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Species tree estimation from multiple markers is complicated by the fact that gene trees can differ
from each other (and from the true species tree) due to several biological processes, one of which
is gene duplication and loss. Local search heuristics for two NP-hard optimization problems - min-
imize gene duplications (MGD) and minimize gene duplications and losses (MGDL) - are popular
techniques for estimating species trees in the presence of gene duplication and loss. In this paper,
we present an alternative approach to solving MGD and MGDL from rooted gene trees. First, we
characterize each tree in terms of its “subtree-bipartitions” (a concept we introduce). Then we show
that the MGD species tree is defined by a maximum weight clique in a vertex-weighted graph that
can be computed from the subtree-bipartitions of the input gene trees, and the MGDL species tree
is defined by a minimum weight clique in a similarly constructed graph. We also show that these
optimal cliques can be found in polynomial time in the number of vertices of the graph using a
dynamic programming algorithm (similar to that of Hallett and Lagergren1), because of the special
structure of the graphs. Finally, we show that a constrained version of these problems, where the
subtree-bipartitions of the species tree are drawn from the subtree-bipartitions of the input gene
trees, can be solved in time that is polynomial in the number of gene trees and taxa. We have
implemented our dynamic programming algorithm in a publicly available software tool, available at
http://www.cs.utexas.edu/users/phylo/software/dynadup/.
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1. Introduction

The estimation of species trees typically proceeds by concatenating multiple sequence align-
ments together for many genes and then estimating a tree on the resultant “super-matrix”.
These “combined analyses” require that all sequences be orthologous (hence each taxon should
appear in each gene sequence alignment at most once), and assume that the true trees for the
different genes are topologically identical. These two conditions can easily fail to hold when
gene duplication and loss occurs, even when valiant efforts are made to estimate orthology.
Thus, the estimation of species trees from gene trees that can differ due to gene duplication
and loss,2–6 especially when these gene trees contain more than a single copy of each taxon,
requires more care.

Two of the most popular approaches for species tree estimation in the presence of gene
duplication and loss are methods, such as iGTP7 and DupTree,8 that employ local search tech-
niques to “solve” the NP-hard optimization problems MGD (Minimize Gene Duplication) and
MGDL (Minimize Gene Duplication and Loss). For example, analyses based upon MGD and
MGDL have been used in estimating species trees for snakes,9 vertebrates,10,11 Drosophia,12

and plants.13 These local search strategies are effective for relatively small numbers of taxa,
but their utility for very large numbers of taxa has not been explored. In addition to local



search techniques, exact solutions14,15 and fixed-parameter tractable algorithms1,16 have been
proposed for addressing MGD and MGDL; however, to date these approaches have not been
used as widely as the heuristic searches.

In this paper we will present a new approach for MGD and MGDL that does not use local
search techniques or branch-and-bound techniques, but instead uses dynamic programming to
produce an optimal solution within a user-specified subspace of the set of candidate species
trees. Thus, by letting that subspace be all possible species trees we obtain a globally optimal
solution for MGD or MGDL, while constraining the set allows us to obtain good (even if not
globally optimal) solutions in polynomial time. While our dynamic programming approach is
similar to that of Hallet and Lagergren,1 our clique-based formulation of the problem is new,
and many of our theoretical results are not explicitly proven in Hallett and Lagergren.1

The algorithmic technique we present is also related to the approach used in Than and
Nakhleh17 (see also Yu, Warnow, and Nakhleh18) for the MDC (Minimize Deep Coalescence)
problem,5 an optimization problem for species tree estimation in the presence of incom-
plete lineage sorting. In these papers, the optimal solution for MDC is characterized graph-
theoretically, as follows. First, every binary rooted tree on n taxa can be represented by its
set of “clusters”, where a cluster is the set of taxa that appear below a node in the tree.
Furthermore, two clusters are said to be “compatible” if and only if they can co-exist in a
tree (equivalently, two clusters are compatible if and only if they are pairwise disjoint or one
contains the other). To solve MDC, each possible cluster is represented by a node in a graph,
and edges exist between pairs of nodes whose clusters are compatible. It is known that when-
ever a set of clusters is given that are all pairwise compatible, then a rooted tree exists with
precisely that set of clusters. Thus, a set of n− 1 pairwise compatible clusters, where n is the
number of species, defines a binary rooted species tree for that set of clusters.

