis has been
previously examined only for genes having highlyitable expression but lacking single SNP
associations [20]. As a secondary analysis of eQuUsing lymphoblastoid lines isolated from
children with asthma, the authors successfully@rpome of the missing heritability from single
SNP analysis using interactions. From this limiésdessment, the authors conclude that genetic
interactions may have an important role in the l&gn of gene expression. From these points,
we hypothesize that combinations of SNPs withing8@ kb window of potential transcriptional
influence will alter gene expression in humans moa-linear fashion, here dubbed-epistasis.

An analysis of gene expression phenotypes provédesique opportunity to systematically
assess the degree to which epistasis, or nonlinéaractions between genetic variants, might
influence human traits. Linking the HapMap celleliexpression data from [15] with publicly
available genotype data on the same cell linessgisea dense collection of genetic variants in
regions with strong biological plausibility for ndimear multi-SNP interaction within 11,466
quantitative expression outcomes with establishethreffects. Here we leverage this data to
investigate the nature and degree to whithepistasis affects gene expression in humans.
Furthermore, if epistasis plays an important rolenfluencing gene regulation, then it logically
follows that epistasis is an important part of maemplex downstream human disease
phenotypes, as these traits are often associat8#Rs that alter gene expression [21]. Finally,
investigators could prioritize established combored of eQTL SNPs to inform a SNP-SNP
interaction analysis in complex human traits tousslboth the computational and multiple testing
burdens that plague epistasis analysis in highdatiftpput genetic analysis. This would also
motivate reanalysis of existing datasets for mBNiP interactions that influence complex disease,
many of which are publicly available at the databatgenotypes and phenotypes (dbGaP) [22].
Put simply, if a study design which considersepistasis can explain more heritability in gene
expression, then personal genomics studies thatiatéorcis-epistasis should be more fruitful.



2. Methods

2.1. Genotype and Gene Expression Data

As a starting point for these analyses, we retdabe full eQTL results database and normalized
gene expression data from the Veryrieras et al. lysisa (available online:
http://fegtnminer.sourceforge.net/), containing 66,933 results (significant and non-significant)
from 2,437,821 distinct SNPs and 11,466 distinatro@rray probes [15]. These results establish
a mapping between eQTL SNPs and the genes thelategising a 500kb window both upstream
and downstream of the regulated gene. We limitéchradlyses to these SNPs and microarray
probes. Genotype data for these SNPs was retriemedrelease #23 of the International HapMap
project for 210 unrelated individuals, including 80ruba (YRI) and 60 CEPH (CEU) parents,
and 90 unrelated Chinese (CHB) and Japanese EHPiples [23]. Processed gene expression
data was retrieved from (http://egtnminer.souragdaret/) that had been normalized first by
quantile normalization within replicates and theredman normalized across all HapMap
individuals. We then applied the normalizationgadure from [15], which is a Gaussian quantile
normalization for each gene within each populaseparately to avoid results confounded by
population stratification (the distribution of exgsion values within each population is now the
same).

2.2. Statistical Analysis

From the Veryrieras et al. analysis results dambag extracted all SNPs with eQTL p-values
<0.05 and their associated microarray probe -ithatll nominally significant SNPs falling within
500 kb upstream of the transcription start site 20@ kb downstream of the transcription end site.
Based on this data we generated all possible pag-aombinations of associated SNPs for each
microarray probe, constructing 12,107,627 two-SNBdefs in total. For each model, we
performed a multiple linear regression analysisnfit a model with additive main effect terms
(AA =0, Aa = 1, aa = 2) for the two individual SBIRnd a multiplicative interaction term. We
tested for significance of interaction via a stutiem-test of the interaction term coefficient. | Al
regression analyses were conducted using the 'rpagkage for the R statistical computing
environment [24]. Statistical significance wasedetined by controlling the false discovery rate
(FDR) at 0.20, using the 'gvalue’ package availdbieR [25]. Linkage disequilibrium was
computed using PLINK software, analyzing the corebirset of 210 HapMap samples without
phasing using the * r 2' option [26].

