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The rapid development of sequencing technologies makes thousands to millions of genetic at-
tributes available for testing associations with various biological traits. Searching this enormous
high-dimensional data space imposes a great computational challenge in genome-wide association
studies. We introduce a network-based approach to supervise the search for three-locus models
of disease susceptibility. Such statistical epistasis networks (SEN) are built using strong pairwise
epistatic interactions and provide a global interaction map to search for higher-order interactions
by prioritizing genetic attributes clustered together in the networks. Applying this approach to a
population-based bladder cancer dataset, we found a high susceptibility three-way model of ge-
netic variations in DNA repair and immune regulation pathways, which holds great potential for
studying the etiology of bladder cancer with further biological validations. We demonstrate that our
SEN-supervised search is able to find a small subset of three-locus models with significantly high
associations at a substantially reduced computational cost.
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1. Introduction

The goal of genome-wide association studies (GWAS) is to identify and characterize suscepti-
bility genes that can help diagnose, treat, and prevent common human diseases.1–3 However,

most existing association analyses employ main-effect-centered strategies that assume a simple
genetic architecture and are thus only able to find very limited single-locus effects on disease

risks.4 The non-additive effect of gene-gene interactions, i.e. epistasis, has been recognized
playing an important role explaining the complex relationship between the genetic and phe-

notypic variations.5–7 Thus, identifying and characterizing genetic interactions across multiple
loci have become the focus of current association studies.8–10 However, this imposes a great

computational challenge in high-dimensional data analyses. Specifically, for a genetics dataset
consisting of n loci, the computational complexity of enumerating all possible two-locus com-

binations is O(n2), and it increases exponentially with the order of combinations considered.

Given the sizes of current genome-wide data (n ∼ 106) and the next-generation whole-genome



sequencing11 data (n ∼ 109), it requires 3× 104 to 3× 1013 years to enumerate and evaluate all
three-locus models, using a 1000-node computer cluster where each node is assumed to be able

to process 1000 models per second. Therefore, new data-mining technologies with advanced
and efficient pre-screening and attribute-selection strategies are needed in large-scale genetic

association studies.12–15

In this article, we propose a network-based model-prioritization approach that is able

to identify high-order association models at a significantly reduced computational cost than

exhaustive enumerations. The networks were built by including strong pairwise epistatic in-
teractions as edges and their two end genetic attributes as vertices, as in the framework of

statistical epistasis networks (SEN) previously developed by Hu et al.16 Following the hypoth-
esis that strong pairwise interactions may indicate the existence of higher-order interactions,

we propose to i) quantify all pairwise epistatic interactions in a given genetics dataset; ii) con-
struct pairwise statistical epistasis networks; iii) identify attributes that are clustered together

by traversing the networks; iv) evaluate the clustered attributes for higher-order interactions.
This distinguishes our approach the most from many existing attribute-selection strategies

and advances the detection of higher-order interactions since hypothetically it is much less
likely for a higher-order interaction to exist without showing any lower-order interactions than

without showing any main effects.17,18

In the present study, we consider searching for three-locus interaction models and use the

multifactor dimensionality reduction (MDR) algorithm and software to evaluate the associ-
ations of the models found by our SEN-supervised search. MDR is a data-mining strategy

for detecting and characterizing gene-gene interactions associated with a discrete disease sta-
tus.19–22 It pools multi-locus genotypes from multiple single-nucleotide polymorphisms (SNPs)

into high-risk and low-risk groups. Specifically, a multi-locus genotype combination is consid-

ered high-risk if it has subjects with a ratio of cases to controls higher than a given threshold;
otherwise it is considered low-risk. The clustering of all multi-locus genotype combinations

into high-risk and low-risk is then evaluated for its ability to classify and predict disease sta-
tus through cross-validations. Population-based data are partitioned into a training set and

a testing set. The attribute combination with the highest training accuracy is chosen as the
best model and is subsequently evaluated using the testing set. The article by Moore et al22

