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Many methods for inferring species trees from gene trees have been developed when incongruence
among gene trees is due to incomplete lineage sorting. A method called STAR (Liu et al, 2009),
assigns values to nodes in gene trees based only on topological information and uses the average
value of the most recent common ancestor node for each pair of taxa to construct a distance matrix
which is then used for clustering taxa into a tree. This method is very efficient computationally,
scaling linearly in the number of loci and quadratically in the number of taxa, and in simulations
has shown to be highly accurate for moderate to large numbers of loci as well as robust to molecular
clock violations and misestimation of gene trees from sequence data. The method is based on a
particular choice of numbering nodes in the gene trees; however, other choices for numbering nodes
in gene trees can also lead to consistent inference of the species tree. Here, expected values and
variances for average pairwise distances and differences between average pairwise distances in the
distance matrix constructed by the STAR algorithm are used to analytically evaluate efficiency of
different numbering schemes that are variations on the original STAR numbering for small trees.
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1. Introduction

Numerous methods have been developed in recent years for inferring species trees (trees de-
scribing the history of speciation events for a set of species) from gene trees (trees on which
DNA sequences evolve).1–5 Methods that explicitly model the multispecies coalescent and ac-
count for uncertainty in the gene trees due to the mutation process can be the most accurate
when gene tree discordance is due to incomplete lineage sorting, but can also be computation-
ally very slow, particularly in the number of genes. In practice researchers sometimes have
difficulty with convergence of the MCMC algorithms for these methods due to the relatively
large number of genes.6 With whole genome sequencing becoming increasingly common, this
problem with the methods being able to keep up with the data is likely to increase in the
future and motivates the need for computationally more efficient methods that will still be
powerful enough to make accurate inferences. Methods that do not explicitly model the mul-
tispecies coalescent (e.g., rooted triple consensus,7 R*,8 STEAC and STAR,9,10 the quartet
version of BUCKY,11 and triplet MRP12 can still be robust under the model and can have
the advantages of performing well under model violations and being computationally efficient
enough to handle genomic levels of data.

A particularly promising method in simulations has been STAR,9 which stands for Species
Tree inference using Average Ranks. The method assigns a value to each node in an input gene



tree. The pairwise distance between two leaves of the tree is interpreted as twice the value of
the node of their most recent common ancestor (MRCA) in the gene tree, and the pairwise
distances for every pair of species is averaged over all loci. The resulting distance matrix can
then be used to construct a tree using any clustering algorithm, for instance UPGMA or
neighbor joining.

A key issue for the algorithm to work is how to assign the node values. The original STAR
algorithm assigns a value of n to the root node, ρ, and the value of a node k is n minus the
number of edges separating the node from the root. These node values are called “ranks” in
Liu et al. (2009), where a higher rank means fewer edges separate the node from the root.
(This usage of “rank” is slightly different from the usage of ranked trees elsewhere, where real-
valued divergence times are sorted and their relative order is used to determine the rank of a
node13,14) The node numbering used by STAR can also be interpreted as replacing all branch
lengths on the gene trees with length 1 (extending external branch lengths as necessary to
make trees ultrametric), and computing the average distance for each pair of species on these
transformed gene trees. This numbering scheme leads to statistically consistent estimation of
the species tree topology in the sense that as more independent loci (gene trees) are used, the
probability that the method returns the correct species tree topology approaches 1.

Although the original numbering scheme used in STAR is statistically consistent, other
numbering schemes also lead to consistent inference, as is shown in.15 This naturally raises
the question of whether other numbering schemes could be better or worse than STAR, and
whether there is an optimal numbering scheme? This paper addresses this question by analyt-
ically determining expected values and variances of average distances between species in the
distance matrix constructed by generalized versions of STAR for 4-taxon trees. An additional
application of this approach is that sample sizes (numbers of independent loci) needed to con-
fidently reconstruct certain inequalities in pairwise distances between taxa can be estimated.

