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Knowledge of immune system and host-pathogen pathways can inform development of 
targeted therapies and molecular diagnostics based on a mechanistic understanding of 
disease pathogenesis and the host response. We investigated the feasibility of rapid target 
discovery for novel broad-spectrum molecular therapeutics through comprehensive systems 
biology modeling and analysis of pathogen and host-response pathways and mechanisms. We 
developed a system to identify and prioritize candidate host targets based on strength of 
mechanistic evidence characterizing the role of the target in pathogenesis and tractability 
desiderata that include optimal delivery of new indications through potential repurposing of 
existing compounds or therapeutics. Empirical validation of predicted targets in cellular and 
mouse model systems documented an effective target prediction rate of 34%, suggesting that 
such computational discovery approaches should be part of target discovery efforts in 
operational clinical or biodefense research initiatives. We describe our target discovery 
methodology, technical implementation, and experimental results. Our work demonstrates 
the potential for in silico pathway models to enable rapid, systematic identification and 
prioritization of novel targets against existing or emerging biological threats, thus 
accelerating drug discovery and medical countermeasures research. 

1.  Background 

New and reemerging infectious diseases pose a growing global health risk across public 

health concerns and potential bioterrorism threats. Pandemic viruses, resistant bacteria, and 

technology improvements in bioengineering point to a need for accelerated drug discovery1. 
One approach to this challenge is to use computational techniques to efficiently identify drug 

targets that may effectively mount a defense against one or more biothreats2. Biologically 

diverse pathogens share common or similar mechanism of infection and pathogenesis, and 
the host has similarly conserved immune response biology3–5. 

We have previously demonstrated the broad applicability of systems biology analyses to 

drug discovery and development focused on mammalian disease biology8–10. We hypothesize 
that similar computational characterization of pathogen biology, pathogenesis and host-

response genomic pathways across multiple infectious agents can enable systematic 

identification of targets of intervention that will impact multiple pathogens in a similar 
manner, and thus serve as broad-spectrum drug targets that can be modulated by novel or 



repurposed therapeutic modalities6,7. To test this hypothesis, we extended our approach to 

identify and predict host-based pathway mechanisms that, once validated, would have a 
beneficial therapeutic effect against a given pathogen. Validated host pathways and targets 

can then form the basis of drug repurposing studies, for example to identify compounds 

previously approved for other disease indications but that share a host mechanism 
leveraged by a pathogen of interest. We developed computational drug target identification 

extensions to Ingenuity’s pre-existing systems biology platform, and performed a pilot study 

to experimentally validate predicted targets against six representative “pilot pathogens”: 
Ebola virus, Marburg virus, Lassa virus, Yersinia pestis, Francisella tularensis, and Bacillus 

anthracis.  

2.  Methods 

2.1.  Overview of our drug target discovery approach 

Our approach (Figure 1) centers on computer-based modeling of disease pathways using 
semantic technology, scientific knowledge bases (KBs) of mammalian biochemistry, and 

 

Figure 1. Overview of Ingenuity-USAMRIID predictive systems biology pilot, including knowledge 

base (KB) construction (A) and host-pathogen pathway model inference (B) for 6 pilot pathogens; 

multiple rounds (“iterations”) of in silico target prediction (C) based on suite of target ID 

algorithms (D); expert review and prioritization of targets using our system prototype (E); and 

final target selections for in vitro and in vivo validation at USAMRIID (F). KBs are updated between 

each iteration. PIC = pathway intervention candidate, i.e. a proposed target centered around the 

perturbation of a specific pathway of interest. 

Pilot Pathogen 
Biology KBs, 

Pathways
(6 pathogens)

B. Host-Pathogen
Pathway Inference

Ebola

Marburg

Lassa

B. 
Anthracis

Y. Pestis

F.
Tularensis

K
B

 Q
u

e
ry

, F
ilt

er
 a

n
d

 M
o

d
el

 g
en

e
ra

ti
o

n

F. Target Validation

A. Experimental 
Data Integration

Target 
Scoring

Target ID

Prediction Scoring, Reporting

H5

H4

H7

H1

H2

H3

H8

H6

Ebola

Marburg

Lassa

B. Anthracis

Y. Pestis

F. Tularensis

H4

H4

H4

H4

H4

H4

D. Computational Prediction of 
Drug Targets and Common Pathways

Ta
rg

et
 G

O
-N

O
G

O
 D

ec
is

io
n

H4

E. Visualization, Review of Pathway-based Targets

C. Review and prioritize host target hypotheses

Iteration 1 Iteration 2 Iteration n Iteration 8

Predicted drug target with hypothesized pathway mechanism(s) of action:

A. Knowledge 
Modeling

H10H9

H4

H4

In Vitro In Vivo

H4

H3

H6



bioinformatics tools developed by Ingenuity for drug discovery and development and 

extended herein10. We extended existing pathway models of disease biology to bacterial and 
viral pathogenesis, and developing large-scale, semantically-integrated, knowledge-based 

models of six pathogens (Ebola virus, Marburg virus, Lassa virus, Yersinia pestis, Francisella 

tularensis, and Bacillus anthracis). Specific technology extensions include extending host 
biomedical ontologies and knowledge models to pathogen biochemistry, pathogenesis 

staging, and infectious disease; curation and modeling of pathogen-specific pathway content; 

developing several broad-spectrum target prediction algorithms and target evaluation 
protocols; and augmenting IPA11 pathway visualization, filtering and  scientific workflows to 

enable collaborative, team-based broad-spectrum target identification and validation. These 

extensions, collectively referred to as Pathogen-IPA (P-IPA), were developed as proof-of-
concept to demonstrate the feasibility of using computer-based pathway models to 

accelerate drug target discovery. 

2.2.  Knowledge models for target hypothesis generation 

Central to our approach is the notion of computational hypothesis generation12,13, yielding 

one or more formally-defined “target hypotheses” that relate (1) a host gene or protein and 

(2) a particular positive or negative impact a drug may have on that target (i.e. “activate” or 
“inhibit”), and (3) a positive therapeutic effect on one or more clinically-relevant endpoint in 

hosts infected by each of at least two pathogens. An example of a target hypothesis, rendered 

computationally to English, is “We hypothesize that inhibition of LAMP2 will counteract the 
effects of B. anthracis and F. tularensis (as measured by bacterial uptake studies)”. We used 

P-IPA to computationally characterize the pathogen biology, mechanisms of pathogenesis, 

and host-response pathways for our 6 pilot pathogens, and use these models to identify and 
validate one or more such host targets hypotheses.  

Table 1. Examples of contextualized pathway findings in our causal reasoning networks, 

rendered to English syntax through the use of Natural Language Generation algorithms. 

Example context Example of host-pathogen finding(s) in P-IPA causal networks 

Attenuated  Attenuated live F. tularensis increases proliferation of human 
lymphocytes in culture 10-11 months post-treatment. 

Virulent 
 
Virulent 

 Decrease of mouse CD45 increases survival of murine-
adapted mouse after infection by virulent Ebola virus. 

 A mutant protein fragment (1-254) (H86K with its Zinc 
finger domain mutated) from human ZAP protein in Rat2 
embryo cells decreases viral replication of Sudan ebolavirus. 

Killed or inactivated  In human neutrophils, killed Marburg virus increases 
upregulation of human Tlr protein(s) 1 hour post-treatment 

Therapeutic (includes 
vaccine, antiviral, 
antibacterial 

 Oral administration of Salmonella typhimurium-based vector 
vaccine composed of Y. pestis F1 [caf1] protein and of Y. pestis 
V antigen protein increases (by 83 percent) survival of 
mouse that involves subcutaneous injection of Y. pestis. 

 



To generate target hypotheses, we built a global network of causal pathway relationships 

derived from the Ingenuity Knowledge Base (IKB), a large-scale, manually-curated, 
semantically-structured ontology-based knowledge base of disease biology research 

findings14. A “finding” is single biochemical insight derived from an original experiment, as 

supported by primary research or review articles, and tied to a specific biomedical 
investigation and experimental context. The underlying knowledge representation has 

semantics based on RDFS15,16, with pathway models similar to BioPAX Level 3 and SBGN17, 

and extensions for modeling drugs, vaccines, biomarkers and clinical phenotypes. We 
extended IKB with 535,599 new findings curated from primary research, focused on host-

pathogen interactions for our 6 pathogens, that increasing the IKB size by 5.1% (Table 1).  

