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High-throughput sequencing is currently a major transforming technology in biology. In this
paper, we study a population genomics problem motivated by the newly available short reads data
from high-throughput sequencing. In this problem, we are given short reads collected from individuals
in a population. The objective is to infer haplotypes with the given reads. We first formulate the
computational problem of haplotype inference with short reads. Based on a simple probabilistic
model on short reads, we present a new approach of inferring haplotypes directly from given reads
(i.e. without first calling genotypes). Our method is finding the most likely haplotypes whose local
genealogical history can be approximately modeled as a perfect phylogeny. We show that the optimal
haplotypes under this objective can be found for many data using integer linear programming for
modest sized data when there is no recombination. We then develop a related heuristic method which
can work with larger data, and also allows recombination. Simulation shows that the performance
of our method is competitive against alternative approaches.
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1. Introduction

High throughput DNA sequencing is increasingly recognized as a major transforming tech-
nology in biology. During the last decade, several novel high throughput sequencing (HTS)
technologies have been developed and commercialized (such as the Roche 454 FLX, Illumina
Genome Analyzer, and ABI SOLiD), and several more are under development. These high
throughput technologies dramatically bring down the sequencing cost and are generating huge
amount of data. Several individual genomes have been sequenced,’? and an effort is underway
to sequence one thousand individuals.? Sequencing may give entire diploid genomes of individ-
uals in a population and potentially reveal all the common (and many of the rare) variations
in the sequenced region. Thus, increasingly complete sequencing using HTS technologies will
become the preferred approach to attack population genomics problems.

On the other hand, the current HTS technologies have some technical limitations. First,
the reads generated by HTS technologies are often short. Although longer sequence reads may
become available in the near future,* it is expected that short sequence reads are likely to be
still useful in the coming years. Thus, we focus on short reads in this paper. Second, many HTS
technologies have higher error rates than the traditional Sanger sequencing. Some technologies
have error rates of 1% or even higher, which can make it difficult to distinguish between
error and population-scale variation. Additional error sources include inaccurate sequence
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reads mapping (i.e. locating the reads within a reference genome). Sometimes high coverage
sequencing may reduce the noise and uncertainty, but with increased cost. Therefore, robust
data analysis methods are needed to process the (somewhat noisy) HTS data.

In this paper, we focus on a population genomics problem: inference of a pair of haplo-
types for each individual in the population from the given HTS reads for diploid organisms
(such as human). Here, a haplotype refers to the DNA sequence collected from the same
chromosome, which describes the alleles at polymorphic sites on this chromosome. Collecting
haplotypes from populations is an important population genomics problem, which is evident
in the HapMap project.>5 See Section 2 for more description on haplotypes. To formulate a
concrete computational problem, we make several assumptions:

(1) In this paper, we only consider short reads. That is, our problem is different from the
haplotype reconstruction problem based on long sequence reads (e.g. Bansal and Bafna,”
He, et al.®). Since the sequence reads are short and often the variations in a population are
relatively sparsely located along the genome, we assume that a short (single or paired-end)
read covers no more than one SNP site. When there is a read covering more than one
SNP sites, our current implementation treats this read as multiple reads, each covering one
SNP, although our implementation can be modified to use the haplotype phase information
contained in such reads.

(2) We do not consider pooling here: we know the individual a sequence read originates.

(3) In this paper, we only concern single nucleotide polymorphisms (SNPs), which can be
stated as a binary value: 0 or 1.

(4) A standard analysis step in analyzing short reads is mapping the short reads against
a reference genome (which we assume is available). We assume that reads mapping is
performed properly so that reads covering one polymorphic site are properly mapped. We
only consider reads that are uniquely mapped and remove reads that are ambiguous in
mapping. Once the reads are mapped, we can identify polymorphic genomic positions by
comparing the mapped reads with the reference genome. Thus, we assume that the SNP
sites can be determined from the mapped reads.

We are now ready to define the precise problem formulation.

Haplotype Inference with Single Short Reads. We are given a set of mapped single
short reads R, each covering a specific SNP site. That is, a sequence read reports an allele at
a polymorphic site for an individual, but we do not know which homologous chromosome it
comes from and also there is some chance the allele reported is incorrect. The goal is inferring
two haplotypes for each individuals from the reads R.