2. Generalized STAR

To generalize STAR, let the value assigned to an internal node of a gene tree be aj, where j

is the number of edges separating the node from the root, ρ. Thus, the root node gets value
a0, the two daughter nodes of the root get value a1 (assuming neither is a leaf), etc. There
are at most n − 1 distinct “ranks” in a gene tree, and each is only used if the gene tree is
completely unbalanced (a caterpillar topology in which only one internal node has two leaves
as its immediate descendants). Thus, a balanced four-taxon tree only uses a0 for the root and
a1 for the two internal nodes. Thus a numbering scheme can be specified as an (n− 1)− tuple,
(a0, a1, · · · , an−2). For the standard STAR algorithm, a0 = n and ai = ai−1 − 1, 1 ≤ i ≤ n − 2.
We define a generalized STAR numbering scheme for an n-taxon species tree to be any (n−1)-
tuple (a0, . . . , an−2) satisfying a0 ≥ a1 ≥ · · · ,≥ an−2, where at least one of the inequalities is
strict. The same numbering scheme is applied to each gene tree at each locus, and we assume
that all gene trees have the same taxa, although these assumptions can be relaxed somewhat
(see Allman et al. (2012)).

In the notation used in this paper, the STAR algorithm works by creating a distances
matrix, where the (i, j)th entry is the average distance between taxa i and j, Dij. Letting D

(ℓ)
ij



T4,1 T4,2 T4,3 T4,4 T4,5

A B C D A B D C A C B D A C D B A D B C

T4,6 T4,7 T4,8 T4,9 T4,10

A D C B B C A D B C D A B D A C B D C A

T4,11 T4,12 T4,13 T4,14 T4,15

C D A B C D B A A B C D A C B D A D B C

Fig. 1. Four-taxon trees used to determine expected values of the STAR distance matrix in the four-taxon
case.

be the distance between taxa i and j at locus ℓ, if there are N loci, then Dij = (1/N)
∑N

i=1 D
(ℓ)
ij .

For the 4-taxon case, the standard STAR algorithm uses (a0, a1, a2) = (4, 3, 2). In the stan-
dard STAR numbering scheme, all internal branches are equal in length and external branch
lengths can be chosen to make the gene tree ultrametric (so that the distance from root to
tip is constant). Translating the distances (adding a constant to each distance) or multiplying
each by a constant factor should not affect the clustering applied to the distance matrix gen-
erated by STAR. Hence for the 4-taxon case, we can consider a generalized numbering scheme
(1, a, 0) and try to determine the optimal value of a, where a = 1/2 yields the same species tree
estimate as the original STAR numbering scheme. More generally, we can consider a number-
ing scheme a = (a0, . . . , an−2) to be equivalent to the numbering scheme (a − a0)/(a0 − an−2),
which fixes the smallest and largest values at 0 and 1, respectively. To determine consequences
of different choices of a for (1, a, 0), formulas for moments of STAR distances are shown next.

3. Expected values and variances of STAR distances

Explicit calculations of expected values, variances, and covariances of STAR distances can be
used to estimate sample sizes necessary for the STAR tree to have certain relationships over
others. For the 4-taxon species tree σ4,1 = (((A, B):x,C):y,D), we are particularly interested in
the sample size necessary for the STAR tree to have clade {ABC} as opposed to clade {CD}.
For notation, we let Dij be the distance between taxa i and j on a single random gene tree
occurring on the species tree. We let E[Dij ] be the expected distance between taxa i and j.
Thus, as the number of loci goes to infinity STAR tree has clade {ABC} as opposed to clade
{CD} for species tree σ4,1 if E[DAB] < E[DAC ] = E[DBC ] < E[DCD]. The greatest difficulty is in



being confident (having enough loci) that the last inequalities, E[DAC ], E[DBC ] < E[DCD] hold.
We can determine expected values and higher moments for the random distances Dij for

a generalized star scheme by

E[Dk
ij ] =

(2n−3)!!∑

y=1

(dij(y))k pn,y(λ), (1)

where y indexes the gene tree topology, dij(y) is the observed value of the random variable
Dij (dij(y) depends on the topology y), pn,y is the probability of gene tree topology y in some
ordering of tree topologies for n taxa, and λ is the set of internal branch lengths on the species
tree. Four-taxon tree topologies are listed and enumerated as T4,y, y = 1, . . . , 15, in Figure 1,
so that p4,y is the probability that a gene tree has topology T4,y. The probabilities pn,y can be
computed symbolically using the software COAL.16