2.3. Annotation of Results Using GWAS Catalog

The National Human Genome Research Institute (NH@RIlively maintains a catalog of all
significant (p<1@) findings from published Genome-Wide Associatiomnudies (GWAS)
[27](accessed March, 2010). The National Heart,g,.@md Blood Institute (NHLBI) also recently
released comprehensive open access database GVYAS studies containing 56,411 significant
SNP-phenotype associations [28]. lllumina expresgoobe IDs were matched to transcripts
within the Ensembl database (Release 49). Traisowere matched to Ensembl Genes which



have associated gene symbols within the Ensembbds¢. These symbols were matched to the
"gene" fields in the GWAS catalogs to assess thabmn of matches. We also referenced the

SNPs from our most significant results againsteéhestalogs to determine if any single SNPs in

the regions around our findings were known to iefice any complex human phenotypes.

3. Resaults

3.1. GeneExpression in Humansis|Influenced by Cis-Epistasis

After exhaustively fitting two-SNP models betweenolwn eQTL SNPs surrounding each
microarray probe (12,107,627 two-SNP models inltotae examined the distribution of the p-

values from the interaction term. The full resu#talog from this analysis is available online at
http://chgr.mc.vanderbilt.edu/bushlab/. Figure 1 aisquantile-quantile plot showing that the
distribution of interaction term p-values deviateghly from the expected uniform distribution

under the null hypothesis of no epistasis (diagtina). This indicates that multi-SNP interaction
may be common among eQTL SNPs that influence gemession in humans.

Observed —logyo(p)

Expected —logalp)

Fig. 1. Quantile-quantile plot showing the distribution of observed,{p-values) against the expected
—logio(p-values) for the interaction term among 12,107 @i&#pistasis models. Deviation from the
expected uniform distribution of p-values under the null hymigh@ndicated by the red line) indicates an

abundance of significacts-epistatic interactions.



Because a large number of statistical tests wererpged, we corrected for multiple testing
using the false discovery rate (FDR) method deedrib the methods section. Of the ~12 million
two-SNP interaction models tested with multipleehn regression, 706 were still significant after
correcting for multiple testing. It is of note thaur multiple testing correction is extremely
conservative because our tests of interaction atanmulependent of each other. The deviation
from the null hypothesis of no interaction showrigure 1 suggests that there may be many more
than 706 SNP-SNP interactions truly influencing egezxpression that we are insufficiently
powered to detect when applying our FDR correctibhese 706 significant SNP-SNP interaction
models influenced the expression of 79 unique @obepresentative of 79 unique genes. 706
SNP-SNP interactions reduce to 79 genes becauspl®@NP-SNP pairs are associated with the
same gene. This redundancy is due to LD betwedPs3dross models, for example when SNP 1
of model 1 and SNP 1 of model 2 show strong caicelaHowever, there was relatively weak LD
between the two SNPs participating within the iat&ion; i.e. SNP 1 and SNP 2 of model 1. The
distribution of LD statistics (measured by r2) beém the SNPs in each interacting pair is shown in
Figure 2. The median r2 was 0.043, with a mediatadce between each pair of 108 kb. Taken
together, this suggests that the majority of thestnsggnificant results are indeed epistatic effects
between independent SNPs, not simple haplotypetsffe
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Fig. 2. Density histogram showing distribution of linkage disdayiiim (LD) values (r2) between the most
significant interacting SNP pair influencing expression of 79 gjiafter correcting for multiple testing. r?
was calculated using genotype data from the combined 2¢0dHapMap samples.
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Of the 706 interactions significant after FDR caoti@n, we examined one interaction with the
most significant model fit statistic for each oe#e 79 genes, referencing each regulated gene to
the GWAS results catalog described in the methedsa. The GWAS results catalog contains
SNPs that have been previously associated to arnphrenotype, and the associated gene reported
by the original GWAS publication. We matched thgngicant cis-epistatic interactions to the
GWAS results catalog in two ways: matching the @8eg being regulated to the gene reported in
the GWAS study, and matching SNPs participatindh@é706 interactions to a SNP associated in a
GWAS study. When matching by gene, we found thabf2Be 79 genes regulated tig-epistasis
have been previously reported in studies of appnately 20 human disease and morphological
phenotypes (Table 1a). When matching by SNP, wedal0 additionatis-interactions where
one of the specific SNPs has been associated torom@re disease or morphological phenotypes
in humans (Table 1b). These data indicate tha¢geegulated byis-epistasis are implicated in
human phenotypes.

