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Motivation: A grand challenge in the modeling of biological systems is the identification of key
variables which can act as targets for intervention. Good intervention targets are the “key players”
in a system and have significant influence over other variables; in other words, in the context of
diseases such as cancer, targeting these variables with treatments and interventions will provide the
greatest effects because of their direct and indirect control over other parts of the system. Boolean
networks are among the simplest of models, yet they have been shown to adequately model many of
the complex dynamics of biological systems. Often ignored in the Boolean network model, however,
are the so called basins of attraction. As the attractor states alone have been shown to correspond
to cellular phenotypes, it is logical to ask which variables are most responsible for triggering a path
through a basin to a particular attractor.

Results: This work claims that logic minimization (i.e. classical circuit design) of the collections
of states in Boolean network basins of attraction reveals key players in the network. Furthermore, we
claim that the key players identified by this method are often excellent targets for intervention given
a network modeling a biological system, and more importantly, that the key players identified are
not apparent from the attractor states alone, from existing Boolean network measures, or from other
network measurements. We demonstrate these claims with a well-studied yeast cell cycle network
and with a WNT5A network for melanoma, computationally predicted from gene expression data.
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1. Introduction

Biological systems are complex in many dimensions as endless transportation and communi-
cation networks all function simultaneously. While differential equation models are the most
comprehensive at capturing and modeling the true dynamic behaviors of a real biological sys-
tem,1 the use of such a framework requires supplying precise model parameters, most of which
are not readily measurable with current technologies.

Boolean networks are among the simplest of models, yet they have been shown to ade-
quately model many of the complex dynamics of biological systems. Their popularity is also
based on the ease of distilling our knowledge about a particular biological process to positive
and negative pair-wise relationships. Since seminal work by Stuart Kauffman in the 1960s
relating network attractor states to cell fate,2 Boolean network dynamics have been studied
and related to various biological phenomena. In addition to Boolean networks, many other
graphical models have become popular in the modeling of biological interactions, with one in-
teresting property often being the biological significance of network hubs (though this is also
a contested view3). Specifically, vertices (or nodes) in networks with high degree (also known
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as network hubs) have often been found to have higher biological significance than those less
connected nodes in the same network, especially in scale-free networks. Thus, some simple
topological analysis, including network centrality measures, can help to identify interesting
variables and possibly even targets for intervention.

Wuensche4 and others also have studied basins of attraction in Boolean network models of
genomic regulation, specifically the relationship of their structures to the stability of attractors
(cell types) in the face of perturbations. However, because of the size and transient nature of
basins of attraction, they are often neglected in analysis in favor of the attractor states.

As a basin of attraction is a collection of states leading into a corresponding attractor, i.e.
phenotype, careful analysis of these basins could reveal interesting biological characteristics
that determine cell fate. In this study we employ a logic reduction algorithm to reduce the
Boolean states comprising our basins of attraction to their minimal representations, and it is
from these minimizations that we identify intervention targets.

2. Background

Despite its simplicity, the Boolean network model has proven to be quite viable at approxi-
mating certain aspects of biological processes. For example, it has been used to simulate the
yeast cell cycle,5 which we look at closely in this work. It has also been used to simulate the
expression pattern of segment polarity genes in Drosophila melanogaster ,6 as well as the vocal
communication system of the songbird brain.7,8 Since we are investigating within a model-
ing and simulation framework, we employ the often used assumption of synchronous update;
however, studies on modeling and analysis of asynchronous update in the context of random
Boolean networks can be found.9–12

Since Kauffman’s seminal work there have been countless variations and extensions of the
use of Boolean networks for modeling biological systems, and various inference procedures have
been proposed for them.13–15 Shmulevich et al.16 pioneered work on a stochastic extension to
the model called probabilistic Boolean networks (PBNs), which share the rule-based nature
of Boolean networks but also handle uncertainty. Within this extended framework of PBNs,
studies focusing on external system control were performed by Datta et al.;17,18 studies by Pal
et al.19 and Choudhary et al.20 explored intervention in PBNs to avoid undesirable states.