Note that our method also calls genotypes: once haplotypes are inferred, we can obtain
genotypes from the haplotypes. This problem formulation may be useful for (1) sequencing a
new population, where no previously sampled population haplotypes (such as those provided
by the HapMap project) are available, and (2) whole-genome sequencing, where we want to
infer haplotypes for all SNPs (not only common SNPs but also rare SNPs). We note that rare
variants are becoming more important in understanding genotype-phenotype association.’
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2. Background
2.1. Haplotypes and Genealogical History

An important genetic variation is the single nucleotide polymorphism (SNP). A SNP site in
the genome can generally take only two states (alleles) among the individuals in a population.
Thus, we use binary alleles (0 and 1) to represent the state at any SNP site. In this paper,
we focus on SNPs and do not consider other variations such as copy number variation (CNV)
or polymorphism (CNP). Often, we collect genetic variations data at multiple genomic sites.
We call a sequence of genetic variations at these sites a haplotype. A haplotype based on
SNPs can be represented as a binary vector. A diploid organism (such as human) has two
haplotypes per chromosome, and although these are often called ‘copies’, they are not identical.
A description of the conflated (mixed) data from the two haplotypes is called a genotype. When
both haplotypes have state 0 (resp. 1) at a site, the genotype has state 0 (resp. 2), and is called
a homozygote. Otherwise, the genotype has state 1 at that site and is called a heterozygote. We
let n be the number of individuals sampled in the population, and m be the number of SNP
sites. The genotypes of these individuals are represented by an n by m matrix with entries
0/1/2, while their haplotypes are represented by a 2n by m binary matrix. We call the two
ordered alleles from the two haplotypes at a single site of a diploid individual diploid type.
Diploid type can be 0/0,0/1, 1/0 and 1/1. Note that there are two diploid type (0/1 and 1/0)
for the same genotype 1.

Genealogical history of sequences in a population explic-
itly shows the origin and derivation of extant sequences, the
locations of all the genomic alterations (both in the genome

and in time), and how the variants are transmitted from par- 1
ents to descendants. The simplest genealogical model is the 2
tree model, when recombination is ignored. See Figure 1 for 3 >

an illustration. A common assumption is that at most one mu-
tation occurs at any site, which is supported by the infinite
sites model'® from population genetics. We assume infinite
sites model throughout this paper. Therefore, the genealogi-
cal tree is a perfect phylogeny (see, e.g. Gusfield!!). A perfect phylogeny implies that at any
two SNP sites, the four ordered pairs of alleles 00, 01, 10 and 11 (called gametes) can not be
all present (called four-gamete test in population genetics). Two sites satisfying this property
are said to be compatible. If all pairs of sites are compatible, the sequences allow a perfect
phylogeny (see e.g. Gusfield!!). Note that although gamete and diploid type use similar values,
conceptually they are different: gamete means the setting of the two alleles at two sites of the
same haplotype, while diploid type is for the two alleles at the same site of an individual.

When meiotic recombination is considered, a more complex model is needed. Recombi-
nation takes two homologous chromosomes (haplotypes) and produces a third chromosome
consisting of alternating segments (usually a small number) of the two chromosomes. With
recombination, genealogical history can no longer be modeled as a single tree. Nonetheless,
sometimes we can use local trees to represent local genealogical history for a short region,
within which recombination does not affect the genealogy of the sampled sequences.

00000 00010 00010 00010 01100 10000 10001

Fig. 1. A genealogical tree.
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2.2. High Throughput Sequencing (HTS)

A main application of the HTS is on resequencing. In resequencing, we want to find genetic
variations (e.g. SNPs) in a sample of individuals by sequencing the genomes of those indi-
viduals, when an existing, fully-sequenced, reference genome is already known. The general
procedure for many resequencing applications is to first find where a new sequence read orig-
inates by comparing the sequence read with the reference genome (called reads mapping).
Once the originating positions of sequence reads are found, we can then examine the mapped
reads to find variations such as SNPs.

The current HTS data does not contain informa-
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tion on which of the two haplotypes (from a diploid  —8- — —=— —_— = —
organism) a read is from. This often adds complexity == { ) ._D_.D
to data analysis. For example, suppose we have two — —_— — &

mapped sequence reads that give the same alleles as

the reference genome. We can not assert that the in- ~ Fig. 2. Illustration of the HTS technolo-
dividual is a homozygote because the two reads may f;fés Z;V;) dtj?]i d%ﬁ;;?;;?;;tg aﬁ:ﬁﬁ
come from the same haplotype, and yet the sequenced genetic variations (e.g. SNPs), where col-
individual is a heterozygote at the site. Moreover, ors indicate different allele. The short, red
suppose we have two mapped reads that give allele  lines are the short sequence reads from this

0 and 1 at a SNP site. The individual can still be a diploid mdlv.ldual’ which are mapp ed to the
proper location. The read with a dotted box

homozygote 0 if the read with 1 allele is caused by (on lower right) has a sequencing error.
a sequencing error. See Figure 2 for an illustration of
sequencing diploid samples.