For the majority the genes in Table 1, examininggle SNP effects on expression only
resulted in a nominal level of statistical sigrgiice (Table 1, columns "eQTL[1/2] P-value").
Examining thecis-epistasis interaction between the two SNPs allowsdo achieve a much
greater degree of statistical significance (Tahledlumns "INT P-value" and "Model P-value").
Furthermore, accounting fans-epistasis allows us to explain a much larger priodqo of the
heritability (variance) in gene expression (Tablecélumn "R3i", which is the difference in
variance explained by the full model accountingtfa interaction, "R%", and the reduced model
with main effects only, "R&y").

3.2. Structural Characterization of Significant Two-SNP I nteractions

3.2.1. Genomic Sructure

Next we examined the genomic structural charadtesi®f the single most significant two-SNP
epistatic interaction that impact the expression dach of these 79 genes. Specifically, we
examined the location of the two eQTL SNPs relativeach other and relative to the transcription
start site (TSS) and transcription end site (TESXhe regulated gene. Based on structural
characteristics, we defined four distinct classésegulatory epistatic interactionsupstream,
where both eQTL SNPs lie upstream of the TSS ofjdree;,downstream, where both eQTL SNPs
lie downstream of the TESpanning, where one eQTL SNP is upstream of the TSS an& Q&
SNP is downstream of the TES; antragenic, where at least one eQTL SNP lies within the genic
region, and the other may be either upstream, divgars, or also in the genic region.

We observed 25 upstream interactions (32%), 18 dtream interactions (23%), 17 spanning
interactions (21%), and 19 intragenic interacti¢2#%). Interestingly, all our significant results
were evenly distributed among the four structutabges, as atest for population proportions
revealed no significant difference from 25%. Howee\this test does not account for gene size or
SNP density in the surrounding region. Small geredess likely to harbor spanning or intragenic
interactions, and perhaps the fact that we obsarveeven distribution of genomic structural
classes is meaningful. Figure 3 shows that the $tuictural classes are distributed evenly among



these most significant 78 s-epistatic interactions. Figure 3 also reveals that distribution of
structural class does not correlate with gene sim@nized vertically along the figure.

3.2.2. Sructure of the Satistical Model

Statistical epistasis is classically defined asdbeiation from additivity in a linear model [29].
We have shown that there are significant nonliredfiacts impacting gene expression throughout
the genome. Next we examined the structure of tatis8cal models of the most significant
interactions impacting the 79 unique genes discusg®ve. Specifically, we examined the
direction of the coefficients of both main effeetrhs and the interaction term in each statistical
model.

Ranked Gene Length
I
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Fig. 3. Transcribed regions of these 79 genes (gray boxealigined by transcription start site, ordered by
gene size. Epistatically interacting SNPs that influgheegene's expression are shown as connected hash
marks, color coded by class: upstream (blue), downstrgeeer(), spanning (gray) and intragenic (red).
Analysis of the genomic structure afs-epistatic interactions reveals that all four strudteftasses are
evenly represented among the most significasepistatic interactions, and that structural class does not
correlate with gene size.