One major shortcoming of Boolean networks is the exponential growth of the state space
with the number of variables, prompting others to work in the Boolean framework itself to
achieve some kind of improvement. The approach of Richardson21 attempted to shrink the
size of the state space through the careful removal of “frozen nodes” and network leaf nodes.
The smaller state space then lends itself more readily to the discovery of attractors and basins
by sampling methods. Dubrova et al.22 explored properties of random Boolean networks,
particularly their robustness in the face of topological changes and the removal of “redundant
vertices”, thus shrinking the state space. While effective in shrinking the space and removing
extraneous nodes, neither of these methods is looking for key players in a system or possible
intervention targets; in fact both methods have the chance of eliminating such variables.

In an attempt to achieve certain analysis goals, various authors modified or translated the
Boolean formalism into another framework. Saez et al.23 as well as Schlatter et al.24 converted
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their Boolean models of biological systems into hypergraphs, generalizing graphs with edges
connecting sets of vertices instead of just pairs or singletons, thus lending themselves to
representing Boolean functions. Both papers use analysis techniques to identify important
pathways, network motifs and feedback loops. The work of Schlatter et al.also mentions the
discovery of relevant hubs in the network. Steggles et al.25 employed a classic concept of
converting to a different graphical structure, Petri nets. In making this conversion, they used
the logic minimization technique we employ (discussed below), albeit in a different way.

Maji and Pradipta26 did not use a Boolean network but nonetheless work with the notion
of state transition using a related discrete model: fuzzy cellular automata. Their work uses
multi-valued logic and presents a new way of identifying attractor basins; however it does not
focus on the identification of intervention targets in the system. Mar and Quackenbush27 also
employed the notion of a state transition space without the direct use of a Boolean network.
Using their regression model they strive to classify core variables (genes in their case) as they
decompose state space trajectories. Their method, however, is dependent on time-course data,
and furthermore its primary focus is at the pathway level and not the variable level.

In this work we stay with the classical formulation of Boolean networks but concentrate
on the basins of attraction themselves to identify the key variables in the system. While
limited by the exponential complexity inherent to Boolean network state spaces, we work here
with tractible network sizes and describe plans to expand to larger networks in the future.
Recently,28 we successfully used the same yeast network as this study, a human aging network,
as well as a version of the WNT5A network for melanoma also presented here in order to study
the planning of interventions in biological networks. The intervention targets selected by the
Artificial Intelligence planning techniques in that work are in agreement with intervention
targets suggested by the methodology presented in this work.

In the coming sections we first formally define our methodology with a sample network
and example. Then, we apply our methodology to a well-studied genetic model of the yeast
cell cycle. Following this proof of concept we apply our methodology to a WNT5A network
computationally predicted from a melanoma gene expression data set. The reader is also
referred to our technical report29 for an additional application to the aforementioned human
aging network. We conclude with some comments on our current and future work.

3. Methods

In this section we formally define our methodology. We first briefly summarize the Boolean
network formalism and touch upon a basic description of logic reduction. Finally we discuss
some measures used in the identification of important variables and intervention targets and
then apply all of this to an example network. The reader is referred to our previous technical
report29 for more on the Boolean network formulation, a smaller example, as well as further
description of logic reduction; Xiao and Yufei30 also add to the description of Boolean networks.

3.1. Boolean Networks

A Boolean network B(V, f) is made of a set of binary nodes V = {x1, x2, · · · , xn}, where
xi ∈ 0, 1, and a set of functions f = {f1, f2, · · · , fn} that define a state of x at time (t + 1)



September 21, 2010 15:38 WSPC - Proceedings Trim Size: 11in x 8.5in document˙revSK

as x(t + 1) = fi(xi1(t), xi2(t), ..., xiki
(t)), where fi is a Boolean function and ki is called the

connectivity of xi. The state transition diagram G(S,E) of a Boolean network B(V, f) with
n nodes is a directed graph where |S|= |E|= 2n. Each of the vertices represents one possible
configuration of the n variables in the network and each of the directed edges represents the
transition between two states as Boolean functions are synchronously applied to all variables.