Updates to IKB findings and pathway models are ongoing. On a weekly basis a series of 
knowledge transformations post-process IKB findings to generate (infer) causal networks 

and other data structures optimized for specific algorithmic approaches (Figure 2), similar 

to 18 but using semantic rather than linguistic dependency graphs. We infer a causal network 
where nodes represent form-, species- and state-specific molecules: DNA, RNA, protein, 

complexes, or pathogen particles, including strain-specific forms. Directional edges 

represent causal dependencies between the biological activity of linked nodes. These cause-
effect relationships include gene regulation, activation / inhibition, chemical modification 

and other interactions, as supported by one or more experimentally-demonstrated findings 

from IKB. Such findings are classified by implied direction of change (DOC) of the associated 

 

Figure 2. Example causal finding used in our predictive analytics. This example illustrates how a 

single experimental observation (A) is modeled as a semantic network of interrelated concepts 

(B), which can then be further transformed into a number of secondary data structures useful for 

computation, such as gene annotations (C) and causal network relationships (D). 
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causal effect (increase, decrease, affects or no-effect). For example, the finding “In human 

neutrophils, killed Marburg virus increases upregulation of human Tlr protein(s) 1 hour 
after initial treatment” (see Table 1) would result in a positive causal regulatory relationship 

between the pathogen (Marburg virus) and host (Tlr protein). Conflicts are resolved by 

preferentially assigning a DOC if >85% of findings support it, or a non-directional affects 
annotation that must be manually inspected to resolve the conflict.  

2.3.  Predictive algorithms for drug target identification  

We identified several target identification strategies, each motivated by a specific aspect of 
pathogenesis that could form basis of a therapeutic strategy and formalized algorithmically 

to explore the associated hypothesis space using models of host pathobiology pathways. 

Based on this analysis we developed a general framework for hypothesis generation 
algorithms, and implemented two complementary approaches for identifying candidate 

broad-spectrum therapeutic targets, as described in 19 (see supporting materials). 

First, we observed that individual host proteins may be regulated in similar ways by 
multiple pathogens, suggesting an important shared regulatory influence by the pathogen on 

host proteins. Reversing this regulatory effect may thus therapeutically benefit the host. Our 

Commonalities algorithm seeks to reverse the polarity of multiple pathogens’ similar, direct 
regulatory effect on a single common host protein, hopefully countering the associated 

pathogenic impact. 

We further observed that multiple host proteins may be similarly regulated by a given 
pathogen. Rather than pursue a complex “drug cocktail” to target multiple components of 

this genomic signature, we hypothesize that such panels of host markers may share common 

upstream regulatory partners. Our second Upstream Regulators algorithm thus seeks to 
identify optimal targets that are upstream of directly affected host molecules, and can serve 

as a single target more easily modulated by a novel or repurposed drug. 

Every target hypothesis generated by these algorithms is supported by a (proposed) 
pathway mechanism that aggregates immunological evidence and a logical rationale for 

selecting the target. Hypotheses were further cross-referenced and annotated existing drugs 

that are either FDA-approved or in various stages of clinical trials for other indications14,20,21. 
Availability of compounds against a protein target was not used to generate hypotheses, but 

served as a “tie breaker” between otherwise biologically compelling targets when 

prioritizing our final target list for experimental validation. 

2.4.  Experimental design for target validation studies 

To assess the effectiveness of our approach, we performed two-phase in vitro and in vivo 

validation studies against our predicted host targets. All validation studies were performed 
by the Bavari lab at the USAMRIID research facilities, using established protocols for 

working with our pilot pathogens. 

For viral in vitro studies, Hela cells were selected as a well-established infection model. 
Two main experimental approaches were used for validating targets against Ebola, Marburg 



and Lassa: high content image (HCI) analysis and quantitative real time-PCR (qRT-PCR). 

Both these assays measure viral replication as the relevant biological endpoint. Inhibition or 
activation of each targets were achieved by transfection of specific siRNA or  transfection of 

cDNA specific to that target, respectively. For bacterial studies we used three specific types 

of assays: (1) phagocytosis/bacterial uptake, a HCI assay that measures phagocytosis/ 
bacterial uptake by the macrophages; (2) fluorescent antibodies specific to pathogen 

protein(s) used to detect the pathogen that has attached to (and thus phagocytosis by) the 

host cell; and (3) a Live/Dead assay that measures cytotoxicity. 
In vivo studies were designed to further validate inhibition-based targets at the 

USAMRIID research facilities, based on protocols previously designed in the Bavari lab. To 

knock down target expression, we used antisense phosphomorpholino oligonucleotides 
(PMO) inhibition technology (GeneTools, LLC. , Philomath, Oregon). Groups of 10 mice were 

used: one group per target received target-specific PMOs, and a control group receiving 

either standard non-specific PMOs, or phosphate buffered saline. All animals received PMOs 
intraperitoneal (i.p.) or intranasal (i.n.) 4 times (-24h, -4h, 24h, 48h) at 100 to 150 g per 

injection per mouse. Mice were challenged i.p. at day 0 with the corresponding lethal dose. 