Additionally, we will need covariances, which can be obtained from

E[DijDkℓ] =

(2n−3)!!∑

y=1

dij(y) dk ℓ(y) pn,y(λ) (2)

where at least two of {i, j, k, ℓ} are distinct.
From the Central Limit Theorem, the random variables DBC , DCD, and DCD −DBC con-

verge in distribution to normal random variable as the number of loci goes to infinity. We
know that E[DCD − DBC ] > 0, so that given enough loci, C will be likely to be clustered with
B (and therefore also with A) rather than D. We therefore need the variance of DCD − DBC

to determine how many loci will be needed with a given probability for the inequality to be
positive. Here we have

V(DCD − DBC) = V(DCD) + V(DBC) − 2Cov(DCD, DBC), (3)

where V and Cov are the variance and covariance, respectively. These can be evaluated using
equations (1) and (2). Knowing the approximate normal distribution for DCD − DBC as a
function of the numbering scheme (a0, a1, a2) also allows us to compare the relative efficiencies
of different numbering schemes in terms of the sample size needed to have a high probability
of obtaining the correct species tree estimate.

Although the Central Limit Theorem applies asymptotically, in practice, the distances
DBC , DCD, DCD − DBC have detectable deviations from normality with 10 loci, and are
slightly left-skewed. Simulations were done with STAR to test the applicability of the Central
Limit Theorem for finite samples of size 10, 50, 100, and 500 loci on the species tree σ4,1. The
normality of DCD −DBC was tested using the Shapiro-Wilks test in R,17 and results are listed
in Table 1 for the numbering schemes (4,3,2) and (4,3,0). Statistically significant deviations
are detectable with a sample size of 100 or less, but are difficult to detect with samples of size
500 loci. We note that although deviations from normality are detectable, the power to detect
deviations is fairly high, since there are 1000 observations, and deviation from normality is
difficult to detect by eye using histograms.

Table 1 also lists the c.o.v. (estimated from the simulations), and the proportion of esti-
mated species trees that are correctly inferred using UPGMA implemented in Phybase18 on
the estimated distance matrix, both of which can be used as measures of the efficiency of the



Table 1. Expected values, variances, tests of normality for DCD − DBC estimated from finite
numbers of loci, and proportion of times the correct species tree was estimated under the
STAR algorithm. The standard deviation and c.o.v. are based on the sample size, and are√

v(a)/n and
√

v(a)/n/e(a), respectively. P -values are for the normality of DCD − DBC .

Branch lengths DCD − DBC proportion
(x, y) (a0, a1, a2) loci mean sd c.o.v. p-value correct

(0.05, 0.05) (4, 3, 2) 10 0.047 0.325 6.919 0.023 0.170
(0.05, 0.05) (4, 3, 2) 50 0.056 0.140 2.337 0.076 0.253
(0.05, 0.05) (4, 3, 2) 100 0.061 0.098 1.619 0.190 0.363
(0.05, 0.05) (4, 3, 2) 500 0.063 0.046 0.718 0.868 0.793

(0.05, 0.05) (4, 3, 0) 10 0.107 0.570 5.350 0.000 0.145
(0.05, 0.05) (4, 3, 0) 50 0.118 0.246 2.093 0.349 0.275
(0.05, 0.05) (4, 3, 0) 100 0.120 0.173 1.438 0.555 0.394
(0.05, 0.05) (4, 3, 0) 500 0.122 0.079 0.646 0.225 0.849

(1.00, 0.05) (4,3,2) 10 0.052 0.273 5.234 0.000 0.452
(1.00, 0.05) (4,3,2) 50 0.055 0.122 2.204 0.004 0.535
(1.00, 0.05) (4,3,2) 100 0.053 0.088 1.651 0.069 0.619
(1.00, 0.05) (4,3,2) 500 0.055 0.034 0.707 0.604 0.894