Than and Nakhleh17 showed that it is possible to weight the nodes in the graph so that the
total weight of any (n− 1)-clique is the MDC score for the species tree defined by that clique,
so that solving the MDC problem is equivalent to finding a minimum weight n− 1 clique.

This problem formulation seems to be particularly expensive, since MaxClique is NP-hard
and the graph has an exponential number of vertices, but Than and Nakhleh also showed that
finding the minimum weight clique of size n− 1 can be obtained in time that is polynomial in
the number of nodes in the graph, using dynamic programming (DP). They also presented a
“heuristic” version that only uses clusters that appear in the input gene trees, and so runs in
polynomial time. This heuristic version produces highly accurate species trees,17–19 suggesting
that restricting the search space to clusters in the input trees is an effective strategy for MDC.

The approach we present here for optimizing MGD or MGDL builds on these ideas. We also
build a graph, but the nodes of our graph correspond to “subtree-bipartitions”, a generalization
of clusters that we define in this paper. We show how to define weights on vertices in the graph
so that the optimal solution to MGD is obtained by finding a minimum weight clique of size
n − 1, and we show how to find that clique using dynamic programming. This technique
directly allows us to solve the constrained MGD problem, in which we constrain the species
tree solution to have its subtree-bipartitions from a user-provided set; as with MDC, a DP
algorithm solves this in polynomial time. We then show how to extend this to the MGDL



problem, using the same graph but with different weights on the edges.
The rest of the paper is organized as follows. In Section 2, we present the theoretical

foundations and terminology. We present theory and algorithms for solving MGD in Section
3, and results for MGDL in Section 4.

2. Basics

2.1. Prior Terminology and Theory

We begin by defining the MGD, MGDL, and MDC problems. The input to each problem is
the same: a set G = {t1, t2, . . . , tk} of rooted binary gene trees, with leaves drawn from the set
X of n taxa, and we allow the gene trees to have multiple copies of the taxa, and even to miss
some taxa. The output of each problem is a species tree T on X minimizing

∑
i d(ti, T ), where

d(ti, T ) is defined differently for each problem.
The original definitions for these problems assumed that the gene tree ti had at least one

copy of each taxon, and so these definitions need to be modified in order to handle incomplete
gene trees, which have no copies of some taxon.
Handling incomplete gene trees: Most of the literature has handled the case of incom-
plete gene trees ti as follows. Let T ′ be the tree obtained by restricting T to the leaf set of ti
and then suppressing all non-root nodes of degree two (i.e., T ′ is the homeomorphic subtree of
T defined on the leafset of ti). Then, T ′ is used instead of T when computing the MDC, MGD,
or MGDL score. We call this the restriction-based approach, and hence define the restriction-
based optimization problems MGDr, MGDLr, and MDCr. (See Bayzid and Warnow20 for
another approach for handling incomplete gene trees.)
Optimal Embeddings for MGDr, MDGLr, and MDCr.

An embedding of a rooted gene tree t into a species tree T is a mapping f from the nodes
of the gene tree to the nodes of the species tree that has some natural properties: first, f maps
leaves in the gene tree mapped to the unique leaf in the species tree with the same taxon
label, and second, f maintains the order relationships in the gene tree. This second condition
can be stated as follows: if v and w are nodes in the gene tree with v above w (meaning that v

is on the path from w to the root of the gene tree), then f(v) is above f(w) within the species
tree.

Let T be a rooted binary tree. We denote the set of vertices of a tree T by V (T ), the root
by root(T ), the internal nodes by Vint(T ), and the set of taxa that appear at the leaves by
L(T ). (Note that since T can have multiple copies of some taxa, it is possible for |L(T )| to be
smaller than the number of leaves in T .)