For one set of F. tularensis experiments, the bacterial challenge was performed using 
intranasal administration to evaluate survival/protection using a different route of infection. 

3.  Results 

3.1.  Target prediction and prioritization 

We used P-IPA to generate a target pipeline of 490 host proteins whose activation or 

inhibition was predicted to have a beneficial therapeutic impact against at least two of our 6 
pilot pathogens. Through iterative review and filtering using the P-IPA tool suite we 

prioritized this pipeline to identify the most promising targets and select them for target 

validation. Target hypotheses were reviewed and prioritized in P-IPA based on: 
(a) Broad-spectrum potential. Selected host targets must be predicted to impair at least 2 

of the 6 pilot pathogens. 

(b) Contextual consistency of pathway evidence. Targets must be supported by a pathway 
mechanism consistent with existing research data as well as the clinically relevant 

disease context (e.g. virulent rather than attenuated pathogen strains) 

(c) De novo experimental evidence. As special case of (b), we re-integrated our in vitro 
experimental results into IKB as “new but unpublished findings” to facilitate in vivo 

target prioritization,. 

(d) Availability of animal models. Targets must be testable in a mouse system used by a 
reference animal model for 5 of our pathogens (Ebola, Marburg, B. anthracis, F. 

tularensis, and Y. pestis). To the best of our knowledge, there are no well-validated 

mouse models for Lassa virus. 
(e) Clinically-relevant endpoints. Target validity should be confirmed against clinically-

relevant endpoints (e.g. improved host survival, reduced viral load, etc). 



(f) Operational tractability. Host targets were tested using of antisense-based 

intervention across all experiments evaluating loss-of-function or inhibition-based 
targets, as permitted by schedule and budget constraints that determined the total 

number of targets we could test. 

We selected 28 target hypotheses (16 inhibition-based targets and 14 activation targets) 
for Phase 1 in vitro validation. In Phase 2, 12 targets were selected for in vivo testing, 

including 8 inhibition targets validated in vitro (DUSP1, HSP90B1, LAMP1, SERPIN5, 

SERPINE2, SMAD3, AP3D1, IL10RA), and 4 new targets selected based on new curated 
findings highlighted in updated prediction runs (BTRC, HGS, PDCD6IP, PPARA). 

3.2.  Example broad-spectrum pathway hypothesis and host drug target 

By way of illustrating our approach, we describe one target prediction in detail (Figure 3). 
Pathogens may similarly activate or inhibit the function several host proteins. Rather than 

target these commonly-regulated host proteins individually, the Upstream Regulator 

algorithm treats them as protein signature, and tries to identify a single, additional, host 
protein that could counter or reverse the impact of the pathogen’s effect on this signature. In 

this example, Ebola and Marburg viruses have been reported to inhibit a number of common 

host proteins (F2, PROC, PLAU, KLKB1, and C1S). IKB findings (and their underlying 
research publications) further indicate that SERPINE2 represses the activity of the same 

proteins. Thus, the algorithmically-generated hypothesis is that both viruses build upon the 

naturally-occurring suppressive effect of SERPINE2 in the host, and that by removing this 
effect, we may effectively “pull the rug out” from these viruses and potentially slow 

pathogenesis by making them work harder. Significantly, our hypothesis re-uses findings 

from cancer and cardiovascular molecular studies that characterize SERPINE2’s effect on the 
other host proteins include results, as SERPINE2 was previously unassociated with viral 

hemorrhagic fever infection. 