We found that of these 79 significanis-epistasis interactions, the main effect coeffitsen
75 of these models were in the same direction. iBh#tinheriting one copy of the minor allele of
a single variant caused an increase in expressiemain effect of the other SNP also resulted in
an increase in expression. Recall that we onlgtefir SNP-SNP interactions among eQTL SNPs
that had an established main effect. Interestirglyhese 7%is-epistasis models where both main
effects were in the same direction, the statidficginificant interaction term coefficient was in
the opposite direction. That is, if the main effect of each igat alone caused an increase in
expression by units, inheriting both variants resulted in an reggion level that is significantly
lower than the expectedk 2ncrease. Of the remaining four significai-epistasis interactions,
the main effects were in opposing directions. thoee of these four, the main effect coefficient of
one SNP in the model approached zero after acewumtr the interaction. This suggests a
classical modifier effect, where one variant ontgres an effect in the presence of another. In all
three of these models, the presence of the “maod#NP” (3 ~ 0) results in a mitigation of the
main effect of the other SNP.

The pattern of coefficients can be seen by examifiin 3., andi: for the models presented
in Table 1 (showing only models related to a hurphenotype from a GWAS). These results
indicate that the overwhelming majority of sign#it non-additive two-SNP interactions
influencing gene expression represent epistaticetyermeterogeneity rather than multiplicative
effects. We consider this in greater detail indisgussion section below.

We also investigated the possibility that aspe€th® genomic structure of the model might
impact the statistical nature of the interactiodowever these analyses revealed no significant
relationships between genomic structure charatiterigsuch as class or the physical distance
between the two SNPs) to the variance explainéfidRmagnitude of the interaction coefficient.

4. Discussion

In this work we examined eQTL SNPs known to impgebe expression in humans for non-
additive epistatic effects by combining transcrnpeéwide expression data from HapMap
lymphoblastoid cell lines with genome-wide SNP daten the same cell lines. Specifically, we
analyzed over 12 million potential two-SNP interacs for cis-epistasis among SNPs known to
regulate transcription of a nearby gene, and fotlmad multiple independent eQTL SNPs may
often interact to influence gene expression noritaetly. After correcting for multiple testing, we
found 706 highly significantis-epistasis interactions that influence the expogssif 79 unique
genes.

We characterized the genomic and statistical stracof the most significantis-epistasis
model corresponding to each of these 79 genes.wediscovered that in the vast majoritycc
epistasis interactions (1) the main effects arth@same direction, and (2) the interaction was in
the opposite direction. While still considered a nonlinear ¢gii interaction, the structure of this
type of model is referred to asheterogeneity model [30, 31] rather than a multiplicative model.
While we observe primarily heterogeneity-type mededur particular approach using linear
regression may be underpowered to detect model®tioér statistical structures. Genetic
heterogeneity is a serious concern with large-spahetic studies, and is often cited as a reason fo



the widespread lack of replication in GWAS studig@?2, 33]. Because epistatic genetic
heterogeneity may commonly impact regulation ofegerpression, and since SNPs associated to
complex human phenotypes often result in changageoné expression [21], it follows thais-
epistatic genetic heterogeneity could exert a Sganit influence over complex human traits and
should be investigated as such. Others have tgamgued that epistatic genetic heterogeneity
should be considered when analyzing genomic datasi&ociation to disease [34]. Despite the fact
that statistical tools have been available for stime now to accomplish this [386], analyses of
genome-wide datasets accounting for the possilwlitgis-epistasis is a task rarely undertaken.
Accounting for genetic heterogeneity in gene exgic@smay improve the replicability of existing
personal genomics studies.

By matchingcis-epistasis interactions to the GWAS results catalog SNP, we discovered
that of the 79 significarntis-epistasis interactions, 10 contained one SNP pusly associated to
a human phenotype via GWAS studies. Nearly allhelsé associations fall short of “genome-
wide” statistical significance [37] and thus wouldt be reported in the literature as a relevant
gene for the phenotype. Furthermore, the staissgynificance of each single SNP on the
expression of a gene is weak. However, when weidenthe joint effect of both SNPs involved
in thecis-epistasis interaction, we see a dramatic improvenmethe variance of gene expression
explained. As such, we hypothesize that some edehreported associations from the GWAS
catalog would show stronger associations to thengiype if modeled with theicis-epistasis
partner SNP. In light of the prevalence @$-epistatic interactions, these examples provide
motivation to re-examine existing datasets drepistatic effects on human phenotypes. Our
models provide a compelling set of specific reqaiahypotheses to examine in existing data.

