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The workshop focused on approaches to deduce changes in biological activity in cellular pathways
and networks that drive phenotype from high-throughput data. Work in cancer has demonstrated
conclusively that cancer etiology is driven not by single gene mutation or expression change, but by
coordinated changes in multiple signaling pathways. These pathway changes involve different genes
in different individuals, leading to the failure of gene-focused analysis to identify the full range of
mutations or expression changes driving cancer development. There is also evidence that metabolic
pathways rather than individual genes play the critical role in a number of metabolic diseases. Tools
to look at pathways and networks are needed to improve our understanding of disease and to improve
our ability to target therapeutics at appropriate points in these pathways.
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1. Introduction

Many complex databases are being developed and maintained to house genetic, epigenetic,
genomic, and functional genomic data. Centralized resources such as the National Center for
Biomedical Informatics (NCBI) are developing databases to integrate reads from next gen-
eration sequencing experiments, tumor-derived somatic DNA sequence variation, and single
nucleotide polymorphisms (SNPs) or haplotypes significantly associated with disease pheno-
types. Functional genomic data and methylation array data are being captured in the Gene
Expression Omnibus (GEO) and ArrayExpress data repositories. The cancer genome atlas
(TCGA) combines all these types of data together with detailed information about clinical
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phenotypes. A vast amount of open-access data now allows data analysts and informaticists
the opportunity to develop tools and perform initial demonstrations of their validity indepen-
dently of new bench experiments. These resources now provide a unique opportunity for the
development of tools suitable for analyzing data arising from complex biology.

A key focus in this workshop was the emergence of model-based analysis for high-
throughput data. As an example of previous work, Chinnaiyan’s group utilized prior knowledge
on gene expression and TF binding in prostate cancer to identify a change in a key metabolite
associated with prostate cancer progression.1 Sarcosine was one of many metabolites to show
substantial changes in levels during prostate cancer progression, however it is produced by
GNMT, a methyl transferase with an androgen receptor binding site upstream. As androgen
is known to play an important role in prostate cancer aggressiveness, this allowed prediction
that sarcosine might serve as a marker of aggressiveness and potentially even be a driver of
such aggressiveness, which was validated in cell line studies. The interactions modeled between
the molecular components in this work relied on building a simple mechanistic model of the
underlying biology, without which the discovery could not have been made. The focus in this
workshop was on efforts to integrate data and build models on a much larger scale.

A particularly promising point of integration is the role of pathways in disease. Biological
pathways provide a natural approach to the integration of multiple omics data as well as a
means to identify the mechanism through which the effects of mutations, epigenetic variation,
protein isoforms, and metabolic changes occur.

2. Pathways in Human Disease

Recognition that biological pathways are critical to understanding human disease emerged
along with the elucidation of metabolic and cell signaling pathways by molecular biologists and
biochemists. For example, the discovery of the role of MAPK kinases in response to external
signals2 and the later elucidation of the proliferation response due to signaling pathways
including these kinases3 demonstrated the role of pathways in the uncontrolled cell growth
that is typical of cancer.4 Later it was realized that many forms of specific signaling proteins
(i.e., different related kinases encoded by different genetic loci) existed, and that each member
of a family could substitute for another in specific cell types or be aberrantly expressed in
some cancers.5

In addition, multiple signaling pathways that play important roles in programmed cell
death (PI3K-AKT), proliferation (RAS-RAF), cell cycle (Rb-CDK), DNA damage response
(P53), and cell adhesion (FAK) were discovered to play roles in cancer etiology.6 Each pathway,
as with the RAS-RAF-MAPK-ERK pathway, contains multiple signaling proteins, with many
proteins having known multiple loci encoding related family members. Overall, this creates a
situation in which a single aberrant protein (e.g., an oncogene) in a pathway can activate that
pathway inappropriately, leading to escape of a cell from a checkpoint on growth. Effectively,
each viable cancer therefore has multiple hits (as first proposed by Knudson7 for the related
case of a dominant tumor suppressor), but the hits may be different (i.e., different pathway
members) in each cancer, even for cancers of the same apparent phenotype.

Validation of this new view of cancer came with studies of coordinated methylation, mu-
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tation, copy number, and expression changes in glioblastoma multiforme and pancreatic can-
cer.8–10 In these studies it was demonstrated conclusively that almost all cancers had changes
to one protein in each important pathway, but that these proteins were not the same be-
tween different individuals. This result suggested that analysis of pathways would be more
informative than analysis of genes across a population.