3. Haplotyping with Short Reads

Haplotype inference from given genotypes has been actively studied recently.'? !> Thus, a
straightforward approach of inferring haplotypes with short reads is a two-stage one: first
call the genotypes from the given reads (say taking the genotypes with the highest posterior
probability as described in Section 3.1) and then run a population haplotype inference program
(e.g. fastPHASE) on the called genotypes. The main problem with this two-stage approach
is that inaccurately called genotypes may lead to haplotypes of low quality. This is especially
a concern when the sequencing coverage is low, which may lead to more noise in the called
genotypes. In this paper, we present a new method based the one-stage approach, which infers
haplotypes directly from the reads (i.e. without calling genotypes first). We note that few
published haplotype inference approaches work directly on sequence reads, with the exception
of program Beagle.'6 In Section 4, we compare out method with program Beagle.

3.1. Posterior Probability of Genotypes at a Single Site

Given the reads at a SNP site, it is easy to compute the posterior probability of a genotype.
For ease of exposition, we assume each read has probability € of reporting an incorrect allele at
the site. Note that it is straightforward to allow reads having reads-specific error probability.
Consider an individual ¢ with genotype g at site s;. We let R;; be the reads covering s; for
individual ¢, which report r; ;o O-allele and r;;; 1-allele for s;. The single SNP genotypic
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posterior probability is the probability of observing a particular genotype g € {0,1,2} at a
site s; given all the reads for all individuals at this site (denoted as R_ ;). We define f;(g)
as the genotype frequency for genotype g at site s;. We assume that the read of interest was
obtained with equal prior probability from either haplotype. Now the posterior probability of
genotype g can be calculated P:

P(g=0|R—;) x P(R—jlg =0)P(g =0) = (1 —¢)"7€">" f;(0) (1)
P(g=1R_;) xx P(R—jlg = 1)P(g = 1) = 0.5"7°7"2 f5(1) (2)
P(g=2R_;) x P(R—jlg=2)P(g=2) = (1—¢)" " f;(2) (3)

We use the Hardy-Weinberg equilibrium to estimate genotype frequency f;(g) at site s;,
from the frequency of alleles 0 and 1 in the population. Allele frequency can be estimated from
the reads R_ ; from the observed alleles at site j. Once posterior probability is computed,
a simple two-stage approach calls genotypes at each locus by picking the genotypes with
maximum posterior probability, and then infer haplotypes for the called genotypes using some
population haplotype inference method. As shown in Section 4, this approach is generally not
as accurate as the one-stage approach we now present.

3.2. The Special Case: No Recombination with Small Number of SNPs

We now present an one-stage approach, which infers haplotypes from short reads directly. Our
method rely on the shared genealogical history of the sampled sequences to infer haplotypes.
To get started, we first consider the case when there is no recombination. Later, we will extend
our method to allow recombination.

When there is no recombination, the underlying genealogy is a perfect phylogeny. Gusfield!?
first exploited the approach of inferring haplotypes with the perfect phylogeny model. Here,
we develop a perfect phylogeny based method for inferring haplotypes with short reads. That
is, we want to infer haplotypes that allow a perfect phylogeny. Note that perfect phylogeny
alone can not determine the haplotypes since there are many possible haplotypes allowing
perfect phylogeny. Since some haplotypes fit the given short reads better than others, a natural
objective is to find the haplotypes that allow a perfect phylogeny and the probability of short
reads given these haplotypes is maximized.

We now give the technical details. The short reads based perfect phylogeny haplotyping
is, given short reads R, finding a set of haplotypes H s.t. P(R|H) is maximized and H allows
a perfect phylogeny. We let H; denote the i-th haplotype, where 1 <i < 2n. We let H; ; denote
the allele (0 or 1) at the j-th site of H;. As before, we let R;; be the set of reads that are
taken from individual ¢, and cover site s;. Consider a read R; ;i € R;;, which reports allele
k € {0,1} for site s;. Now, P(R; ;x|H) depends on Hy;—1; and Hy; ;. The following is related to
equations 1 to 3 in Section 3.1.