A clade in T is a subtree of T rooted at some node in T , and the set of leaves of the clade is
called a cluster. We denote the cluster at v by cT (v); however, when the tree T is understood,
we may also write c(v). We denote the set of clusters of a tree T by C(T ).

The most recent common ancestor (MRCA) of a set A of leaves in T is denoted by
MRCAT (A). Given a gene tree gt and a species tree ST , where L(gt) ⊆ L(ST ), we define
M : V (gt) → V (ST ) by M(v) = MRCAST (cgt(v))). In other words, M associates each node u

of gt to the MRCA in ST of the cluster below u.
The optimal embedding for each of the three criteria we discuss (MDCr, MGDr, and



MGDLr) is obtained using M, even when the gene tree gt is incomplete (lacks some taxon)
or contains more than one copy of some taxon.5,6,17,21 Therefore, since the same reconciliation
of a gene tree into a species tree optimizes all three criteria, we may refer to an “optimal
reconciliation” without specifying the criterion. Also, for any given mapping, the calculation
of the three scores can be performed in polynomial time. Therefore, given a set of rooted gene
trees and a rooted species tree, we can calculate the MGDr, MGDLr, and MDCr scores of the
species tree in polynomial time.
Duplication nodes: For a rooted gene tree gt and a rooted species tree ST , where L(gt) ⊆
L(ST ), an internal node v in gt is called a duplication node if M(v) =M(v′) for some child v′

of v, and otherwise v is a speciation node.21–24

Given a rooted, binary gene tree gt and a rooted, binary species tree ST such that L(gt) ⊆
L(ST ), Dup(gt, ST ) denotes the number of duplications needed to reconcile gt with ST under
the M mapping. For a set G of rooted, binary gene trees, the notation Dup(G, ST ) extends in
the obvious way.
Gene losses: Let gt be a rooted, binary gene tree and ST a rooted, binary species tree such
that L(gt) ⊆ L(ST ). The restriction of ST to L(gt), denoted by RST (L(gt)), is the smallest
subtree of ST containing L(gt) as its leaf set. The homeomorphic subtree ST |L(gt) of ST

induced by L(gt) is a tree obtained from RST (L(gt)) by suppressing all nodes of RST (L(gt))
with indegree and outdegree 1. We denote by r and l the two children of an internal node u.
Then the number of gene losses for a given gene tree gt and species tree ST for a particular
internal node u (under the restriction-based analysis), denoted by lossu, can be calculated as
follows:21–24

lossu =


d(M(r),M(u)) + 1 if M(r) (M(u) =M(l),
d(M(r),M(u)) + d(M(l),M(u)) if M(r) (M(u) )M(l),
0 otherwise.

(1)

Here d(s, s′) is the number of internal nodes in the path in ST |L(gt) from s to s′.
The number of gene losses (under the restriction-based analysis) is given by loss(gt, ST ) =∑

g∈V (gt)

lossg, while for a set G of rooted, binary gene trees, the number of losses is given

by loss(G, ST ) =
∑
gt∈G

loss(gt, ST ). The number of duplications and losses (again, under the

restriction-based analysis), denoted by Duploss(G, ST ), is the sum of the number of duplication
and losses, i.e., Duploss(G, ST ) = Dup(G, ST ) + loss(G, ST ).