provides a good overview of the development of MDR. MDR is model-free, i.e. no particular
genetic models are assumed, and non-parametric, i.e. no parameters are estimated, and is thus

an ideal independent classifier to evaluate our SEN-supervised model search.
We previously identified a pairwise interaction network by applying SEN to a large

population-based bladder cancer dataset.16 Such a network showed significant topological
properties compared to the null networks built from permuted data. We believe that this

large connected structure captures the complex genetic architecture of bladder cancer and is
a promising guide-map for searching higher-order combinations of attributes that may jointly

modify the disease outcome. Here, we use this bladder cancer pairwise interaction network to

supervise the search for high-association three-locus models using a fast network traversing
algorithm that identifies trios clustered together.



2. Methods

2.1. Bladder cancer dataset

The dataset used in this study includes 1422 SNPs from about 500 cancer susceptibility genes

for 491 bladder cancer cases and 791 healthy controls.23,24 The bladder cancer cases were
collected among New Hampshire residents of ages 25 to 74 years, diagnosed from July 1, 1994

to June 30, 2001 and identified in the State Cancer Registry. Controls less than 65 years of
age were selected using population lists obtained from the New Hampshire Department of

Transportation, while controls aged 65 and older were chosen from data files provided by the
Centers for Medicare & Medicaid Services (CMS) of New Hampshire. Most (> 95%) of the

subjects were of Caucasian origin. Informed consent was obtained from each participant and

all procedures and study materials were approved by the Committee for the Protection of
Human Subjects at Dartmouth College. DNA was isolated from peripheral circulating blood

lymphocyte specimens using Qiagen genomic DNA extraction kits (QIAGEN Inc., Valencia,
CA). Genotyping was performed on all DNA samples of sufficient concentration, using the

GoldenGate Assay system by Illumina’s Custom Genetic Analysis service (Illumina, Inc., San
Diego, CA). Out of the submitted samples, 99.5% were successfully genotyped, and samples

repeated on multiple plates yielded the same call for 99.9% of the SNPs.

2.2. Statistical epistasis networks (SEN)

We have previously developed a network approach to inferring statistical epistasis of bladder

cancer.16 First, entropy-based information-theoretic measures were used to quantify pairwise
interactions22,25–28 for all two-locus models in the bladder cancer dataset. Specifically, for two

genetic attributes G1, G2, and the phenotypic status C, mutual information I(G1;C) and
I(G2;C) measure the shared information, or dependency, between individual genotypes and

the phenotype, i.e. the main effects. In addition, by joining G1 and G2 together, I(G1, G2;C)

measures how much of the phenotypic status that combining G1 and G2 can explain. The
epistatic interaction strength between G1 and G2 can then be defined using information gain

IG(G1;G2;C) = I(G1, G2;C)− I(G1;C)− I(G2;C). As such, IG(G1;G2;C) is the gained mutual
information about C from considering genetic attributes G1 and G2 together, i.e. the synergy

between G1 and G2 on the phenotype C. Moreover, normalizing the main effect I(G1;C) and
the interaction effect IG(G1;G2;C), by dividing them by the entropy of the phenotype H(C),

provides the association of a single attribute or a pairwise interaction with the phenotype C,
i.e. the percentage of the phenotypic status that a genotype can explain.

Second, we ranked all possible pairwise interactions between SNPs according to their rela-
tive strength and subsequently built a series of statistical epistasis networks by incrementally

adding edges if their corresponding pairwise interaction strength was stronger than a given
cutoff value. Topological properties were analyzed for the network at each cutoff value in-

cluding the size of the network (the number of its vertices and the number of its edges), the
connectivity of the network (the size of its largest connected component), and its vertex degree

distribution. Permutation testing was used to generate a null distribution of those topological

properties by building permuted-data networks through the same construction process and
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Fig. 1. The derived statistical epistasis network of bladder cancer. The network includes 319 SNPs (vertices)
and 255 pairwise interactions (edges). The size of a vertex represents the strength of the main effect of its
corresponding SNP, with the disease association ranging from 0.001% to 1.614%. The width of an edge indicates
the strength of its corresponding interaction, with the disease association ranging from 1.354% to 2.052%.



using the same cutoffs.