PSimilar equations have been used in Duitama, et al.,'” and also in other statistical genetics papers
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P(R; jk|H) = 0.5 x (P(R; j k| Hai-1,7) + P(Ri k| H2ij))

Here, P(R; x|h) = € if k # h, and 1 — € otherwise. We consider all the reads covering site s;
in individual i, where there are r; ;o O-reads and r; ;; 1-reads. Then, based on the assumption
that all reads are independent, we have:

logP(R;j|H) = rijolog(P(R;jolH)) + rijilog(P(R; j1|H))

When Hy;—1; and Hy;; are known, these two alleles determine the diploid type d(H) €
{0/0,0/1,1/0,1/1}. To simplify notations, we simply use d for diploid type. When d is given,
Hj;_1; and Hy; ; are also known. We let w; ;4 = logP(R;;|H), where d is the diploid type at
site s; of individual i. We assume the reads are independent, since reads are short and thus
can be treated as independent given the haplotypes. Note, however, that in practice there may
exist other factors such as mapping bias that can make this assumption less accurate. Then,

logP(R|H) = Z Zwm}d
i=1 j=1

Our goal is finding haplotypes H, s.t. H allows a perfect phylogeny and logP(R|H) is
maximized. Since logP(R|H) can be computed easily for fixed H, naively we can enumerate
all possible haplotypes H to find the ones that allow a perfect phylogeny and maximize
logP(R|H). But this is infeasible even for data of moderate size. We do not currently know
an efficient algorithm for finding the optimal solution. To develop a practical method, we use
integer linear programming (ILP) to solve the optimization problem ezactly.

In our ILP formulation, we have a binary variable D, ; 4 for individual i, site s; and diploid
type d € {0/0,0/1,1/0,1/1}, where D, ; 4 = 1 if the diploid type formed by Ha;—1; and Hy; ; is
d. That is, D, ;4 specifies which diploid type individual i carries at site s;. For any two sites
s;, and sj,, we define a binary variable Gj, j, 4. Gj, j.,g = 1 if sites s;, and s;, have gamete
g € {00,01,10,11}. Now we give the sketch of the ILP formulation.

Objective: maximize > | >0, > de{0/0,0/1,1/0,1/1} Wij.d X D ja.

Subject to
1 Djjop+Dijon+Dijip+Dijin=1 foreach1<i<nand1<j<m.

[We now impose constraints on Gj, j, 4. We only give the constraints for G, j, 00. The
rest are similar and thus omitted.]

Gj17j2,00 + Di,jl,l/l > Di7j270/0, for all 1 < jl < jg <m and 1 <i1<n.

Gj17j2,00 + Di,jg,l/l > Di,jl,O/Ov for all 1 < jl < jg <m and 1 <i1<n.

Gj, j.00 + 12> D; 01+ Dijy0/15 forall 1 <j; <jo<mand 1<i<n.

Gj, jo00 + 12> Di7j1,0/1 + Di,jg,O/O’ forall 1 <j; <jo<mand 1<i<n.

G, ja00 + 12> Dy 170+ D j, 10, for all 1 < gy <jo <mand 1 <i <n.

Gj, jo00 + 12> Di,jl,l/O + Di,jg,O/Oa forall1<ji <jo<mand1<i<n.

[We now ensure no four gametes exists at any pair of sites]
8 Gj,.j»00 + Gy jo01 + Gy joio + Gy a1 < 3 for all 1 < j; < js <m.

For each 1 <i<n,1<j<mandde {0/0,0/1,1/0,1/1}, there is a binary variable D; ; 4.

N O O = W N
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For each 1 < j; < jo <m and g € {00,01,10,11}, there is a binary variable G}, j, 4.

Briefly, constraint (1) states that each individual must take exactly one of the four diploid
type at a site. Constraints (2) to (7) relate diploid variables D; ;,; with the gamete variables
Gj, j»,00- For example, constraint (2) states that if the diploid type at site s;, is not 1/1 (i.e.
D, ;11 = 0) and the diploid type at site s;, is 0/0 (i.e. D, j, ojo = 1), then there exists gamete
00 at sites s;, and s;,. Constraint (8) states that there are at most three gametes for any two
sites, which is required by the perfect phylogeny model. The constraints for the other diploid
type variables are similar. Finally, the objective function uses the diploid type variables times
the weights, which means that only the selected diploid types (i.e. D; ;4 = 1) contribute to
the objective. Once the ILP formulation is solved, the haplotypes are readily retrieved from
the values of the D; ;4 variables.

Simulation in Section 4 shows that this ILP formulation can be practically solved for many
data, especially when the number of sites (i.e. m) is relatively small (say less than 20).

