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Epigenomics involves the global study of mechanisms, such as histone modifications or DNA methy-
lation, that have an impact on development or phenotype, are heritable, but are not directly encoded
in the DNA sequence. The recent availability of large epigenomic data sets, coupled with the in-
creasing recognition of the importance of epigenetic phenomena, has spurred a growing interest in
computational methods for interpreting the epigenome.
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Scientists have known for a long time that the sequence of nucleotides that comprise the
genome is not sufficient to explain the heritability of traits from one generation to the next,

nor is that sequence sufficient to drive the myriad functions of a living cell. Recently, however,
catalyzed by the rapid acquisition of a wide variety of genome-scale data sets from projects

such as ENCODE,1 modENCODE,2 and Roadmap Epigenomics,? scientists have begun to
characterize just how much information is encoded beyond the primary DNA sequence. Ac-

cordingly, many of the central questions facing biology today concern the interpretation and
integration of epigenomic data with our existing knowledge of the molecular pathways within

the cell, including DNA, RNA, proteins, and metabolites. This session includes three papers,
each of which describes a novel computational method for the analysis and interpretation of

one or more types of epigenomic data.



The first paper analyzes a single type of data, derived from a DNase 1 sensitivity assay.

The endonuclease DNase 1 has long been known to preferentially cleave in short regions of
open chromatin, known as DNase 1 hypersensitive sites.3 Such regions are of great interest

because they correspond to various types of regulatory elements, including promoters, en-
hancers, insulators and boundary elements. Recently, a series of DNase 1-based assays have

been described for ascertaining the cleavage profile of DNase 1 across the entire genome.
Originally based on quantitative PCR4 and microarrays,5,6 these assays were quickly adapted

for next-generation sequencing platforms.7,8 Importantly, in addition to recognizing classical
hypersensitive sites, which have a typical size of 225–250 bp, subsequent work demonstrated

that a detailed DNase 1 cleavage profile could localize protein-binding events at basepair
resolution.9,10

Given the importance of transcription factor binding for gene regulation, and given the

increasing availability of DNase 1 data for a wide variety of human cell types, a variety of
computational methods have been developed to interpret DNase 1 sensitivity data. Luo and

Hartemink contribute to this literature by introducing a method, called Millipede, that aims
to identify transcription factor binding events on the basis of DNase 1 sensitivity data as

well as analysis of the primary sequence. Millipede improves upon the previously described
Centipede algorithm11 by reducing the number of parameters and switching from unsupervised

to supervised learning. Luo and Hartemink benchmark Millipede using data from human and
yeast.

The second paper, by Sahu et al., proposes a machine learning approach to enhancer detec-
tion. An enhancer is a gene regulatory element that is responsible for upregulating one or more

genes. Enhancers are notoriously difficult to detect because they often do not occur proximal
to their target gene, relying instead upon DNA looping or other complex chromatin structures

to carry out their regulatory effect. No single high-throughput assay can be used to identify
the “enhancerome” because different types of enhancers presumably rely upon different regu-

latory mechanisms. The gold standard method for identifying an enhancer involves knocking

it out and observing the resulting downregulation of the target gene. This approach, obviously,
does not scale to whole-genome analysis. Currently, closest proxy we have for genome-wide

enhancer detection is ChIP-seq for the DNA-binding protein p300. Although almost all p300
binding sites are enhancers, many known enhancers are not bound by p300.

This lack of a high-quality and high-throughput enhancer assay has led to the development
of a series of computational methods that aim to identify putative enhancers.12–15 Sahu et al.

contribute to this ongoing project by introducing a support vector machine classifier that learns
to identify enhancers on the basis of ChIP-seq histone modification and DNase 1 sensitivity

data. They demonstrate that, not only does their classifier perform well in cross-validation,
but it also can be used to identify putative enhancers associated with SNPs from genome-wide

association studies of cardiac phenotypes.
Finally, the paper by Ahn and Wang describes a statistical testing methodology for identi-

fying genomic regions in which patterns of variability in DNA methylation across individuals
may be indicative of disease. DNA methylation involves the addition of a methyl group either

to an adenine or (most commonly in animals) a cytosine. Methylation is used extensively by



the cell to shut off expression of individual genes or large chromosomal regions, and plays a

critical role in regulating cellular processes such as embryonic development, X chromosome
inactivation, genomic imprinting and chromosome stability.16 Methylated cytosines can be

identified by first subjecting the DNA to bisulfite conversion, which changes cytosine residues
to uracil unless the cytosines are methylated, and then sequencing the converted DNA. The

result, by comparison to a reference genome, is a map of the frequency of methylation at each
cytosine residue. Methylation is associated with a set of heritable syndromes—imprinting

disorders—that result from asymmetric expression of the alleles of one or more genes, as well
as with a variety of repeat-instability diseases.16 More recently, aberrant methylation has been

increasingly implicated in various types of cancer.17

The primary goals of Ahn and Wang’s work is to improve our ability to detect patterns

of aberrant methylation that are potentially associated with a given disease. Their proposed

statistical framework draws upon the observation that such loci differ not only in the mean
level of methylation but also its variance. Accordingly, Ahn and Wang propose a regression-

based testing framework that captures more features of the methylation profile of a given locus
and, in so doing, boosts statistical power relative to approaches based only on the mean.

The topics covered by these three papers are quite diverse, reflecting the wide range of
challenging computational and statistical problems posed by epigenomic data.
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