2.2. New Data Structures

Subtree-Bipartitions: Let T be a rooted binary tree and u an internal node in T . The
subtree-bipartition of u, denoted by SBPT (u), is the unordered pair (cT (l)|cT (r)), where l and
r are the two children of u. Note that subtree-bipartitions are not defined for leaf nodes. The
set of subtree-bipartitions of a tree T is denoted by SBPT = {SBPT (u) : u ∈ Vint(T )}.
Domination, containment, disjointness, and compatibility: Let BPi = (Pi1 |Pi2)
and BPj = (Pj1 |Pj2) be two subtree-bipartitions. We say that BPi is dominated by BPj (and



conversely that BPj dominates BPi) if either of the following two conditions holds: (1) Pi1 ⊆ Pj1

and Pi2 ⊆ Pj2 , or (2) Pi1 ⊆ Pj2 and Pi2 ⊆ Pj1 . We say that BPi contains BPj if Pj1 ∪ Pj2 ⊆ Pi1

or Pj1 ∪ Pj2 ⊆ Pi2 , and that BPi and BPj are disjoint if [Pi1 ∪ Pi2 ]∩ [Pj1 ∪ Pj2 ] = ∅. We say that
two subtree bipartitions are compatible if one contains the other, or they are disjoint.
The Compatibility Graph CG(G): Let G be a set of rooted binary gene trees on the set X
of n taxa. The compatibility graph CG(G) has one vertex for each possible subtree-bipartition
defined on X , and there is an edge between two vertices if and only if the associated subtree-
bipartitions are compatible.

Note that if two subtree-bipartitions are compatible, then their associated clusters (pro-
duced by unioning the two parts of the bipartition) are also either disjoint or one contains the
other.

Observation 2.1. A set C of n − 1 subtree bipartitions is compatible (meaning all pairs of
clusters are compatible) if and only if there exists a binary rooted tree whose set of subtree
bipartitions is exactly C.

Proof. Follows from the definition of subtree bipartition compatibility, and the fact that a
set of n− 1 compatible clusters on n taxa defines a binary tree with that set of clusters.

We use the fact that (n−1)-cliques in the compatibility graph define rooted binary trees to
develop solutions for the MGDr and MGDLr problems. To do this, we define weights on nodes
in the compatibility graph to characterize the solutions to these problems as (n − 1)-cliques
with maximum weight (for MGDr or minimum weight (for MGDLr). As was done by Than
and Nakhleh17 for the MDCc problem, we will present a dynamic programming algorithm
that finds an optimal (n− 1)-clique in time that is polynomial in the number of nodes in the
compatibility graph.

2.3. Theorems

All results here are for rooted binary gene trees and species trees. We assume that the species
tree has exactly one copy of each taxon in X , but that the gene trees can have any number
(including zero) of each taxon in X . The total number of taxa in X is n.

Lemma 2.1. Let gt be a rooted binary gene tree, ST a rooted binary species tree, and u an
internal node of gt. Suppose the subtree-bipartition for u is dominated by the subtree-bipartition
of v in ST . Then M(u) = v.

Proof. Since SBPgt(u) is dominated by SBPST (v), it follows that cgt(u) ⊆ cST (v). Let w =
M(u). Hence, cST (v) ∩ cST (w) 6= ∅, and so v and w are comparable (that is, either they are
identical or one lies above the other in ST ). Suppose by way of contradiction that v 6= w. Since
cgt(u) ⊆ cST (v), it follows that v must lie above w. But then cST (w) is a subset of the cluster
of one of v’s children, and so disjoint from the cluster for the other child. Hence, SBPgt(u) is
not dominated by SBPST (v), contradicting the initial assumption.

The following corollary is then obvious:



Corollary 2.1. Let gt be a rooted binary gene tree and ST a rooted binary species tree. Then
every subtree-bipartition of gt is dominated by at most one subtree-bipartition in ST .

Theorem 2.1. Let ST be a rooted, binary species tree, gt be a rooted binary gene tree, and
u an internal node in gt. Then the subtree-bipartition of u in gt is dominated by a subtree-
bipartition in ST if and only if u is a speciation node.

Proof. Suppose u is a node in gt such that its subtree-bipartition is dominated by a subtree
bipartition in ST . Let l and r be the two children of u in gt. Then SBPgt(u) = (c(l)|c(r)). Let v

be a node in ST such that SBPgt(u) is dominated by SBPST (v). Let l′ and r′ be the children
of v. Then, without loss of generality, c(l) ⊆ c(l′) and c(r) ⊆ c(r′). Therefore, under the MRCA
mapping, l and r will be mapped to a node in the subtree rooted at l′ and r′, respectively.
Moreover, by Lemma 2.1 M(u) = v. Therefore, M(l) 6=M(u), and M(r) 6=M(u). Hence u is
not a duplication node.

