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There is growing interest in the role of rare variants in multifactorial disease etiology, and increasing
evidence that rare variants are associated with complex traits. Single SNP tests are underpowered
in rare variant association analyses, so locus-based tests must be used. Quality scores at both the
SNP and genotype level are available for sequencing data and they are rarely accounted for. A
locus-based method that has high power in the presence of rare variants is extended to incorporate
such quality scores as weights, and its power is compared with the original method via a simulation
study. Preliminary results suggest that taking uncertainty into account does not improve the power.
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1. Introduction

There is an increasing interest in the role of rare variants in multifactorial disease etiology,
while the evidence that rare variants are associated with complex traits is steadily expanding.
Although any individual rare variant exists in low frequencies, the frequency with which any
rare variant is present makes them collectively common. Under the multiple rare variant
hypothesis (MRV), the effects of multiple rare variants with moderate to high penetrance
combine to increase the risk of most common inherited diseases [1]. At the other extreme is
the common disease common variant (CDCV) hypothesis, which states that most common
complex diseases are due to a few common variants with moderately small effects [2]. The
most likely scenario is that a combination of both common and rare variants contribute to
disease risk.

In most genome-wide association (GWA) studies only variants with minor allele frequency
(MAF) greater than 1-5% are followed up, and the focus tends to be on identifying common
disease variants that are associated with complex diseases. However, this approach is limited
since only 5-10% of the heritable component of disease is explained by the many genetic
variations identified as having strong evidence of disease association in GWA studies. This
suggest that a fruitful direction is to search for associations with multiple rare variants [3].

By design, SNP genotyping panels often focus on common SNPs, so that they only contain
a relatively small number of rare variants. This leads to a common issue in rare variant
analyses, in that on most platforms there is an insufficient number of rare variants (Table 1).

There appears to be a clear difference in the effects of rare variants in comparison to SNPs
of higher frequency, with rare variants having stronger effects. According to the odds ratios
(OR) for common and rare variants identified in published studies, most common-disease
associated variants have ORs between 1.1 and 1.4 with only a few above 2, while the majority
of the identified rare variants to date have an OR greater than 2 and a mean of 3.74 [1]. In
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Table 1: Approximate low frequency/ rare variant GWAS platform content.
Platform Affymetrix Affymetrix Illumina Illumina Illumina Illumina

500k 6.0 370k 550k 610k 1.2M

MAF< 0.05 55k 106k 9k 32k 35k 62k
MAF< 0.01 17k 35k 1k 7k 8k 22k

addition, causality may more easily be fine-tuned by identifying rare variants. For most GWA-
identified loci, there is difficulty in assigning causality since high LD complicates the use of
association mapping to precisely determine which variant is functionally relevant. There are
even more complications when elucidating the effects of SNPs that map to genomic regions
with no clear role. The problem may be simplified by searching for disease-associated rare
variants in known functional genomic regions, such as genes. In addition, it might be easier
to at least infer causality at a locus that contains both common and rare disease-associated
variants.

In the analysis of the association of rare variants and disease, there is a loss of power due
to genotype misspecification. Quality scores are available for genotype and sequence-derived
data, but in rare variant analyses, the information is not usually put to use. In addition,
the 1000 Genomes reference set contains variants with MAF as low as .01, which makes the
imputation of rare variants now possible. A probability distribution for the genotype at each
variant may be estimated using the imputation method of choice. We propose methods for
rare variant analyses that take advantage of the extra information contained in quality scores
derived from sequencing and probability distributions resulting from imputation.

In section 2 we introduce an Allele Matching Empirical Locus-specific Integrated Associ-
ation test (AMELIA), which is a nonparametric and robust test that accounts for genotype
uncertainty. It is an extension of a Kernel-Based Association Test (KBAT) [4], which has been
demonstrated to have high power in the presence of rare variants. In section 3 the powers of
AMELIA and KBAT are briefly compared in a short simulation study, while a concluding
discussion is provided in section 4.

2. Allele-Matching Tests

Before providing the details of AMELIA, we first discuss the original method, KBAT. The
kernel-based association test (KBAT) [4] tests for a joint association of multiple SNPs (cor-
related or independent) with a categorical phenotype, without any assumptions on the direc-
tions of individual SNP effects. In simulation studies done by the authors, KBAT was found
to generally have more power than other multi-marker approaches (Zglobal[5] and MDMR[6]),
especially in the presence of rare causal SNPs. First, similarity scores yl(ij) between individuals
i and j in group l (e.g. 1=cases, 2=controls) are determined by using a kernel, such as the
Allele Match (AM) kernel, which is the count of common alleles between the genotypes of two
individuals. Let gi be the genotype score at a specific SNP, which is conveniently defined as
the number of reference alleles at the SNP, since knowledge of the risk allele is irrelevant. At
a given SNP, for individuals i ̸= j in group l with respective genotypes gl(i) and gl(j) , the
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similarity score is defined by

yl(ij) =


4, if gl(i) = gl(j)
2, if gl(i) = 1, gl(j)) ∈ {0, 2} or gl(j) = 1, gl(i) ∈ {0, 2}
0, otherwise

, (1)

By defining the kernel in this way, there is no need to have knowledge of the risk allele at
each SNP. Similarity scores that depend on knowledge of the risk allele are also explored in
[4]. This is general to any number of L ≥ 2 groups, where group l consists of nl individuals.