3.3. The General Case: with Recombination and Larger Number of SNPs

When data size grows or recombination occurs, we can no longer directly use the ILP-based ap-
proach in Section 3.2. We now extend our approach to handle data with recombination and/or
larger number of sites. Our strategy is similar in high-level to the approach in Halperin and
Eskin:!* we first infer haplotypes using the ILP based approach in Section 3.2 on small number
of consecutive (and overlapping) SNPs (called windows); then we concatenate these overlap-
ping haplotypes to create complete haplotypes for the entire data. This approach may work
well when recombination rate is relatively low: in this case, there are relatively long genomic
regions with no recombination. Also, even when there is a small number of recombinations
within a region, perfect phylogeny may still be a good approximation of the genealogical
history of the region.

Specifically, we let the size of the sliding window (i.e. number of sites) be W, which starts
from the first site. Each time, we move the window to the right by % sites to obtain haplotypes
in a list of overlapping windows by the ILP approach. Then, we concatenate the haplotypes
of the overlapped windows from the left to the right. Let hg; 1 and ho; be the haplotypes
of individual 7 in a window, and hf, , and h), be the haplotypes in an overlapping window.
Note that the haplotypes of an individuals within two overlapped windows are obtained from
different ILP solutions, and thus the two pairs of haplotypes need to be paired up properly.
Moreover, sometimes concatenation may require changes to these haplotypes for consistency.

Here are the main steps of haplotype concatenation.

(1) First concatenate obvious haplotypes. Sometimes only one pairing between the two pairs
of haplotypes is perfect (e.g. the overlapped portions of he;—1 and h}; ; match perfectly, so
do those of hy; and hl;, and the other pairing of the haplotypes is not perfect). In this case,
we simply greedily choose the obvious pairing to obtain two concatenated haplotypes.

(2) The previous step often generates a set of inferred haplotypes. Now we use these already
inferred haplotypes to help to resolve the other undecided haplotype pairs. If two haplo-
types (say hoi—1 and hj, ;) can be merged perfectly (i.e. with no mismatches within the
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overlapped region) to generate one of the existing haplotypes, we just take this particular
pairing if the other haplotype pair is approximately consistent.

(3) Since haplotypes within a window are usually closely related through mutation and re-
combination, this provides more hints on how to concatenate the haplotypes. Suppose we
are evaluating two choices of pairing, which generate two sets of candidate haplotypes.
We compare the two sets of haplotypes and choose the ones that are closely related to
the already inferred haplotypes. A haplotype h is closely related to a set of haplotypes H
if (a) the Hamming distance between h and a haplotype k' € H is small, or (b) h can be
broken into a small number of segments, s.t. each segment appears in H. The later can
be easily evaluated by either a dynamic programming algorithm or a greedy algorithm.'®

(4) Here is one more rule in deciding how to concatenate the haplotypes, which is applied
if the previous step leads to multiple equally good choices. When recombination occurs,
some pairs of sites become incompatible. However, a site is still likely to be compatible
with its neighboring sites.!? For a site s, the compatible region of s is a continuous set of
sites, each of which is compatible with s (but there may exist two incompatible sites among
these sites other than s). Based on this observation, we select the haplotype pairings that
give longer compatible regions.

4. Results

We have implemented our method in a program (called HapReads) written with C++-, which
uses either CPLEX (a commercial and faster ILP solver) or GNU GLPK ILP solver. HapReads
can be downloaded from: http://www.engr.uconn.edu/ jiz08001. Our simulation results are
from the CPLEX version. We test our method on simulated data on a 3192 MHz Intel Xeon
workstation. We use Hudson’s program ms?° to generate haplotypes for different settings on
the number of diploid individuals, the number of sites and recombination rate. Then, for
each set of haplotypes, we simulate the sequence reads by (1) deciding the number of reads
to generate based on the sequencing coverage, and (2) randomly picking the sites for the
reads and one of the two haplotypes when reporting the alleles in the reads. To simulate the
sequencing errors and other noise, we generate sequence reads with some error probability e
(the probability of reporting a wrong allele). We generate 100 datasets for each setting.