3.3.  Classification of broad-spectrum target validation results 

We formalized our performance evaluation developing a classification framework for target 

validity that partitioning targets based on whether our experimentation demonstrated a 

desired effect or lack of effect, and whether that effect was deemed to be clearly 
demonstrated or whether additional studies were needed to confirm the effect. We used a 5 

category scale: clearly-validated, possibly-validated, not-tested, possibly-not-validated, and 

clearly-not-validated. For in vitro assays, we use 30% reduction in viral load or bacterial 
uptake as a baseline threshold for a clearly-validated classification, adjusted to pathogen-

specific thresholds if they exist for a specific virus or bacterium. For in vivo assays, target 

validity was defined as a minimum level of protection conveyed to infected mice, consistent 
with screening practices. Our baseline threshold was >40% survival in mice after 9 to 22 

days (depending on the pathogen) and twice (2x) the standard control survival rate, 

replicated twice with 10+ mice per experiment. Two other target categories—possibly-
validated, possibly-not-validated—demonstrated lesser phenotypic effect or were not 



 

Figure 3. Example of target (SERPINE2, blue node) hypothesis identified by the upstream 

regulators algorithm as playing a common role in pathogenesis of Ebola virus and Marburg 

virus, and a drug (Drotrecogin Alfa / Xigris™, Elli Lily)) that may be repositioning for this 

indication. This drug target hypothesis is grounded in signature of host proteins (yellow 

nodes) that are commonly downregulated by Ebola and Marburg infection. SERPINE2 is 

further linked to relevant immune functions, including ones found in viral hemorrhagic fever 

infection (e.g. coagulation pathways). SERPINE2 was validated in vitro and in vivo to have the 

predicted effect on systems infected by the Ebola and Marburg viruses. 

 

Figure 4. Pipeline of prioritized inhibition-based target hypotheses, with our 16 initially-

selected inhibition-based targets. In vitro and in vivo validation results color code the 

hypothesis arrows based on success or failure classification. For example, the top-left target is 

AP3D1, which was predicted to have a beneficial effect under Ebola and Marburg infection if 

the target was inhibited, shown as two down arrows. Knock-down in vitro screens and in vivo 

studies confirmed these predictions (filled circles, green). Pipeline visualization is interactive 

and updated dynamically as new target hypotheses and validation results are integrated. 
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replicated across multiple experiments, thus requiring additional study to conclusively rule 

them in or out as drug targets. Commercial availability or maturity of a given compound 
through the FDA approval process was presented but not used as a validation criterion. 

3.4.  Validation of drug target predictions 

We analyzed the performance of our method using both in vitro and in vivo experimental 
data by aggregating, discretizing and classifying this hypothesis-specific target validation 

data into the classifications, described in section 3.3.  Briefly, in vitro validation experiments 

in Phase I demonstrated that 24 of 28 predicted targets resulted in hits against at least one 
pilot pathogen, Moreover, 22 hits are broad-spectrum (2 + pathogens) target candidates. For 

example, SERPINB5 showed clear or partial impact against 4 of our 6 pathogens. From this 

panel of prioritized targets, 11 of these 12 tested targets showed effect against at least 1 
pathogen in mice, and 5 clearly inhibit 2+ pathogens (broad-spectrum). Additional targets 

showed promise, but require additional work to confirm. Inhibition-based targets in Figure 4 

have the greatest potential for drug repurposing with compound inhibitors. 

4.  DISCUSSION 

Based on this analysis, 34% directly predicted targets we tested were validated in mouse 

models, which we believe to a very promising yield. This lower bound (34% for in vivo) is a 
conservative performance assessment, treating only clearly-valid results as successes. 

Performance increases if one includes targets that showed some promising effect but not 

sufficient to meet our threshold, although this requires additional experimentation to 
confirm. Table 2 summarizes our findings as predictive success rate, across activation- and 

inhibition-hypotheses and in vitro and in vivo results. SERPINB5 is our strongest validated 

target, clearly validated against B. Anthracis, Ebola virus and Marburg virus, and may further 
show impact against F. Tularensis and Y. Pestis, although further studies may be required to 

optimize dosing to confirm this. As our top-ranking target, we believe SERPINB5 is worthy of 

further investigation to assess mechanism of action. 

Table 2. Topline performance of computational target predictions based on in vitro and in vivo 

experimental results, across all prioritized, tested hypotheses 

Success rate 
N (# tested target 
hypotheses) 

Lower bound 
(clearly-validated) 

Upper bound 
(clearly-validated + 
possibly-validated) 

In vitro 81 27% 46% 
In vivo  32 34% 50% 

 
The measured endpoint across these experiments was percentage survival post-infection 

and treatment. Specifically, we measure the number of mice (out of a total of 10 per group) 

that survived following PMO treatment and challenge with the corresponding pathogen. For 
example, 50% survival rate indicates that 5 of 10 mice survived after treatment. In addition 



to percentage survival, we factored in the number of independent experiments performed, 

the number of replicates for a sample test, the difference relative to baseline threshold from 
the standard control, and non-measurable expert evaluation for a given sample. In some 

cases we were not able to perform identical replicate experiments for a given pathogen. 