3. High-Throughput Data

Traditional molecular biology and biochemistry involved detailed study of one or a few genes in
tightly controlled experimental systems. This approach changed dramatically with the emer-
gence of gene expression microarrays in the mid 1990’s.11,12 These technologies soon allowed
researchers to measure levels of mRNA genome-wide and represented the first of many genome-
wide measurement technologies. Subsequent advances since the development of microarrays
for gene expression have been very rapid. Tiling arrays and array comparative genomic hy-
bridization (aCGH) have allowed increasingly fine-grained measurements of DNA variations.
Use of these arrays and custom arrays coupled with immunoprecipitation permit genome-wide
measurement of transcription factor and regulatory factor binding. SNPs are now measured
genome-wide as well, and SNP-chips also permit estimation of copy number variation (CNV)
at increasingly fine resolution. Recently miRNA chips have been developed, so that the abun-
dance of miRNA families can now routinely be measured for all known miRNAs. Coupling
microarray technology to methylation-specific precipitation allows measurement of methyla-
tion levels in the genome as well. Next-generation sequencing is replacing some of these tech-
nologies, now routinely providing genomic-, epigenomic-, and transcript-level measurements.
Emerging technologies in nuclear magnetic resonance and mass spectrometry are beginning to
provide large-scale measurements of metabolites and proteins, and antibody and reverse-phase
protein arrays have the potential to allow genome-wide measurements of protein levels in a
microarray format.

As multiple high-throughput measurements representing different molecular entities (e.g.,
DNA, mRNA, protein) are now routinely made, methods to integrate the data between these
different molecular domains are needed. These can be gene-centric, aligning measurements
to the genome for instance, or protein-centric, focusing on protein isoforms and including
alternative splicing and post-translational modifications.

4. Analysis Approaches and Tools

The simplest approach to account for the heterogeneity introduced by a pathway effect into
analysis of high-throughput data is to realize that only a subset of disease samples may harbor
a mutation or change in expression and to generate a statistic to address this. In fact, methods
to identify these outlier genes have been developed.13,14 The next step is to generate a pathway
or set statistic to replace single gene statistics, which was the focus of methods now known as
gene set analysis.15 However, a model-based analysis that directly utilizes pathway structures
to interpret high-throughput data should provide greater power for biological discovery. The
modeling methods discussed in the workshop utilized high-throughput measurements of cell
lines, model organisms, and tumors to discover novel insights into biological systems.
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Cell lines developed from primary tumors have been among the most important tools for
discovering the molecular changes underlying cancer and for drug compound screening. A
recent study of 30 breast cancer cell lines used expression and proteomics profiles, along with
mutational and copy number variation data to build a discrete, rule-based network signaling
model for each cell line,16 based on the Pathway Logic system.17 Each model has an initial state
that represents all expressed proteins in the cell line. Signaling is represented by rule sets, based
on experimentally derived protein-protein interactions, which determine a sequence of model
states. This approach involves many simplifying assumptions, in particular discretization of
data, i.e. each protein component is either present or absent in each state. However, the
simplicity makes the model interpretable and it recaptitulates known breast cancer biology
and yields useful new hypotheses about aberrant signaling in breast cancer. For example,
model analysis elucidates the role of the gene CAV1 in highly aggressive basal B breast cancers
and the relationship of PAK1 to MAPK cascade regulation. In particular, the hypothesized
importance of PAK1 led to the discovery that PAK1 over-expression may provide a potential
clinical marker for the utility of MEK inhibitors in breast cancer treatment.

Genome-scale studies of primary tumors, in increasingly larger patient cohorts, have be-
come widespread. These studies measure multiple biomolecules in tumor tissue and matched
normal samples, including gene expression, copy number variation, somatic mutations, SNPs,
and methylation level. The volume and complexity of this data requires new analysis meth-
ods to reach translational goals, such as improved prognostics and patient-specific therapies.
PARADIGM, a probabilistic graphical model that maps multiple patient-specific genome-scale
measurements onto curated cancer-related pathways, can be used to infer which components
of a pathway (broadly defined as physical entities, gene families, and abstract processes) are
activated with respect to a normal cell.18 This process yields a matrix of integrated pathway
activities (IPAs) for each patient. Based on IPA clustering, clinically relevant subgroups of
patients were identified, with the potential for improved stratification of patients for targeted
therapeutic regimens.

ResponseNet treats genetic library screening results and transcriptional changes measured
by microarray experiments within the context of the relationship between signaling protein
interactions and transcriptional regulation, integrating multiple types of data (e.g., microarray,
genetic library, ChIP-chip) from different experimental sources. It was used to successfully
identify pathways involved with α-synuclein toxicity and genes differentially regulated by
these pathways.19 This approach, however, relies on downstream transcriptional changes to
drive discovery, and thus can miss important protein interactions changes that do not drive
transcriptional change. An alternative approach, an award gathering Steiner tree, was used
to identify changes driven by protein interactions in the yeast pheromone response.20 The
Steiner tree was successful in balancing the introduction of false positive interactions from
experimental data with the loss of key interactions.