(1.00, 0.05) (4,3,0) 10 0.076 0.380 5.022 0.000 0.452
(1.00, 0.05) (4,3,0) 50 0.075 0.176 2.273 0.070 0.551
(1.00, 0.05) (4,3,0) 100 0.077 0.125 1.617 0.137 0.652
(1.00, 0.05) (4,3,0) 500 0.079 0.056 0.708 0.340 0.905

two numbering schemes. For the species tree with branches (x, y) = (0.05, 0.05), for each given
number of loci, the scheme (4, 3, 2) has a higher c.o.v. than (4, 3, 0), although proportions of
correctly inferred trees are only statistically significantly better for (4, 3, 0) when sample sizes
reach 500 loci. Note, however, that both in simulation (Table 1) and based on theoretical
sample size calculations in Table 2, (4, 3, 2) and (4, 3, 0) are approximately equally good for
(x, y) = (1.0, 0.05). We note that (x, y) = (0.05, 1.0) leads to more gene tree discordance than
(1.0, 0.05)

4. Evaluation of variations on STAR

4.1. The 4-taxon case

To evaluate generalized STAR in the 4-taxon case, we let the numbering scheme be (1, a, 0).
To find an optimal value of a, set e(a) := Ea[DCD−DBC ] and v(a) = Va[DCD−DBC ], i.e., taking
means and variances parameterized by a. Using the normal approximation, the probability that



Fig. 2. Coefficient of variation for DCD −DBC as a function of a using the STAR numbering scheme (1, a, 0)
for species tree σ4,1 with (x, y) = (0.05, 0.05), (0.05, 1.0), (1.0, 0.05), (1.0, 1.0).

DCD −DBC is greater than 0 is approximately Pa[Z < (0−e(a))/
√

v(a)/n] = Φ(
√

ne(a)/
√

v(a)),
where Z is a standard normal random variable and Φ is the standard normal cumulative
distribution function. Thus the sample size, N , needed to have confidence 1−α that E[DCD −
DBC ] > 0 is approximately

N = ⌈(Φ−1(1 − α)c.o.v.(a))2⌉ (4)

where c.o.v.(a) =
√

v(a)/e(a) is the coefficient of variation. We consider the optimal value of a

is the value that minimizes N in equation (4), or equivalently, that minimizes the coefficient
of variation,

√
v(a)/e(a). For species tree (((A,B):x,C):y, D), the coefficient of variation under

the scheme (1, a, 0) can be written analytically using

v(a) =
(
− e−2 x − 9e−2 y − 7 e−x−3 y + 6 e−4 y−x + 15 e−y + 2 e−2 x−3 y + 3 e−x

− 3 e−x−y − e−2 x−6 y
)
a2/9 +

(
− 30 e−y + 3 e−x−2 y − 1 e−2 x−3 y + 18 e−2 y

+ 10 e−x−3 y − 9e−4 y−x + e−2 x−6 y + e−2 x−y − e−2 x−4 y
)
a/9

− 1/3 e−x−2 y + 1/3 e−4 y−x + 1/18 e−2 x−4 y − e−2 y − 1/36 e−2 x−2 y − 1/36 e−2 x−6 y

+ 5/3 e−y − 5/18 e−x−3 y + 1/6 e−x−y

e(a) =
(
1/3 e−x − 1 + e−y − 1/3 e−x−3 y

)
a + 1 − e−y − 1/6 e−x−y + 1/6 e−x−3 y

where these values were computed symbolically using equations (1)-(3), using COAL for the
gene tree probabilities pn,i(λ), and simplifying in the software MAPLE.

The optimal value of a is difficult to find analytically as a function of x and y; however,
for fixed x and y, one can equivalently find the optimal value of v(a)/e2(a), which is a ratio-
nal function with both numerator and denominator being quadratic functions in a, and the
minimum of this function can be found analytically. For (x, y) = (0.05, 0.05), for example, the
optimal value is a ≈ 0.767. This value is close to a = 3/4, which is equivalent to the numbering
scheme (4, 3, 0). The coefficient of variation as a function of a is shown in Figure 2 for a few
choices of (x, y) and for species trees σ4,1.