In the absence of interventions or perturbations, beginning in any initial state, re-
peated application of transition functions will bring the network to a finite set of states,
{a1,a2, · · · ,am} ⊆ S and cycle among them forever in fixed sequence. This set of states is
known as an attractor, denoted A. An attractor with just one state is called a singleton at-
tractor and an attractor with more than one state is called a cyclic attractor. Boolean networks
may have anywhere from one cyclic attractor comprised of 2n states to 2n point attractors,
although most commonly a network will have just a handful of singleton or short-cycle at-
tractors. The complete set of states from which a network will eventually reach A is known
as the basin of attraction for A, denoted B = {b1,b2, · · · ,bM} ⊆ S. All attractors are subsets
of their basins (i.e. Ai ⊆ Bi,∀i), all basins are mutually exclusive (i.e. Bi

∩
Bj = ∅,∀i,j , i ̸= j),

and the complete state space is comprised entirely of all basins (i.e.
∪

iBi = S). In this study
we use the BN/PBN Toolbox31 for Boolean network simulation and processing.

3.2. Logic Minimization

Logic minimization (or reduction) is a classic problem from digital circuit design employed
to reduce the number of actual logic gates needed to implement a given function.32 With
careful logic minimization one can reduce the number of gates required and thus include more
functionality on a single chip. Minimization identifies variables which have no influence on the
outcome of a function and marks them appropriately as a don’t-care. As a simple example, we
take the Boolean function: (A∧B)∨ (¬A∧B) (2 signals, 4 gates). Since the role of A changes
while B remains ON with the same output, it is clear to see that the only influencing variable
is B, which can be given with just that signal itself (a single gate).

In this study, we use Espresso,33 which is a heuristic logic minimizer designed to efficiently
reduce logic complexity even for large problems. We supply as input the set of states in a
particular basin of attraction (Bi); this input comprises the ON-cover (or truth table) in
disjunctive normal form (DNF) for a Boolean function whose output is ON for the states of
Bi ({b1 ∨ b2 ∨ · · · ∨ bMi

} 7→ ON) and whose output is OFF for the states of S \Bi. Espresso
analyzes this cover and returns a minimal (though not necessarily unique) DNF set comprised
of one or more terms, denoted Ti = {t1, t2, · · · , tNi

}, where Ni ≤ Mi. These ti have some
variables set to ON, some set to OFF, and some set as don’t-care. The presence of these
don’t-care variables in some terms is what allows the reduction.

3.3. Measures: Popularity, Term Power and Variable Power

After applying logic minimization to a set of Boolean functions one is left with a minimal
DNF representation comprised of a set of terms containing ones, zeros, and don’t-cares. We
have shown how to spot important variables in a very small example,29 but a more formalized
method is needed to identify key variables and possible targets for intervention from the
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minimized terms in larger problems. To this end we introduce three simple measures. The
first is to measure how frequently a variable (v) is required to be ON or OFF across different
terms, called Popularity (p), and is defined as:

p(v) =
z(v)

Ni
, (1)

where z(v) =
∑Ni

j=1 I (v, tj), Ni is the total number of terms in Ti, and I(v, tj) is an indicator
function: 1 when v is ON or OFF in tj, 0 otherwise. Next, we define a measure to identify
terms where a few variables demonstrate supremacy over many others. These terms are pow-
erful due to the combinatorial effect of their few set variables. If a five-variable term has one
variable set and four listed as don’t-cares, that one set variable controls 16 configurations
covered by the don’t-care variables (half of the state space). This term would be more pow-
erful than a term with two variables set and three don’t-cares. Formally, Term Power (PT ) is
defined as:

PT (t) = 1− 1

n

n∑
j=1

I (vj , t), (2)

where n is the number of variables in the term (and network). Term Power is used in calculating
our third measure. Given the notion of term power, one can also consider variables which
preside over powerful terms to be potentially important and powerful intervention targets.
Variable Power (PV ) of a variable v will be defined as the average term power over the terms
in which it is explicitly configured, i.e. v is not don’t-care:

PV (v) =
1

z(v)

Ni∑
j=1

PT (tj) · I (v, tj) (3)

3.4. Other Measures to Identify Key Players

There are various network centrality measures often used in network studies, particularly con-
cerning biological networks, to identify important variables. We have already touched on the
degree of a node, but we also consider the network centrality measures of betweenness, centroid
value, and eccentricity. High betweenness indicates that a variable is crucial in maintaining
connections between other variables. The centroid value for a variable provides a weighted
centrality index. A high eccentricity measure indicates that all other nodes are in proximity.
Full definitions as well as biological explanations can be found in the supplementary informa-
tion of Scardoni et al.,34 but in short, network nodes with high values for these measures can
be correlated with biologically significant nodes, possibly even intervention targets.