Then, a threshold of the pairwise interaction strength was determined by finding the cutoff
when the topological properties of the real-data network differentiated the most from the null

distribution.16 Such a systematically derived and most significant epistasis network of bladder
cancer is shown in Fig. 1. This network provided a global map of strong pairwise epistatic

interactions associated with bladder cancer. It was able to show not only the neighborhood
structure of each attribute, but also the topology of a set of clustered attributes. Thus it serves

as a very promising tool to identify higher-order genetic models.

2.3. SEN-supervised search for three-locus genetic models

SEN is essentially an attribute-prioritization approach. However, different from many existing
main-effect-centered pruning methods, our network strategy prioritizes attribute pairs that

show strong or significant interactions. In addition, organizing these strong interacting pairs
in the network format provides a landscape of interaction structures. We hypothesize that

the sets of attributes that are clustered together in the bladder cancer network may better

explain the case-control outcome than the non-clustered sets. Therefore, we propose to use
SEN to supervise the search for multi-locus association models. As the first attempt, in this

study, we consider the search for three-locus models and use MDR to assess the associations
of three-locus models.

The clustering of vertices, or attributes, in a network is determined based on their pairwise
distances. In Graph Theory,29 the distance d(v1, v2) of a pair of vertices v1 and v2 is defined

as the minimal number of edges for one vertex to reach the other. Two vertices v1 and v2

are neighbors if d(v1, v2) = 1. Given three vertices v1, v2, and v3, we define their trio distance

dtrio(v1, v2, v3) as the sum of all pairwise distances, i.e. dtrio(v1, v2, v3) = d(v1, v2) + d(v1, v3) +

d(v2, v3). Therefore, for trios with dtrio = 3, any two of them are directly joined by an edge,

and if a trio has dtrio = 4, one vertex is directly connected to the other two but the other two
are not joined by an edge. We define that a trio of attributes are clustered in a network if their

dtrio ≤ 4; otherwise we say that they are not clustered together.
All three-locus models of clustered trios can be identified by traversing the SEN, repre-

sented as a graph G with |V | vertices and |E| edges, using the following algorithm. It reads

G and outputs a list of trios of vertices that are connected together. The algorithm has a
computational complexity O(|V | × k2), where k is the maximum number of neighbors of a

vertex in G:

vertices = G.getVertices();
for each v in vertices do

neighbors = v.getNeighbors();
for each u1 in neighbors

for each u2 in neighbors do

output {u1, v, u2};

Note that in our bladder cancer epistasis network (Fig. 1) k = 11 ≪ |V |, so the complexity

of the above algorithm O(|V | × k2) ≈ O(|V |). Thus the SEN-supervised search significantly

reduces the computational complexity compared to enumerating all three-locus combinations.



3. Results

We first applied a χ2 test of independence to identify SNPs with significant main effects. For all

1422 SNPs from the entire dataset, using a Bonferroni-corrected significance level of α = 0.05,
we found only one significant main-effect attribute IGF2AS 04 (p = 1.052 × 10−6). This SNP

had one interacting neighbor SLC19A1 01 captured in our SEN (Fig. 1), and this pairwise
interaction was previously reported.30 Thus we removed IGF2AS 04 from our interaction

analysis to avoid its dominance effect when combined with other attributes.
Next, for the other 318 SNPs identified in the bladder cancer network, we ran MDR

exhaustively on all 1-way, 2-way (
(

318
2

)

= 50, 403 pairs), and 3-way (
(

318
3

)

= 5, 309, 116 trios)
combinations. We analyzed the correlation between MDR accuracies and SNP neighborhood

structures in the network, in order to see whether clustered SNPs in the network have better

disease status prediction accuracies than non-clustered ones.