The similarity scores yl(ij) between individuals i and j in group l are modelled using a
one-way ANOVA model at each SNP:

yl(ij) = µ+ αl + εl(ij), i < j = 1, . . . , nl; l = 1, 2,

where µ is the general effect for pairs of individuals, αl is the group specific treatment effect,
and to test for disease association the null hypothesis is H0 : α1 = α2. The single SNP test
statistic at marker k is the ratio of the between group sum of squares SSBk and the within
group sum of squares SSWk, and the K-marker KBAT test statistic is∑K

k=1 SSBk∑K
k=1 SSWk

. (2)

Rather than summing over the K single SNP test statistics (ratios), the K-marker test statistic
takes the form of (2), which was found to have a higher power when the SNPs are correlated
(see [4]). Clearly the similarity scores yl(ij) are not independent Normal random variables, so
that neither the single SNP test statistics nor the KBAT test statistic (2) may be approximated
by an F -distribution. Thus, permutation is required to obtain the p-value for each locus.

Our extensions that incorporate genotype uncertainty due to quality scores at the SNP and
genotype level or imputation are introduced as AMELIA. Here, we focus on the incorporation
of the two levels of quality scores. Quality scores of SNPs and genotypes can be accounted for
by using weights. Phred quality scores at both the SNP and genotype level are transformed
into the probability of a correct call as follows, 1 − 10−q/10), where q is the quality score.
This transformation is employed in order to account for the fact that the phred quality scores
are not linear and to avoid down-weighting SNPs that are actually of acceptable quality. For
example, quality scores of 30 and 90 both translate to probabilities near 1, and by using the
phred quality scores as weights the SNP with score 30 would contribute little weight when it
is not really of poor quality.

First, (transformed) genotype quality scores are incorporated into the analysis by fitting
a weighted ANOVA model at each SNP k, where the weight for the pair of individuals (i,j)
in group l is a function of the genotype quality scores qkl(i) and qkl(j), with the simplest weight

function being wk
l(ij) = qkl(i) + qkl(j). Note that for a more suggestive notation for the quality

incorporation into the analysis we use qkl(i) to denote the transformed genotype quality score.
In the original method, KBAT, each of the similarity scores contributes a unit weight to the
SNP-level test statistic. However, with the simple weighting scheme that we consider, similarity
scores for which both genotype calls have a high probability of being correct are assigned a
weight above 1, while those with two poor scores are down-weighted to contribute a weight
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below 1. At marker k the weighted sum of squares within groups wSSWk and between groups
wSSBk may be computed as follows, where for simplicity we have dropped the k superscript,
and T̄l· is the weighted group mean of the similarity scores, T̄·· is the weighted grand mean,
and ml = nl(nl − 1)/2 is the number of similarity scores in group l:

wSSW =

L∑
l=1

ml∑
i=2

∑
j<i

wl(ij)(yl(ij) − T̄l·)
2 (3)

wSSB =

L∑
l=1

ml(T̄l· − T̄··) (4)

Components of SNP test statistic k in the sums of the K-marker test statistic can be
weighted by the SNP quality score(s) of SNP k. In the case that there is a common SNP
quality score Qk across all individuals (score at a SNP is based on reads from all individuals),
the weight for SNP k in the sums is simply the (transformed) single SNP quality score Qk. If
the quality scores at a SNP differ among individuals (score at a SNP based on multiple reads
from single individual), then the weight may be taken as the sum of these scores at the SNP.
In the latter case, the K-marker test statistic is∑K

k=1QkSSBk∑K
k=1QkSSWk

. (5)

In this form, SNPs that have a low probability of being a true variant contribute a lower
weight than the others.

2.1. Implementation

In order to increase the speed of the permutations, as suggested in [4], the similarity scores
between all possible pairs of individuals are computed, regardless of which cohort they belong
to. Then, in the permutation stage, the similarity scores for the permuted case-control samples
may be quickly extracted without further computation. However, for large cohorts (N > 1000),
this causes both AMELIA and KBAT to be memory-intensive, requiring additional memory
allocation to run. For example, when N = 1000 there are 499,500 similarity scores between
all possible pairs of individuals, which requires manipulation of a 499,500 × 499,500 array.
The time requirement for both methods also increases with the number of SNPs since a test
statistic must be computed at each SNP for each permutation.