We compute sample sizes required to get a 95% chance that a random sample of N loci
results in DCD −DBC > 0 for two choices of (x, y) in Table 2. In the table, the root is difficult
to resolve, and for x = 1.0, the fact that A and B form a clade is less to difficult to infer. We



note that for (x, y) = (0.05, 0.05), the numbering scheme (4, 3, 1) does best among those listed,
while for (x, y) = (0.05, 1.0), the numbering scheme (4, 3, 0) does best amongst the same set of
numbering schemes.

We note that choosing a to maximize the probability that DCD − DBC > 0 does not nec-
essarily maximize the probability that the STAR tree matches the species tree. In particular,
for (x, y), if x is small and y is large, then DCD −DBC > 0 with high probability, and the more
difficult relationships to resolve will be those between taxa A, B, and C. In this case, it might
make sense to find a that maximizes the probability that DBC − DAB > 0, and sample sizes
sufficient for DCD − DBC > 0 are unlikely to be sufficient for DBC − DAB > 0 to obtain.

The sample sizes here are only for being 95% confident that DCD − DBC > 0, which does
not guarantee that the correct species tree will be estimated, although in practice, this is
often the case. For the scheme (4, 3, 0), a sample size of 548 is needed for 95% confidence that
DCD − DBC > 0 when (x, y) = (0.05, 0.05). In simulation, a sample size of 500 recovered the
species tree only 84.9% of the time, although by formula (4), a sample size of 500 should have
a 94% (= Φ(1.571)) that DCD − DBC > 0. It is not surprising that sample sizes needed to
recover the entire tree are somewhat larger than what is needed to estimate the inequality, as
for example, DCD −DBC > 0 does not guarantee that DAB is the smallest estimated distance,
although this is necessary to correctly estimate the species tree.

An alternative approach to guaranteeing that a particularly difficult inequality is estimated
correctly with high probability is to guarantee that all pairwise inequalities are estimated cor-
rectly. Given the lack of independence between pairwise distances, this is difficult to do exactly.
However, using Bonferroni’s inequality, k events (not necessarily independent or equiprobable),
that each have probability at least 1−ε/k, all occur with probability at least 1−ε.19 Thus, one
could choose, for example, the sample size needed to correctly determine DCD −DBC > 0 with
probability 1−α = 0.99, and conclude that all

(
4
2

)
= 6 pairwise relationships (and therefore the

correct tree) will be inferred with probability at least 1 − 6α = 0.94. In general, this approach
will be quite conservative (i.e., will overestimate the number of loci needed) if it is based on
the most difficult pairwise inequality. Sample sizes needed for 99% confidence can be obtained
from 95% values by multiplying by [Φ−1(1−0.99)/Φ−1(1−0.95)]2 = (2.326/1.645)2 ≈ 2.00. Thus,
this approach suggests that samples sizes being doubled (for the 4-taxon case) would give
approximately at least as much confidence that the entire tree was estimated correctly as well
as the inequality DCD − DBC > 0.

From the 4-taxon examples, the branch lengths (x, y) = (0.05, 0.05) are in the anomaly

zone, in which the most likely gene tree topology is ((AB)(CD)) rather than (((AB)C)D).20

However, (x, y) = (1.0, 0.05) is not in the anomaly zone (i.e., the most likely gene tree topology
matches the species tree topology) but requires similarly large samples (hundreds of loci) to
recover the species tree with high probability (Table 1). The results are similar to other studies
that have shown that hundreds of loci might be needed to accurately reconstruct the species
tree from gene tree topologies when gene tree discordance is this high.9,21



Table 2. Samples sizes and c.o.v. needed for approximate 95% confidence that
DCD − DBC > 0. The c.o.v. is based on

√
v(a)/e(a) for a single locus.

(x, y) (a0, a1, a2) (1, a, 0) number of loci needed c.o.v.