3.1. MDR accuracy comparison of clustered and non-clustered SNP trios

We categorized all 5,309,116 trios according to their trio distances and show the MDR accu-

racies in each distance category (Fig. 2). We observe that, since there are no triangles in the
network, the minimal trio distance is 4. In addition, trios of distances greater than 32 are not

connected in the network, i.e. at least two out of the three vertices do not have a path con-
necting them. The clustered trios of distance 4 have significantly higher training and testing

accuracies than the trios in all other distance categories, while those other distance categories
do not statistically distinguish among themselves. Moreover, the clustered trios have better

consistencies between training and testing accuracies (Fig. 2B inset).
We then binned all dtrio > 4 three-locus models together as non-clustered trios, and com-

Fig. 2. The 3-way MDR A) training accuracy and B) testing accuracy relative to the trio distance. Points
are mean values and bars show the 95% confidence intervals. The inset depicts ∆ = training accuracy −
testing accuracy, which indicates the level of over-fitting. A lower value of ∆ means a better prediction con-
sistency for training and testing data.
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Fig. 3. Distributions of 3-way MDR A) training and B) testing accuracies for clustered (dtrio = 4) and
non-clustered (dtrio > 4) trios. The mean of each distribution is shown using a vertical dashed line. There are
391 clustered trios and 5, 309, 116− 391 = 5, 308, 725 non-clustered trios.

pared their distributions of MDR training and testing accuracies to those of the clustered

trios (Fig. 3). As seen from the figure, clustered trios have both better training and testing
accuracies compared to non-clustered trios. Therefore, using the pairwise SEN structure was

able to identify a good subset of three-locus combinations that improved the phenotypic status
prediction accuracy.

We also performed a correlation analysis on the MDR accuracies at different combination
orders. Table 1 shows that, in general, three-way accuracies had stronger correlations with two-

way accuracies than those with one-way accuracies. Compared to non-clustered trios, the three-
way accuracies of clustered trios were less correlated with one-way accuracies. That is, three-

locus models of clustered trios were less biased towards high main-effects attributes. When
correlating two-way with three-way accuracies, compared to non-clustered trios, clustered trios

had a lower dependency on training data but a higher dependency on testing data.

3.2. SEN-supervised MDR three-locus models

As shown previously, SEN-supervised search yielded a small subset of three-locus combinations

(391 out of 5,309,116) based on their clustering structure in the network, and this small
subset had significantly better three-way MDR accuracies compared to the others. In this

section, we examined the results of these SEN-supervised MDR models, and tested whether
the observations from such a model-selection process were statistically significant.

For these 391 SEN-filtered trios, their best and average MDR accuracies are reported in
Table 2. We performed two sets of significance tests to assess the p-values for each observa-

tion. First, we randomly resampled 391 trios out of the total 5,309,116 and repeated it 1000

times. Second, on the 318 vertices identified in the network, we permuted their neighborhood



Table 1. Spearman’s rank correlation of MDR accuracies at different model orders

1-way vs. 3-way 2-way vs. 3-way

Training balanced accuracy

Clustered trios ρ = 0.1863 (p = 1.27× 10−10) ρ = 0.4319 (p < 2.2× 10−16)
Non-clustered trios ρ = 0.2934 (p < 2.2× 10−16) ρ = 0.5897 (p < 2.2× 10−16)

Testing balanced accuracy

Clustered trios ρ = 0.1060 (p = 2.77× 10−4) ρ = 0.4027 (p < 2.2× 10−16)
Non-clustered trios ρ = 0.1946 (p < 2.2× 10−16) ρ = 0.3795 (p < 2.2× 10−16)

Table 2. MDR results of the clustered trios and their levels of statistical significance

Observed-value Significance

random-resample edge-swap

Best training accuracy 0.5992 p = 0.005 p = 0.002
Best testing accuracy 0.5873 p = 0.002 p < 0.001
Average training accuracy 0.5630 p < 0.001 p < 0.001
Average testing accuracy 0.5329 p < 0.001 p < 0.001