Next, assume that SBPgt(u) is not dominated by any subtree-bipartition of ST , and let
SBPST (M(u)) = (p1|p2). Then at least one of the following holds (1) c(l) 6⊂ p1 and c(l) 6⊂ p2 or
(2) c(r) 6⊂ p1 and c(r) 6⊂ p2. Without loss of generality, suppose (1) holds. Then l cannot map
to a node strictly below v. However, it is also equally obvious that l cannot map to a node
strictly above v, since M(u) = v and l is a child of u. Hence, it must be that M(l) = u. But in
this case, u is a duplication node.

We now define some functions:

• dominated(bp, ST ) ∈ {0, 1}, with dominated(bp, ST ) = 1 if bp is dominated by a subtree-
bipartition in SBPST , and 0 otherwise.

• dom(bp, bp′) = 1 if bp is dominated by bp′ and 0 otherwise.

Corollary 2.2. Let gt be a rooted binary gene tree and ST a rooted binary species tree. Then

Dup(gt, ST ) = |Vint(gt)| −
∑

u∈Vint(gt)

dominated(SBPgt(u), ST ).

Proof. Follows directly from Theorem 2.1.

3. Algorithms for MGDr on rooted binary gene trees

3.1. Graph-theoretic characterization of optimal solution to MGDr

Let G = {gt1, gt2, . . . , gtk} be a set of rooted, binary gene trees on the set X of n taxa, and let
ni be the number of leaves in tree gti. Note that ni does not refer to |L(gti)|, since L(gti) is
the set of taxa in X that appear at least once in gti, whereas ni is the total number of leaves
in gti. Since gti can have multiple copies of a taxon, ni can be larger than |L(gti)|.

We construct the compatibility graph CG(G) with one vertex for each possible subtree-
bipartition defined on X , as described in the previous section. We set the weight of each node
v, denoted by Wdom(v), to be the total number of subtree-bipartitions of G that are dominated



by v. That is,

Wdom(v) =
∑
gt∈G
|{bp : bp ∈ SBPgt and dom(bp, v) = 1}|.

We then find a clique C of size n − 1 so as to maximize the weight Wdom(C) of the clique C,
where Wdom(C) =

∑
v∈C Wdom(v).

Theorem 3.1. Let G = {gt1, gt2, . . . , gtk} be a set of binary, rooted gene trees on the n taxa
in X . Let C be an (n− 1)-clique in CG(G) maximizing Wdom(C), and let ST be the species tree
defined by the clique (so that SBPST corresponds to C). Then ST is a binary species tree that
optimizes MGDr with respect to G.

Proof. Recall that any (n− 1)-clique in the compatibility graph defines a rooted binary tree
on X . Let C be a clique of size n− 1 and ST be the tree defined by C. By Corollary 2.1, every
subtree-bipartition in gti can be dominated by at most one node in C. Therefore, each node
of gti contributes either 1 (if the node is dominated) or 0 (if the node is not dominated) to
the weight of C. Let wi be the amount contributed by gti to the weight of C. Thus, wi is the
number of speciation nodes in gti with respect to the species tree corresponding to ST . Then∑

v∈C
Wdom(v) =

k∑
i=1

wi = Wdom(C).

Furthermore, by Corollary 2.2 and because a rooted binary tree with ni leaves has ni − 1
internal nodes, Dup(gti, ST ) = ni − 1− wi. Then,

Dup(G, T ) =
k∑

i=1

Dup(gti, ST ) =
k∑

i=1

[ni − 1− wi] = N − k −Wdom(C),

where
∑k

i=1 ni = N . Therefore, the clique with maximum weight defines a tree ST that mini-
mizes Dup(G, ST ).