(0.05, 0.05) (4, 3, 2) (1, 0.5, 0) 655 15.553
(0.05, 0.05) (4, 3, 1) (1, 0.67, 0) 564 14.428
(0.05, 0.05) (4, 3, 0) (1, 0.75, 0) 548 14.230
(0.05, 0.05) (4, 3.5, 0) (1, 0.875, 0) 567 14.474
(0.05, 0.05) (4, 2, 1) (1, 0.33, 0) 817 17.375

(1.00, 0.05) (4, 3, 2) (1, 0.5, 0) 726 16.371
(1.00, 0.05) (4, 3, 1) (1, 0.67, 0) 697 16.038
(1.00, 0.05) (4, 3, 0) (1, 0.75, 0) 725 16.358
(1.00, 0.05) (4, 3.5, 0) (1, 0.875, 0) 919 18.428
(1.00, 0.05) (4, 2, 1) (1, 0.33, 0) 791 17.097

4.2. A 5-taxon example

Another example of using different numbering schemes to distinguish difficult-to-resolve
relationships is for the two species trees σ5,1 = (((A,B):x, C):y, (D, E):z) and σ5,2 =

((A,B):u, (C, (D, E):v):w). For σ5,1, if x and y are small while z is relatively large, the most
likely gene tree could have the same topology as σ5,2. Similarly, if v and w are small, while u is
relatively large, a gene tree with the same topology as σ5,1 could be the most likely gene tree
when σ5,2 is the species tree. This example with these two candidate species trees is actually
the smallest example of a “wicked forest”, in which for each of two or more candidate species
trees, the most likely gene tree topology matches a different species tree.20,22 In this example,
the clades {AB} and {DE} might not be very difficult to estimate, and the greatest difficulty
is in deciding on which side of the root taxon C belongs. We note that this example was also
one of the more difficult cases for estimating rooted species trees from unrooted gene trees.23

To get a sense of sample sizes that might be needed to correctly place taxon C, and to
find an optimal numbering scheme (a0, a1, a2, a3) to use with STAR, we consider DCD − DBC .
Here we map the smallest and largest values of the numbering scheme to 0 and 1, respectively,
and consider schemes (1, a1, a2, 0) with 1 > a1 > a2 > 0. A plot of the coefficient of variation is
given in Figure 3 for the species tree (((A,B):x, C):y, (D, E):z) with (x, y, z) = (0.05, 0.05, 1.0),
which shows that larger values of a1 tend to be more efficient, although some efficiency is lost
with value of a1 too close to 1, and that the choice of a1 is more important than the choice of
a2.

Sample size calculations can be done as in the 4-taxon case, using a = (a0, a1, a2, a3) in place
of a in equation (4). Here, a near optimal choice for a is (1.0, 0.88, 0.50, 0.0). This is equivalent
to (5.00, 4.64, 3.5, 2.00) when the smallest and largest values are fixed at 2.0 and 5.0. Similarly,
the standard STAR numbering scheme of (5, 4, 3, 2) is equivalent to (1, 2/3, 1/3, 0). Estimated
expected values, standard deviations, c.o.v. (both estimated and theoretical), and proportion



Table 3. Expected values standard deviation, c.o.v., and for E[DCD − DBC ] estimated from
finite numbers of loci, and proportion of times the correct species tree was estimated under
the STAR algorithm using species tree (((A,B):x,C):y, (D, E):z). The theoretical c.o.v. is√

V([DCD − DBC ]/n)/E[DCD − DBC ].