Fig. 4. Summary of the best MDR model using SEN-supervised search. A three-locus model has 27 multi-
factorial cells, each of which is filled with the distribution of cases (left bars) and controls (right bars) for the
corresponding genotypes. A cell is left blank if there are no samples falling into its genotype. Each non-empty
cell is labeled either “high-risk” (dark grey) or “low-risk” (light grey) based on its case-control ratio.

structures by swapping edges. For each edge swapping, two edges, e.g. e1 = {v11, v12} and
e2 = {v21, v22}, were picked randomly, and then their end vertices were swapped to form two

new edges e′1 = {v11, v22} and e′2 = {v21, v12}. This was a standard network randomization

procedure where the total number of neighbors for each vertex was preserved but its interact-
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Fig. 5. Results of the best three-locus MDR models using five different attribute-selection or model-
prioritization techniques. Circles represent training balanced accuracies and solid points are testing balanced
accuracies.

ing partners were randomized. For each permutation, we performed edge swapping 10 × |E|

times, where |E| is the total number of edges in the network (Fig. 1). Such a permutation

process provided null networks with randomized pairwise interactions. Again, we generated
1000 permuted networks and used them to identify the clustered-trio subsets. Then MDR

analyses were applied to both sets of permuted data and the assessed significances of the real
observations are shown in Table 2. As we can see, all observations from the subset found by

SEN-supervised search were statistically significant.
The best three-locus MDR model using SEN-supervised search was FANCA 02, PMS2 01,

and IL1RN 05, with a training balanced accuracy 0.5992 and a testing balanced accuracy
0.5783 (p = 1× 10−5 using a standard permutation test). This model included two DNA repair

genes and one immune regulation gene. Fig. 4 summarizes the MDR analysis for the best
model. Out of all 27 possible genotype combinations, 25 had observed samples, 15 genotypes

were predicted as high-risks (dark-grey cells), and 10 genotypes were predicted as low-risks
(light-grey cells).

3.3. Comparing SEN-supervised search to other common MDR filters

Due to the exhaustive enumeration nature of MDR, attribute-selection is usually used for large

genome-wide data. We implemented four most commonly used filters, ReliefF,31 TuRF,32 Chi-
square, and Odds Ratio (OR), on the bladder cancer data (1422 SNPs), and compared the

best models they found to our best model using SEN-supervised search (Fig. 5). For each of
the four other filters, we chose its top 15 most important attributes and ran MDR on all three-

locus combinations (
(

15
3

)

= 455) of them. This also provided a comparable number of models
for MDR to evaluate since SEN-supervised search yielded 391 three-locus combinations. As

seen in the figure, our SEN-supervised search found the best three-locus model compared to

all the other common attribute-selection strategies.



4. Discussion

Epistasis has been recognized playing an important role in understanding the mapping be-

tween genetic and phenotypic variations.8–10 Detecting and characterizing epistasis is a very
challenging data-mining task due to the fact that the epistatic interactions could involve mul-

tiple genetic attributes from a pair to a large set, and this undetermined order of interactions
imposes enormous computational complexities for enumerating all possible combinations of

genetic attributes for varying orders in genome-wide data.15 Various pre-screening techniques
have been proposed to filter potentially important attributes for further higher-order combina-

tion analyses. However, most of them adopt main-effect-centered strategies and may overlook
attributes that are important in interactions but only show weak main effects.17