3.2. The Dynamic Programming Algorithm for MGDr

The graph-theoretic characterization of the optimal solution for MGDr given in the previous
section suggests an algorithm for finding the optimal solution, in which a max weight clique
is sought in an exponentially large graph. However, we will show that this optimal solution
can be found in time that is polynomial in the number of vertices in the graph, using dynamic
programming. In addition, we will show that a constrained version of the MGDr problem, in
which the allowed subtree-bipartitions are given as input, can also be solved using the same
basic dynamic programming algorithm. Finally, when the set of allowed subtree-bipartitions
comes from the input set of gene trees, the result is an algorithm that runs in polynomial
time.

The motivation to restrict the attention to a subset of the subtree-bipartitions comes from
the observations made by Than and Nakhleh,17 who noted that that clusters in the species
tree that optimizes MDC tend to appear in at least one of the input gene trees. Therefore,



we consider a constrained search problem, where instead of considering all possible subtree-
bipartitions, we only consider the subtree-bipartitions of the gene trees. When we do this,
instead of constructing a compatibility graph with one node for each subtree bipartition, the
compatibility graph will only have nodes for the (at most) N − k subtree bipartitions in the
input gene trees (where N =

∑k
i=1 ni). A clique of size n − 1 with the maximum weight will

define an optimal solution to the constrained version of MGDr where the species tree is only
permitted to have subtree bipartitions from the input gene trees.

Let SBP be any set of subtree-bipartitions, and let CLS be the set of associated clusters
(i.e. CLS = {p ∪ q : (p|q) ∈ SBP}. We will define the constrained MGDr problem by limiting
the solution space to those rooted, binary trees, all of whose subtree-bipartitions are in the
set SBP. Thus, by setting SBP to be the set of all possible subtree-bipartitions we obtain
the globally optimal solution, but setting SBP to be a proper subset of the set of all subtree-
bipartitions is also possible.

By Theorem 3.1, the binary species tree with a maximum total weight (as defined by
summing up the weights of its subtree bipartitions) has a minimum number of duplications,
because the duplication nodes are exactly those nodes whose subtree-bipartitions are not
dominated by any subtree-bipartition in the species tree.

We now show how to calculate that optimal binary species tree directly, using dynamic
programming. The DP algorithm computes a rooted, binary tree TA for every cluster A ∈ CLS,
such that TA maximizes the sum, over all gene trees t, of the number of subtree-bipartitions
in t that are dominated by some subtree-bipartition in TA. We denote this total number by
value(A).

We preprocess the data as follows. First, we compute the set CLS, and order its elements
based on size. We also calculate SBPG =

⋃k
i=1 SBPgti

, i.e. the set of all subtree bipartitions
in all gene trees, and we set count(x) for x ∈ SBPG to be the number of times x appears in
any of the gene trees. Recall that for a subtree bipartition x, we define Wdom(x) to be the
number of subtree bipartitions of the gene trees that are dominated by x. We define a partial
order for elements of SBP and SBPG based upon subtree-bipartition size. For every ordered
pair < x, y > such that x ∈ SBPG and y ∈ SBP, we determine whether x is dominated by y;
if y dominates x then Wdom(y) is incremented by count(x). At the end of this step, Wdom(y) is
calculated correctly for every y ∈ SBP. All this preprocessing can be computed in O(n|SBP|2).

We compute value(A) in order, from the smallest cluster to the largest cluster X . We set
value(A) as follows. For any cluster A with two taxa, we set value(A) = Wdom(a1|a2), where
A = {a1, a2}. For a cluster A with more than two taxa, we set value(A) as follows:

value(A) = max{value(A1) + value(A−A1) + Wdom(A1|A−A1) : (A1|A−A1) ∈ SBP}

If there is no (A1|A−A1) ∈ SBP, we set its value(A) to −∞, signifying that A cannot be further
resolved. At the end of the algorithm, if SBP includes at least one clique of size n−1, we have
computed value(X ) as well as sufficient information to construct the species tree having the
minimum number of duplications. If subtree bipartitions in SBP are not sufficient for building
a fully resolved tree on X , then value(X ) will be −∞, and our algorithm returns FAIL. Note
that for a specific cluster A, value(A) can be computed in O(|SBP|) time, since at worst we



need to look at every subtree-bipartition in SBP. In other words, we have proven the following:

Theorem 3.2. Let G be a set of rooted binary gene trees, SBP a set of subtree-bipartitions.
Then, if subtree bipartitions of SBP define at least one binary tree on X , then the DP algorithm
finds the species tree ST minimizing the total number of duplications subject to the constraint
that SBPST ⊆ SBP in O(n|SBP|2) time. Therefore, if SBP is all possible subtree-bipartitions,
we have an exact but exponential time algorithm. However, if SBP contains only those subtree-
bipartitions from the input gene trees, then the DP algorithm finds the optimal constrained
species tree in O(d2n3k2) (since the number of subtree-bipartitions |SBP| in G is O(dkn)),
where n is the number of species, k is the number of gene trees, and d the maximum number
of times that any taxon appears in any gene tree.

4. Algorithms for MGDLr

4.1. Graph-Theoretic Characterization

We begin with some additional terminology and theorems. For any cluster A in gt and a cluster
B in ST , we say that A is B-maximal if (1) A ⊆ B, and (2) for any cluster A′ in gt, if A ⊆ A′,
then A′ 6⊆ B. We define kB(gt) to be the number of B-maximal clusters within gt, and Finally,
in a rooted tree T with cluster G, the unique edge e that separates G from the rest of the
leaves in T is called the parent edge of the cluster G.

Theorem 4.1. (From Than and Nakhleh17 and Yu, Warnow, and Nakhleh18) Let gt be a
rooted binary gene tree and ST a species tree on the same set of taxa. Let B be a cluster in ST

and let e be the parent edge of B in ST . Then kB(gt) is equal to the number of lineages on e in
an optimal reconciliation of gt within ST with respect to MDCc. Therefore, MDCc(gt, ST ) =∑

(kB(gt)− 1), where B ranges over the clusters of ST .

Theorem 4.2. Let gt be a rooted binary gene tree and ST a species tree on the same set of
leaves. Then MDCr(gt, ST ) =

∑
(kB(gt)− 1), where B ranges over the clusters of ST |L(gt).

Proof. By definition, MDCr(gt, ST ) = MDCc(gt, ST |L(gt)). However, gt and ST |L(gt) have the
same set of taxa. Therefore, by Theorem 4.1, MDCc(gt, ST |L(gt)) =

∑
(kB(gt)− 1), as B ranges

over the clusters of ST |L(gt).

Theorem 4.3. (From Zhang21) Let gt be a rooted binary gene tree and ST a rooted binary
species tree. Then, under the restriction-based analysis, Duploss(gt, ST ) = MDCr(gt, ST ) + 3 ∗
Dup(gt, ST ) + |V (gt)| − |V (RST (L(gt)))|.

Let v be a vertex associated with the subtree-bipartition (p|q), and let B = p ∪ q be the
cluster associated with v. Define Wxl(v, gt) to be 0 if p∩L(gt) = ∅ or q∩L(gt) = ∅, and otherwise
to be kB(gt)− 1. Set Wxl(v) =

∑k
i=1 Wxl(v, gti). Then, for any species tree ST and set G of gene

trees, MDCr(G, ST ) =
∑k

i=1 MDCr(gti, ST ) =
∑

v∈C Wxl(v), where C is the clique in CG(G) that
corresponds to ST .

Theorem 4.4. Let G = {gt1, gt2, . . . , gtk} be a set of binary rooted gene trees on set X of n

species, and let CG(G) be the compatibility graph with vertex weights defined by WMGDL(v) =



Wxl(v) − 3Wdom(v). The set of bipartitions in an (n − 1)-clique of minimum weight in CG(G)
defines a binary species tree ST that optimizes MGDLr.