5. Conclusion

Our understanding of biological processes and their control has led to a model of biology in
which biological regulatory and metabolic pathways play the dominant role. Evolution has led
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to multiple genes in many key families in these pathways, complicating the identification of cell-
specific drivers of biological processes. When these drivers are mutated, over-expressed, lost, or
replaced by aberrant family members, disease may emerge. Understanding these pathways and
identifying the specific members causing disease is critical to elucidating the heterogeneous
molecular changes driving disease, identifying subgroups of patients with shared molecular
changes, and developing individualized therapies.

References

1. A. Sreekumar, L. M. Poisson, T. M. Rajendiran, A. P. Khan, Q. Cao, J. Yu, B. Laxman,
R. Mehra, R. J. Lonigro, Y. Li, M. K. Nyati, A. Ahsan, S. Kalyana-Sundaram, B. Han, X. Cao,
J. Byun, G. S. Omenn, D. Ghosh, S. Pennathur, D. C. Alexander, A. Berger, J. R. Shuster, J. T.
Wei, S. Varambally, C. Beecher and A. M. Chinnaiyan, Nature 457, 910 (2009).

2. M. H. Cobb, D. J. Robbins and T. G. Boulton, Curr Opin Cell Biol 3, 1025 (1991).
3. G. L. Johnson and R. R. Vaillancourt, Curr Opin Cell Biol 6, 230 (1994).
4. R. Khosravi-Far and C. J. Der, Cancer Metastasis Rev 13, 67 (1994).
5. A. D. Cox and C. J. Der, Cancer Biol Ther 1, 599 (2002).
6. D. Hanahan and R. A. Weinberg, Cell 100, 57 (2000).
7. A. G. Knudson, Proc Natl Acad Sci U S A 68, 820 (1971).
8. S. Jones, X. Zhang, D. W. Parsons, J. C. Lin, R. J. Leary, P. Angenendt, P. Mankoo, H. Carter,

H. Kamiyama, A. Jimeno, S. M. Hong, B. Fu, M. T. Lin, E. S. Calhoun, M. Kamiyama, K. Walter,
T. Nikolskaya, Y. Nikolsky, J. Hartigan, D. R. Smith, M. Hidalgo, S. D. Leach, A. P. Klein, E. M.
Jaffee, M. Goggins, A. Maitra, C. Iacobuzio-Donahue, J. R. Eshleman, S. E. Kern, R. H. Hruban,
R. Karchin, N. Papadopoulos, G. Parmigiani, B. Vogelstein, V. E. Velculescu and K. W. Kinzler,
Science 321, 1801 (2008).

9. D. W. Parsons, S. Jones, X. Zhang, J. C. Lin, R. J. Leary, P. Angenendt, P. Mankoo, H. Carter,
I. M. Siu, G. L. Gallia, A. Olivi, R. McLendon, B. A. Rasheed, S. Keir, T. Nikolskaya, Y. Nikolsky,
D. A. Busam, H. Tekleab, J. Diaz, L. A., J. Hartigan, D. R. Smith, R. L. Strausberg, S. K. Marie,
S. M. Shinjo, H. Yan, G. J. Riggins, D. D. Bigner, R. Karchin, N. Papadopoulos, G. Parmigiani,
B. Vogelstein, V. E. Velculescu and K. W. Kinzler, Science 321, 1807 (2008).

10. TCGA, Nature 455, 1061 (2008).
11. M. Schena, D. Shalon, R. W. Davis and P. O. Brown, Science 270, 467 (1995).
12. D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann,

C. Wang, M. Kobayashi, H. Horton and E. L. Brown, Nat Biotechnol 14, 1675 (1996).
13. J. W. MacDonald and D. Ghosh, Bioinformatics 22, 2950 (2006).
14. R. Tibshirani and T. Hastie, Biostatistics 8, 2 (2007).
15. S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho and G. M. Church, Nat Genet 22, 281

(1999).
16. L. M. Heiser, N. J. Wang, C. L. Talcott, K. R. Laderoute, M. Knapp, Y. Guan, Z. Hu, S. Ziyad,

B. L. Weber, S. Laquerre, J. R. Jackson, R. F. Wooster, W. L. Kuo, J. W. Gray and P. T.
Spellman, Genome Biol 10, p. R31 (2009).

17. S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer and K. Sonmez, Pac Symp Biocomput
, 400 (2002).

18. C. J. Vaske, S. C. Benz, J. Z. Sanborn, D. Earl, C. Szeto, J. Zhu, D. Haussler and J. M. Stuart,
Bioinformatics 26, i237 (2010).

19. E. Yeger-Lotem, L. Riva, L. J. Su, A. D. Gitler, A. G. Cashikar, O. D. King, P. K. Auluck, M. L.
Geddie, J. S. Valastyan, D. R. Karger, S. Lindquist and E. Fraenkel, Nat Genet 41, 316 (2009).

20. S. S. Huang and E. Fraenkel, Sci Signal 2, p. ra40 (2009).