In this article, we proposed a network-guided approach to searching three-locus genetic

models for association studies. The network was built by including strong pairwise epistatic
interactions, and we were able to show that trios clustered together in this network have

higher associations than those non-clustered ones. Traversing the pairwise statistical epistasis
networks (SEN) to search clustered three-locus models significantly reduces the computational

complexity of enumerating all possible three-locus combinations. Thus our SEN-supervised
model search can serve a very promising prioritization method and can be combined with

many existing association-mining techniques, such as MDR used in this study.
We had previously developed a network approach to characterizing statistical epistasis in-

teractions in genetic association studies.16 In this framework, all pairwise interactions in a ge-
netic dataset were quantified using information gain, an information-theoretic measure based

on Shannon entropy.33 Then networks were built by including pairs of attributes, as edges
and two end vertices, if their pairwise interaction strengths were greater than a theoretically-

derived threshold. This threshold was determined systematically by analyzing network topo-
logical properties and comparing them to null networks built using permuted data through

the same construction process. This SEN approach advanced many existing genetic associa-

tion methods by focusing on interactions rather than individual genetic factors. Moreover, by
organizing interactions in the form of networks, SEN provided a global connection map and

suggested clustering of multiple attributes that might have joint effects on the phenotype.
The present study explored the clustering structure captured in our previous SEN appli-

cation to a bladder cancer dataset (Fig. 1). Using a fast network-traversing algorithm, the
three-locus models of clustered trios were identified and further evaluated using MDR. These

models were shown having both significantly higher training and testing MDR accuracies than
the three-locus models of non-clustered trios (Fig. 2 and Fig. 3). Moreover, the clustered mod-

els had less over-fitting (Fig. 2B inset). These results show that the SEN-supervised search
was able to identify a small subset of three-locus models with significantly high associations at

a very moderate computational cost. Note that even if the computational complexity of build-
ing a pairwise interaction network (O(|V |2)) is considered together with the SEN-supervised

search (O(|V |×k2) ≈ O(|V |)), where |V | is the total number of attributes and k is the maximum
number of neighbors of an attribute in the network, the computational cost is still far less than

enumerating all possible three-locus combinations (O(|V |3)). This reduction of computational

complexity is even more encouraging in the era of genome-wide and whole-genome studies



where thousands to millions of genetic attributes are considered.

The best three-locus MDR model identified using the SEN-supervised search includes
FANCA 02 (rs2239359), PMS2 01 (rs3735295), and IL1RN 05 (rs419598). All three SNPs had

very limited main effects with one-way MDR testing accuracies 0.4929, 0.5110, and 0.5276,
respectively. The falcon anemia complementation group A (FANCA) gene produces DNA

repair protein that may operate in a post replication repair or a cell cycle checkpoint func-
tion. Postmeiotic segregation increased 2 (PMS2) is a component of the post-replicative DNA

mismatch repair system. Interleukin 1 receptor antagonist (IL1RN) encodes the protein that
inhibits the activities of interleukin 1 alpha (IL1A) and interleukin 1 beta (IL1B), and mod-

ulates a variety of interleukin 1 related immune and inflammatory responses. The three genes
have moderate biological relationships,34 all have been found associated with various cancers,

and both DNA repair and immune regulation are considered major biological processes in-

volved in bladder carcinogenesis.35–37 However, the interaction effect among the three genes
associated with bladder cancer has never been reported previously. One could speculate, nev-

ertheless, that defects in the protective cell cycle checkpoint and DNA repair functions could
lead to attempts to replicate damaged DNA. Immune surveillance would be the remaining

protective mechanism to eliminate potential tumor cells. Thus, this trio of genetic variations
could increase the probability of tumor cell expansion. We expect that with further biological

validations, our findings could help explain the etiology and the complex genetic architecture
of bladder cancer.

With the fast development of sequencing technologies, more and more large-scale biomed-
ical data are becoming available. Although this presents exciting opportunities for genetic

association studies to explain many common human diseases, mining these high-dimensional
data to identify important genetic factors with non-linear interaction effects is a daunting

endeavor. In this article, we proposed a network-guided search approach that is able to effi-
ciently identify high-association three-locus genetic models. Our approach prioritizes genetic

attributes that have strong pairwise interaction effects. This differentiates our method from

most existing pre-screening strategies that focus on individual attributes with significant main
effects. The effectiveness of our approach was validated using MDR. In future research, we

expect to extend our SEN-supervised approach to the search for higher-order models and to
expand its applications to more data-mining and classification techniques.
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