Proof. Let C be a clique of size n − 1 and ST be the rooted binary tree defined by the
subtree-bipartitions represented by the nodes in C. Let SBPdom(gt, ST ) be the set of subtree-
bipartitions in gt that are dominated by a subtree-bipartition in ST , i.e., SBPdom(gt, ST ) =
{bp : bp ∈ SBPgt and dominated(bp, ST ) = 1}. Note that |SBPdom(gt, ST )| is the number of
speciation nodes in gt with respect to ST . Therefore, the total number of speciation nodes in
G is

∑k
i=1 |SBPdom(gti, ST )| =

∑
v∈Vint(ST ) Wdom(v). Let N =

∑k
i=1 ni. Then,

Duploss(G, ST ) =
k∑

i=1

Duploss(gti, ST )

=
k∑

i=1

[MDCr(gti, ST ) + 3 ∗Dup(gti, ST )− (|V (gti)| − |V (RST (L(gti)))|)] (by Theorem 4.3)

=
k∑

i=1

[MDCr(gti, ST ) + 3 ∗Dup(gti, ST )]−
k∑

i=1

(|V (gti)| − |V (RST (L(gti)))|)

=
k∑

i=1

[MDCr(gti, ST ) + 3 ∗ ((ni − 1)− |SBPdom(gti, ST )|)]

−
k∑

i=1

(|V (gti)| − |V (RST (L(gti)))|) (by Corollary 2.2)

=
∑
v∈C

Wxl(v) +
k∑

i=1

3(ni − 1)− 3
∑
v∈C

Wdom(v)

−
k∑

i=1

(2ni − 1) +
k∑

i=1

|V (RST (L(gti)))| (since |V (gti)| = 2ni − 1)

=
∑
v∈C

(Wxl(v)− 3Wdom(v)) + 3
k∑

i=1

ni − 3k − 2
k∑

i=1

ni + k +
k∑

i=1

|V (RST (L(gti)))|

=
∑
v∈C

WMGDL(v) +
k∑

i=1

ni − 2k +
k∑

i=1

|V (RST (L(gti)))|

= WMGDL(C) + N − 2k +
k∑

i=1

|V (RST (L(gti)))|

Note that |V (RST (L(gti)))| does not depend on ST . Therefore, the clique C with minimum
weight defines a tree ST that minimizes Duploss(G, ST ).

4.2. Dynamic Programming Approach for MGDLr

We now show how to use dynamic programming to find the optimal solution for MGDLr

without having to explicitly search for the optimal clique. As we did for MGDr, we generalize



the problem to allow the user to provide a set SBP of subtree-bipartitions, and the solution
space is restricted to those rooted, binary trees, all of whose subtree-bipartitions are in the
set SBP.

We compute value(A) for all clusters A with at least two species as follows. If |A| = 2,
we set value(A) = W (a1|a2), where A = {a1, a2}. For set A with more than two taxa, we set
value(A) as follows:

value(A) = min{value(A1) + value(A−A1) + Wxl(A1|A−A1)− 3Wdom(A1|A−A1) :
(A1|A−A1) ∈ SBP}.

The optimal number of duplications and losses is given by value(X ) + N − 2k +∑k
i=1 |V (RST (L(gti))|, where N =

∑k
i=1 ni, and ni is the number of leaves in gene tree gti.

By backtracking, we can find the optimal set of compatible clusters and hence can construct
the optimal tree. We now have the following theorem:

Theorem 4.5. Let G be a set of k rooted binary gene trees on the set X of n taxa. Let SBP
be an arbitrary set of subtree bipartitions on X . Then the DP algorithm finds the species tree
ST optimizing MGDLr, subject to the constraint that SBPST ⊆ SBP, in O(n|SBP|2) time.
Therefore, for the case where SBP is the set of subtree-bipartitions from the k gene trees, the
algorithm uses O(d2n3k2) time, where d is the maximum number of times any taxon appears
in any gene tree.
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