To evaluate the accuracy of our method (and the two-stage approach using fastPHASE),
we compare the inferred haplotypes with the true simulated haplotypes. We run program
fastPHASE by letting the program to choose the number of clusters itself. We assume error
probability e is known to both our method and fastPHASE. Different from haplotyping from
given genotypes (where there is only phasing errors), there are two types of errors: (a) genotype
errors, and (b) haplotype phase errors. Genotype errors refer to the genotypes (implied by
the inferred diploid types) that are different from the true genotypes. We define genotype
accuracy A, as the percentage of correctly called genotypes. We define phase accuracy A4, as
the switching accuracy?' that is related to the incorrectly phased neighboring heterozygotes.
Note that calculating phase accuracy needs first correcting the genotype errors (i.e. changing
the diploid types in some ways so that the corresponding genotypes match the true genotypes).
There is a subtle issue in computing phase accuracy A, when there are genotype errors.
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Suppose the true diploid type is 0/1 (i.e. heterozygote), while the inferred diploid type is 0/0
(i.e. homozygote). We can use either 0/1 or 1/0 to correct the genotype that may lead to
different phase accuracy. To get over this issue, we use the average phase accuracy over all
possible choices for these corrected diploid types.

4.1. Accuracy of the ILP formulation

We first evaluate the accuracy of the ILP-based approach in Section 3.2. Recall that the ILP
approach is practical when there is no recombination and the number of sites is relatively
small. In Figure 3, we show the average (genotype and phase) accuracy for various number of
individuals and sites, sequence read error rates and coverage.
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Fig. 3. Accuracy of ILP-based method and fastPHASE under different reads error rates and coverage. n: the
number of individuals, m: the number of sites. I: ILP-based method (solid line). f: fastPHASE (dashed line).

Figure 3 shows that our ILP approach outperforms the two-stage approach using fast-
PHASE (or simply fastPHASE) in both genotype accuracy and phase accuracy in most
datasets of the simulations. For example, for 50 individuals, 15 sites, error rate 1% and cov-
erage 4x, the phase accuracy of our method is roughly 10% more than that of the two-stage
approach, even when the difference between genotype accuracy is about 2.5%. This suggests
that our method works well in inferring haplotypes when there is no recombination. As ex-
pected, when read error rate is higher and coverage is lower, phase accuracy tends to be lower.
One downside is that the ILP solving gets slower when the number of sites increases, which
is shown in Figure 4(a).
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Fig. 4. Running time of ILP-based method, heuristic approach and fastPHASE. n: the number of individuals.
x: reads coverage. €: reds error rates. p: recombination rate. H: our heuristic approach. f: fastPHASE.

4.2. Accuracy of the case with larger data

We now evaluate the performance of the heuristic approach in Section 3.3, which allows us to
handle problem instances that are larger or with recombination. We use 4x coverage in this
simulation. The results are obtained by inferring haplotypes from a sliding window of 10 sites,
and then concatenating the overlapped haplotypes.

Figure 5 shows that in terms of genotype accuracy and phase accuracy, our one-stage
approach is consistently more accurate. Thus, the simulation results show that our one-stage
approach outperforms the two-stage approach in general. Also, our method remains reasonably
accurate with higher sequence reads error (up to 2%) or when recombination rate increases
(up to 10). We note that genotype accuracy in our simulation is often fairly accurate. Phase
accuracy, on the other hand, is in general not very high for both methods. One reason may be
the low sequencing coverage: we use 4x coverage here and increasingly coverage may improve
the phase accuracy. Moreover, as shown in Figure 4(b), the running time of our method is
similar to the two-stage approach for the data we simulate.

4.3. Comparing with program Beagle with simulated and biological data

Program Beagle!'¢ allows uncertain genotypes which are specified by genotype probabilities.
Thus, Beagle can be used as a one-stage approach so we compare program Beagle and our
approach. We run program Beagle with the same data sets generated by program ms in
Section 4.2. The result is given in Figure 6. For data sets with 25 individuals and 50 sites, our
method and Beagle have similar genotype accuracy and our method has slightly higher phase
accuracy, but from data sets with 50 individuals and 100 sites, our method is less accurate
than Beagle. We also test the two approaches on simulated reads for HapMap haplotypes.
We generated 100 data sets of 25 individuals by 50 sites from 100 regions on chromosome 1
of CEU population. The results are similar (results omitted, with Beagle being slightly more
accurate). One possible reason is that HapMap haplotypes are only for common SNPs, where
haplotypes within a window are less likely to allow a perfect phylogeny. More simulations are
needed to further compare the two methods. Overall, one-stage approaches appear to perform
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Fig. 5. Accuracy of heuristic approach and fastPHASE with different reads error rates. H refers to heuristic
approach (solid lines) and f refers to fastPHASE (dashed lines). p is recombination rates.

better than two-stage approaches.
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