Interestingly, in vivo results out-performed in vitro (34% vs. 27%), which may be 
attributable the limited applicability of cellular assays for modeling host immune biology, as 

well as the overall lower number of tests run in animal studies relative to our in vitro 

studies. In addition, the kinetics of each in vivo experiment is dependent on each pathogen, 
and we occasionally observed off-target effects with scrambled PMOs that enabled some 

increased survival on its own and which we could not control for. This suggests the need for 

additional research into effective, low-cost alternatives to animal and clinical studies for 
drug target validation studies22. 

4.1.  Contributions 

We have demonstrated the use of causal network analysis to effectively identify valid 
drug target hypotheses for a complex disease indication, with a good success rate as 

demonstrated experimentally through animal studies. To the best of our knowledge, such 

predictive causal analytics have not been validated to this extent in a host-directed 
infectious disease context or across multiple viral and bacterial agents. Further, our novel 

upstream regulators algorithm successfully identified previously unassociated valid protein 

targets based on the predicted propagation of net regulatory effects on the host-pathogen 
interface. We propose that causal network analysis can extend to previous target 

identification approaches7,23 by identifying valid, functionally important targets not 

identifiable through study of direct host-pathogen interactions alone. 
We attribute part of our success the accuracy and contextual detail of the underlying 

causal network, which in turn is based on semantically-normalized IKB content. In particular, 

IKB findings are (a) manually modeled by experts to ensure accurate representation of the 
underlying biology24; (b) always supported by experimental evidence (no predicted or 

inferred data); and (c) annotated in sufficient biological and experimental detail to allow 

finding inclusion or exclusion based on contextual fit to the pathogen in question. We 
suggest that such normalized, contextualized, experimentally-grounded network datasets 

can improve the quality of any causal network analyses by driving the algorithm directly (as 

is our case), or by serving as a high-quality training set for learning-based approaches25. 
Finally, we developed a framework for rapid, team-based, computational target discovery 

to run multiple target ID algorithms in parallel, formalize their predictive outputs and 

supporting evidence as hypothesized mechanism of action for a novel drug target, and 
review and prioritize the targets using interactive, collaborative pathway tools. In addition 

to supporting rapid, evidence-based generation of target lists for medical countermeasures, 

we believe this model can be extended to include targets identified experimentally e.g. via 
screening approaches, as well as expert suggested hypotheses26, thus potentially helping 

unify computational and experimental target identification approaches. 



Our methodology can be applied to any disease where a body of host pathway knowledge 

has been experimentally characterized and can be modeled as causal, regulatory network 
relationships. For novel or emerging pathogens that are as of yet unstudied, evolutionary 

mapping using next-generation sequencing would allow a similar approach using host-

pathogen pathway knowledge from closely-related evolutionary neighbors, although some 
loss of performance should be expected. Finally, a drug repurposing use case could be 

directly supported by automatically filtering or prioritizing hypotheses anchored by a 

specific drug or drug class. This would, in turn, highlight candidate compounds for use in 
target validation studies. 

5.  Conclusion and future work 

Our scientific objective was to identify broad spectrum countermeasures to viral and 
intracellular biothreats. We have described and evaluated a novel target discovery 

methodology that is: host-directed and broad-spectrum in biological focus; unbiased in its 

consideration of prior target association with the disease of interest; computationally-
enabled by formal models of disease pathways and host-pathogen mechanisms; and delivers 

testable, evidence-based target hypotheses suitable for experimental validation in rapid 

response scenario. Our empirical results validate this approach and, more generally, for the 
use of causal analysis for the discovery of novel drug targets. While our “pathogen and 

mechanism first” approach focuses primarily on broad-spectrum therapeutics, we believe 

this approach is readily adaptable to single-spectrum (i.e. against only one pathogen) target 
identification scenarios as well as other disease areas. We suggest that systems biology 

pathway models are sufficiently mature to be used alongside traditional screening-based 

approaches in most applied drug discovery initiatives. 
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