For Boolean networks, there are also variable-specific measures known as Influence and
Sensitivity for a variable xi, denoted r(xi) and s(xi), respectively. The reader is referred to
Shmulevich et al.16,35 for formal definitions. In short, in biological Boolean networks, variables
with high influence have the potential to regulate the dynamics of the network, and so they
are of interest to this study. Sensitivity represents the degree to which a variable is affected
by other variables, and so of the most interest are variables with the highest influence and
the lowest sensitivity. Since our measures p and PV are specific to each basin, this presents an
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unfair advantage over the network-generality of r(xi) and s(xi). Thus, we extend the measures
shown in Shmulevich et al.16,35 to be specific to a particular basin of attraction by manipulating
the joint probability distribution of the state space; we simply assign a zero probability to any
state not in the basin and assign a uniform probability to states within.

Example: An 8-variable Boolean network:

(a) Network (b) State Transition

Fig. 1: Eight-Variable Example Boolean Network

To show these measures and also our claim regarding the utility of our methodology over
other measures, we create the 8-variable network shown in Fig. 1(a), in which we assign at
most three random inputs and random Boolean functions. Simulation resulted in two basins
of attraction, shown in Fig. 1(b). Basin 1 included 160 states converging on a cyclic attractor
of length two ([01011101] and [11011100]), and Basin 2’s remaining 96 states converged on
another cyclic attractor of length two ([00011100] and [11011101]). Logic reduction reduced
the 160 states in Basin 1 to a set of three terms, and the 96 states of Basin 2 to a set of four
terms: T1 = {[0-----00] ∨ [1-----10] ∨ [1-----01]}, T2 = {[1-----00] ∨ [0-----1-] ∨
[0------1] ∨ [------11]}, where “-” indicates a don’t-care.

After analysis with the measures defined in the previous section, we find, based on high p

and PV , g1, g7 and g8 to be of interest. Because each of g1, g7 and g8 are explicitly configured
in each of three terms for the larger basin and in 3 out of 4 terms in the smaller basin,
their scores for p and PV are each identical and overshadow the remaining variables. In this
example, we again observe that simply identifying vertices in the graph with high degree does
not necessarily reveal important variables. With self-loops removed to prevent inflation of
degree counts, the variables with the highest degree are g2 with six incident edges and g1

with four. From our analysis, g1 is one of the most important variables. However the variable
with the highest degree, g2, has been shown to have no influence at all in our analysis. When
the network centrality measures of betweenness, centroid value, eccentricity and node degree
are calculated for this toy network, we find that g8 is frequently reported with high scores,
just like our approach. r(xi), in fact, identifies g1, g7 and g8 as important, which match our
three best. However, several of the measures, including s(xi), incorrectly dismiss g7, and many
measures also elevate g2, which is shown to have no real intervention capabilities. A table
of all measures can be found on the supplementary website; an illustrated expansion of this
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example, along with a simpler one, can be also be found there, and in our previous report.29

4. Results

In this section we set out to prove the efficacy of our method on real world examples. For this
proof of concept we analyze a Boolean network model of the yeast cell cycle and identify sig-
nificant variables in the system corroborated by its original manuscript. We then demonstrate
our approach on a Boolean network not constructed manually, but rather learned from gene
expression data directly. In our technical report29 we also apply our method to the systems
biology of human aging, where we step away from genetic interactions and demonstrate the
utility of our method on our Boolean network model for human senescence.