Many new approaches have been recently used toiegapistasis in GWAS data [9-12]. All
of these approaches focus on interactions amongsSMEhin genes related to a common
biological mechanism, such as pathways, and stalctr functional similarity. With these
approaches, interaction models consist of SNPs #aah of two distant genes trans-epistasis
effect. In most cases, this precludes the pogsilof capturingcis-epstasis effects. Whikeans-
epistasis effects are likely to be important fompdex disease etiology, we argue thiatepistasis
may be of equal or greater importance, and cougliggandtrans-epistasis analysis methods may
be more successful.

Furthermore, the collection of available tools fthe analysis of multi-locus interactions in
personal genomics studies is not likely to discotrer cis-epstasis effects we describe here.
Knowledge-based approaches generally test modelrans-epistasis (as discussed above).
Sliding window-based haplotype association appresdypically use window sizes based on a
fixed physical distance or number of SNPs [38].eS&happroaches would likely not discowksr
epstasis effects due to the variable and oftereldrgtances between the pairs of regulatory SNPs
within the model (see Figure 3).

Moreover, any gene-based analysis approach that M@ data requires mapping SNPs to
genes. This is exclusively done using either plajsilistance (base-pair proximity) or genetic
distance (linkage disequilibrium). The genomic @aw generated using these approaches is
typically conservative, including a small regionstrepam and downstream of the gene region.
Others have shown in model organisms that regyl&iements exert effects from extremely long



distances [39]. Likewise, the many of the singNPSQTLs used in the examination of this study
illustrate long range regulatory effects [15]. fra@ur analysis, we provide additional evidence
that SNPs can influence the regulation of a gerngestt distances from the transcription start site,
and existing SNP-to-gene mapping approaches shakgdthis into account.

There are several possible molecular phenomena ithey underlie these statistical
observations. SNPs upstream or downstream of the geay alter transcription factor binding
sites or otherwise affect the efficiency of thenseriptional machinery. SNPs may also alter the
binding of micro RNA molecules known to regulategéranscripts. SNPs in untranslated regions
may affect the stability of mRNA molecules. The supof common variation on these processes
is, however, still largely unknown.

We therefore suggest that the re-analysis of egstlatasets and the development of new
analysis approaches take into account the posgithilat long range regulatory interactions could
alter gene expression and thus influence humangbyyees. By accounting for more variance in
gene expression (thus increasing statistical powkid will improve performance of analytical
methods and potentially improve the replicabilify@NAS findings. One basic approach would
be to use the models we have generated as temfdates analysis ofis-epistasis in existing and
future personal genomics studies. The 79 geneddemdified after multiple testing correction
suggest the most compelling casescofepistasis. However, interaction models with less
significant p-values may explain sufficient varianin a gene’s expression to resolve an
association with a phenotype.

One limitation of this study is that whole-trangtoime data was available for only 210
HapMap samples. However dense genome-wide SNRgatailable for 1397 individuals in 11
diverse human sub-populations through the HapMajegtr[23], so if additional gene expression
data were collected we could improve the statispoaver of this analysis to detedis-epistasis
effects. Also, we only considered interactions agneQTL SNPs with a known regulatory effect
(p < 0.05). A reanalysis of this data includingSINPs, (even those without a known regulatory
effect) would be straightforward, perhaps reveahuiglitionalcis-epistasis effects; however this
would cause a power loss from the increased bustletultiple testing correction.

In summary, we have shown that-epistasis is an important phenomenon regulatimg ge
expression in humans. Using this information, wggest ways in which the performance of
existing and future analysis approaches can beowepl; and how additional insights into human
biology and disease pathogenesis could be gained gersonal genomics studies.
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