3. Simulation Study

A brief simulation study has been run to compare the powers of KBAT [4] and our version
of AMELIA that accounts for quality scores. Genotype and quality score data are simulated
based on data from the pilot study of 1000 Genomes (68 individuals). More specifically, we
use the haplosim function of the hapsim [7] R package to simulate a population of haplotypes
that possess the same allele frequencies and pairwise LD structure as a specified chromosomal
region from the 1000 Genomes data. This approach produces realistic data that includes
variants with MAFs down to .01. A cohort of N individuals is formed by randomly pairing up
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2N haplotypes sampled from a population of 40000 simulated haplotypes. SNP and genotype
quality scores were generated by randomly sampling with replacement from the scores observed
in the 1000 Genomes data. In the simulations considered there is only one causal SNP, which
has a MAF close to a certain frequency, and is chosen randomly among the possible SNPs
that satisfy this criterion. More complicated simulations involving multiple causal SNPs are
to be explored in the near future.

Case-control status is generated by using a multiplicative model for the genotype relative
risks to compute the probability of disease given the genotype at the causal SNP and its
relative risk (RR) (for details see [4]). This probability is then used to generate a Bernoulli
random variable that ascertains an individual as a case when its value is 1, and a control
otherwise. For this reason, it is necessary to over-sample (say, 5N) the number of individuals
to ensure that the desired number of cases is attained.

In order to obtain the p-value in an efficient manner, we first obtained p-values based on
1000 permutations. If this p-value was below .02, additional permutations were run to update
the p-value on the basis of 10,000 permutations. This procedure of updating the p-value
continues up to a maximum of 1,000,000 permutations, if necessary.

In order to compare the two tests in a scenario similar to that of [4], rather than testing the
whole region we also test regions of 11 SNPs formed from the causal SNP and 10 randomly
selected SNPs among the 20 SNPs that form a neighborhood around the causal SNP (10
upstream and 10 downstream from the causal SNP) (termed the neighborhood region).

3.1. Results

In this brief simulation study, a 150 KB region from chromosome 1 of the 1000 Genomes data
was considered, which contains 342 SNPs. This region was chosen slightly arbitrarily, but also
because it has a genome-average recombination rate of approximately 1Mb/cM. All SNPs
were retained, except for those with a SNP quality of 0. We assumed a single low frequency
causal SNP (MAF=.02, RR=2), and 500 cases and 500 controls were simulated over 1000
replications.

Table 2: Power results (5% level of significance) for AMELIA and KBAT when there is one
rare causal SNP and there are 500 cases and 500 controls.

region AMELIA KBAT

whole .0871 .0953
neighborhood .1731 .2161

When jointly testing all SNPs within a region there is a slight loss of power with the use of
AMELIA in comparison to KBAT. However, both methods have a relatively low power when
there are many SNPs in the region. In a comparable scenario examined in [4], where the region
contains only 10 SNPs and the causal SNP has a MAF of .108 with RR=1.25 the power of
KBAT was .323. In our neighborhood simulations comparing AMELIA and KBAT we obtain
powers of similar magnitude (see Table 2). Thus the low powers for the entire region tests are
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likely due to the fact that our region of 150kb contains almost 350 SNPs, which are all jointly
tested. This illustrates a caveat of this multi-marker testing approach.

In order to examine type I error, a null simulation in which we set the relative risk as 1
is also examined. However, we only consider the neighborhood region due to the extremely
low power observed for the entire region. At the 5% level both methods are found to be quite
conservative, with AMELIA and KBAT having respective type I errors of .00502 and .00401.

4. Discussion

In the short simulation study presented here, a decrease in power has been observed by
incorporating quality scores of SNPs and genotypes as in AMELIA, with the difference largest
for a small number of SNPs. The relatively low power of the two methods may be due to the
fact that almost 350 SNPs are being tested jointly, of which there is only one causal SNP.
This may suggest that this multi-marker approach may be best suited for smaller regions, or
after some filtering to reduce the number of SNPs that are jointly tested. For example, when
the focus is on low-frequency variants, the analysis may include only those with a MAF below
a certain threshold, such as 0.05. It is noted that the replications that were identified only by
KBAT tend to have a causal SNP with a high SNP quality score. In such situations it may be
that by allowing for uncertainty that is not present, power to detect the signal is inadvertently
diluted. In the simple simulations examined, the power of AMELIA appears to be lower than
KBAT, and both tests are conservative with similar error rates. We are extending our methods
further to achieve greater power.
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