4.1. Boolean Network Model for Yeast Cell Cycle and Its Analysis

As a proof of concept on a nonrandom network we will apply our methodology to a well-
studied Boolean network model of the yeast cell cycle5 and show that key variables described
in the manuscript are identified by our approach. In their paper, Li et al. manually construct a
Boolean network modeling the yeast cell cycle using 11 of the most important genes out of the
approximately 800 known to play a role in the process. This network is simulated and results
in seven basins of attraction, one of which is by far the largest and was studied exclusively in
the paper. In this basin of attraction, which included 1,764 states, Li et al. were able to trace
the trajectory of the yeast cell cycle from one of the fringe, or “Garden of Eden”,4 states down
to the eventual point attractor state. The Boolean network adapted from Li et al. is shown in
on the supplementary website, the original paper,5 and our technical report.29

After applying logic minimization to these 1,764 states we are left with a sum of 39
product terms. An abstraction of these terms can be seen in Table 1. In the table the terms
are seen across columns (sorted by PT ), with ones and zeros represented by black and white,
respectively, and don’t-cares shown in grey. Some variables are set frequently and others are
not. Some terms have many requirements, and others have few. The p and PV measures were
calculated for each of the eleven genes in the network. The three most popular variables are
Clb5,6, Clb1,2, and Mcm1. The most powerful variable was identified as Cln3.

Table 1: Minimized Yeast Cell Cycle Basin (Black = 1, White = 0, Grey = don’t-care)

Genes p PV s(x) r(x)

Cln3 0.05 0.82 0.00 1.00

MBF 0.31 0.63 1.50 0.88

SBF 0.38 0.65 1.50 1.50

Cln1,2 0.28 0.56 1.00 0.56

Cdh1 0.36 0.62 1.25 0.56

Swi5 0.21 0.55 1.50 0.31

Cdc20 0.46 0.62 1.00 1.75

Clb5,6 0.54 0.62 1.50 1.75

Sic1 0.46 0.62 1.88 1.00

Clb1,2 0.49 0.62 1.88 3.38

Mcm1 0.49 0.60 1.00 1.31

39 reduced terms across columns
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Starting with the most popular variable, we find that Clb5,6 is required to be in a particular
state 54 percent of the time. Furthermore we find that in each of the 21 terms in which Clb5,6
is in a specific configuration, that configuration is ON, or active. Since the Clb5 gene (part of
the Clb5,6 variable) is described as being responsible for driving the cell into the S phase (in
which the DNA is synthesized and chromosomes are replicated), it seems reasonable to find it
strongly represented in the minimized basin. If the role of Clb5 were not known beforehand,
analysis of the basin in the manner described could identify it as important (and in the ON
state) even though it is OFF in the eventual attractor state.

Next we look at one of the second-most popular variables in the reduced basin, namely
Clb1,2. The Clb2 gene (part of the Clb1,2 variable) is stated as being responsible for the tran-
sition in and out of the M phase (in which chromosomes are separated and the cell is divided
into two). Thus, like Clb5,6, it is not surprising to find it here among the most frequently
specified variables in the basin representing the cell cycle. Unlike Clb5,6, the configuration of
Clb1,2 is not consistent—it is found in the OFF configuration 7 times and in the ON configu-
ration 12 times. However, since it is the activation and subsequent degradation of Clb2 which
initiates and terminates the M phase, the split nature of the configurations seems appropriate.

There are other variables with high p which are not explicitly called out in the paper.
Given the corroboration of those which are called out in the paper, further investigation of
the roles of cyclin inhibitors Cdc20 and Sic1, and of transcription factor Mcm1 is warranted.

Finally we look at the most powerful variable, cyclin Cln3, which was described in the
paper as the trigger committing the cell to the division process. Despite its importance, we
find it only explicitly configured in 2 of the 39 terms in the reduced basin (once for OFF
and once for ON ), which ranks it lowest in the p measure. However, because these two terms
are the most powerful, Cln3’s PV score is quickly elevated. It is also interesting to find that
in these two terms, only one other variable is specifically configured, namely, Clb1,2. In fact,
these two variables are in opposite configurations in these two terms; when Cln3 is ON, Clb1,2
is OFF and when Cln3 is OFF, Clb1,2 is ON. This is interesting because Cln3 is described as
triggering the G1 phase (the starting phase), and Clb1,2 controls the entry and exit from the
M phase (the ending phase). Their opposite configurations in the reduced basin terms seem
to agree quite harmoniously with their regulatory control at extreme ends of the cell cycle.