Branch lengths numbering loci mean sd c.o.v. proportion
(x, y, z) scheme (theoretical) correct

(0.05, 0.05, 1.0) (5,4,3,2) 10 0.0691 0.336 4.861 (4.841) 0.144
(0.05, 0.05, 1.0) (5,4,3,2) 50 0.071 0.150 2.105 (2.165) 0.255
(0.05, 0.05, 1.0) (5,4,3,2) 100 0.073 0.104 1.434 (1.531) 0.375
(0.05, 0.05, 1.0) (5,4,3,2) 500 0.068 0.046 0.670 (0.684) 0.800

(0.05, 0.05, 1.0) (5,4.64,3.5,2) 10 0.062 0.266 4.308 (4.439) 0.152
(0.05, 0.05, 1.0) (5,4.64,3.5,2) 50 0.054 0.106 1.964 (1.985) 0.273
(0.05, 0.05, 1.0) (5,4.64,3.5,2) 100 0.058 0.080 1.376 (1.403) 0.405
(0.05, 0.05, 1.0) (5,4.64,3.5,2) 500 0.055 0.034 0.611 (0.628) 0.865

Fig. 3. C.o.v. as a function of a1 and a2 for the numbering scheme (1, a1, a2, 0) for the species tree
(((A,B):x,C):y, (D,E):z) with (x, y, z) = (0.05, 0.05, 1.0). The drop along the plane a1 = a2 occurs because
of the assumption that a1 > a2.

of STAR trees matching the species tree are shown in Table 3. The sample size needed to
determine DCD − DBC > 0 with 95% confidence is roughly N = 534 with (a0, a1, a2, a3) =

(5.00, 4.64, 3.50, 2.00) and N = 634 with (a0, a1, a2, a3) = (5, 4, 3, 2).



5. Discussion

This paper has shown a framework for investigating variations on the STAR numbering scheme
for the purpose of evaluating the relative efficiency of different schemes. The original STAR
numbering scheme is well-chosen in that it is simple and works well in a wide variety of
situations – i.e., for both long and short branches in the species trees investigated in this paper,
the original STAR numbering of equally spaced branches often had a relatively low coefficient
of variation, and optimal values for given species tree branch lengths are not necessarily
optimal for other branch lengths. Overall, there is no numbering scheme that is uniformly
optimal — that performs better than any other scheme for all species tree branch lengths.

If there is some knowledge of the species tree topology, in particular nodes that might be
especially difficult to resolve, alternatives to the original STAR numbering scheme can perform
better in some situations. In particular, if a node in the species tree is not very resolved, then
making genes more star-like in the sense of making internal nodes closer to the root than
under the standard STAR algorithm, can lead to improvements in estimating species trees in
terms of the number of loci needed. For a fixed number of loci, this could result in improved
bootstrap support for the problematic nodes. The sample size calculations used in this paper
assume approximately normal distributions for the distances between taxa averaged over many
loci. The normality assumption is more reasonable with large numbers of loci; thus, for branch
lengths for which equation (4) returns a small number of loci, the normality assumption is
less plausible. Instead, equation (4) is intended for use with difficult species trees for which
large sample sizes might be required, making the normality assumption more reasonable.

In this paper, only known gene trees have been used, although in practice gene trees are
estimated with some error. Because topologies can typically be estimated more reliably than
branch lengths, however, STAR and its variations should be less sensitive to misestimation
of gene trees than methods that use branch lengths.9 Although the effects of misestimation
on species tree inference can be simulated directly, we note that theoretical expected values,
variances, and covariances, and therefore sample size calculations do not assume that gene tree
probabilities are obtained directly from the multispecies coalescent. Instead, the probabilities
pn,i used in equations (1) and (2) can come from any model for the gene tree topologies,
including a model that includes error in the gene trees. In particular, if a distribution on
estimated gene trees is obtained, say {p̂i}, then this distribution can be used in equations (1)
and (2), and the relative efficiency of different numbering schemes can be compared on different
distributions of estimated trees. Similarly, effects of other processes, such as horizontal gene
transfer,24 gene duplication,25,26 and hybridization27,28 can be studied as long as distributions
of gene tree topologies can be obtained (either theoretically or estimated through simulations).

Some unanswered questions raised by this study is whether the original STAR numbering
scheme performs best “on average”, perhaps averaged over species trees generated on a Yule
model, and whether one STAR numbering scheme can dominate another — that is, could
one STAR numbering scheme always perform better than another for all possible topologies
and branch lengths in the species tree? The framework used in this paper of using expected
pairwise distances as well as their variances and covariances could be used to investigate these
questions further.
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