When the network centrality measures of betweenness, centroid value, eccentricity and
node degree are calculated for this yeast network, we find that Clb1,2 and Clb5,6 are frequently
reported with high scores, just like we find using our approach. This is also the case when
r(xi) is calculated based on the Boolean network properties underlying the topology. However,
the centrality measures also report variables such as Clb1,2, SBF and MBF, which are shown
mathematically by our method to have little intervention power. Furthermore, these measures
give little consideration to other key variables, including Cln3 and Mcm1, which our approach
mathematically shows to have some intervention capabilities. Thus, our approach reports the
key variables described by Li et al. and missed by traditional measures, and avoids reporting
mathematically weak variables reported strongly by traditional measures.
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4.2. Application to WNT5A Network for Melanoma

After applying our approach to a hand-made network, we applied our methodology to a well-
studied WNT5A network computationally predicted from a melanoma data set.36–38 In our
previous work,38 the original data set was narrowed down to the ten most critical variables;
these were selected out of 587 total on the basis of their strong interactive connectivity and
either their known or likely roles in WNT5A driven induction of an invasive phenotype in
melanoma cells, or their close predictive relationship with these genes. For each of the ten
variables, we were able to identify the three most ideal predictors out of the remaining nine.
Using this connectivity and a binary quantization of the original data set, the best binary logic
functions were inferred for each target minimizing the Bayes error.39,40 From these functions,
the Boolean network attractors and basins were identified. The reader is referred to the cited
publications for detailed information on the data and connectivity, and to the supplementary
website for the functions identified, as well as elucidating figures.

Table 2: WNT5A Basin Attractor States (Black = 1, White = 0) with Basin Measures; si(x)
and ri(x) are basin-specific influence and sensitivity, which are discussed in the next subsection

B1 p PV s1(x) r1(x) p PV s2(x) r2(x) B3 p PV s3(x) r3(x) s(x) r(x)

WNT5A 0.45 0.57 1.79 2.25 0.70 0.44 1.72 1.70 1.00 0.20 1.00 2.75 1.75 2.00

S100B 0.32 0.53 1.03 0.88 0.40 0.40 0.96 0.59 1.00 0.20 1.25 1.25 1.00 0.75

RET1 0.23 0.54 0.00 1.22 0.35 0.46 0.00 1.29 0.50 0.20 0.00 1.00 0.00 1.25

MMP-3 0.50 0.55 0.00 0.51 0.60 0.48 0.00 0.47 1.00 0.20 0.00 1.00 0.00 0.50

Pho-C 0.27 0.53 0.96 0.24 0.35 0.37 0.52 0.27 0.50 0.20 0.50 0.00 0.75 0.25

MLANA 0.00 0.00 1.26 0.90 0.00 0.00 1.24 0.58 0.00 0.00 1.00 1.00 1.25 0.75

HADHB 0.32 0.50 0.81 0.74 0.55 0.41 0.64 0.77 1.00 0.20 3.00 0.50 0.75 0.75

SNCA 0.68 0.54 1.65 0.30 0.70 0.50 1.31 0.19 1.00 0.20 2.50 0.25 1.50 0.25

STC2 0.82 0.55 1.31 1.08 0.75 0.47 1.19 0.92 1.00 0.20 1.00 0.25 1.25 1.00

PIR 0.86 0.55 1.79 2.48 0.70 0.49 1.71 2.51 1.00 0.20 1.00 3.25 1.75 2.50

B2

The state space (1,024 states) was partitioned into three basins of attraction: Basin 1 had
a singleton attractor state with a total basin size of 544 states, Basin 2 has a two-state cyclic
attractor with a total basin size of 472 states, and Basin 3 had a singleton attractor with
a total basin size of just 8 states. As seen in Table 2, our measures p and PV reported the
intervention capabilities of Pirin, STC2, SNCA, and WNT5A. STC2 is known to interact with
MMP-3,41 another variable in this network, SNCA is known to be aberrantly hypermethylated
in human cancer cells,42 it is known that “cytoplasmic localization of PIR may represent a
characteristic of WNT5A network for melanoma progression”,43 and WNT5A has a known
role in human melanoma progression.37 That three of our top four intervention targets are
either melanoma-related or cancer-related speaks well for their true intervention capabilities.

When compared to the network centrality measures, as well as r(xi) and s(xi), Pirin and
WNT5A were identified by most of them. However, also among the high scoring results for
these measures was MLANA, which was shown mathematically by our results to have zero
influence on the network dynamics. This is not totally surprising, considering this network is
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derived from melanoma data in which all melanocytes should be present, and that p and PV are
basin-specific (see below). While all variables in such a small, carefully selected set will bear
some significance, even MLANA, our approach simply reveals those with true intervention
capabilities given the topology. Furthermore, some measures dismissed STC2 and SNCA by
including it among the lowest scoring variables despite its influence potential.

4.3. Usefulness of p and PV over Other Measures

We have seen the ability of p and PV to identify variables with great combinatorial control
over the state space of a Boolean network. We have further demonstrated how those variables
identified are often known to be suitable targets for intervention. In demonstrating this we
have compared p and PV to r(xi) and s(xi), as well as network centrality measures, and here
we discuss some differences in these measures.

While r(xi) and s(xi) are based on Boolean functions, p and PV are based on Boolean states.
Influence16 is computed by variable pairs in a matrix and summed by rows and columns to
get r(xi) and s(xi), where p and PV are independent measurements on variables and do not
depend on pairs. r(xi) and s(xi) are general measures, where p and PV are specific to each
basin of attraction. To level the field of comparison, we created a basin-specific version of
r(xi) and s(xi) (rk(xi) and sk(xi) for basin k), but they were not able to offer any new insight
that r(xi) and s(xi) were not already able to. To see this, observe the closeness and value and
symmetry in dynamics (based on basin size) between the measurements in Table 2 and in the
table on the supplementary website for the human aging network.

There are additional advantages over r(xi) and s(xi). p and PV are not only basin-specific,
but they are also value-specific. While we can adapt an influence matrix to be basin-specific, it
still cannot be made value-specific. Thus, with p and PV , because of the minimized terms, we
not only know where to intervene, but precisely how to do so. These values, or how we should
intervene, can be and often are different than the values in the attractor state (if we’re lucky
enough to not have a cyclic attractor where values toggle), and furthermore the same target
may be viable for more than one basin, but with different values. This kind of information is
not available with an influence matrix or the derived measures r(xi) and s(xi).

Furthermore, p and PV allow us to find the minimal effective intervention. Any computa-
tional aid to intervention studies will always be human-reviewed in the end, so it need not
give one definitive answer. We can say with mathematical certainty that setting certain vari-
ables together will force a basin (and thus attractor) to be selected. With a set of minimized
terms we can find the smallest interventions (highest PT ) using the most effective targets
(high p and/or PV ) which are suitable for intervention with current medical abilities (human
evaluation of mathematical possibilities).

5. Conclusion and Future Work

In this paper, we showed the importance of analyzing Boolean network basins of attraction
in identifying targets for intervention. Furthermore, we demonstrated that these targets are
not always evident in attractor states themselves, in the network topology, or even from
various existing measures, both graph-theoretic and Boolean-network-specific. Our use of logic
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minimization significantly reduces the representation of basins of attraction, and the proposed
measures stratify the terms, revealing both the key players and how to manipulate them.

The analysis of the yeast cell cycle network demonstrated that our methodology can iden-
tify key variables in the system. We were able to systematically identify three important
variables described specifically by the original study and propose others for further study. Our
application to the WNT5A network for melanoma demonstrated the applicability of our ap-
proach beyond hand-created networks to networks inferred from biological data; furthermore
our targets identified for intervention had been previously validated by laboratory studies.

This approach is most appropriate to smaller hand-made or high-confidence networks
due to the size complexity issues in Boolean networks. Current efforts involve overcoming
the scalability issues inherent in enumerating complete state spaces, which quickly becomes
intractable. We are investigating approximation approaches to identify attractor states and
enumerate most of their basins. We intend to take full advantage of high performance comput-
ing clusters, both in terms of memory and parallelization. We also are working on expanding
our implementations and measures to handle multi-valued logic, taking us beyond the Boolean
constraint and allowing even more levels of abstraction.

Supplementary Material

http://biocomputing.asu.edu/basinreduction/psb2011/
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