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Exploiting drug polypharmacology to identify novel modes of actions for drug repurposing has gained 

significant attentions in the current era of weak drug pipelines. From a serendipitous to systematic or rational 

ways, a variety of unimodal computational approaches have been developed but the complexity of the 

problem clearly needs multi-modal approaches for better solutions. In this study, we propose an integrative 

computational framework based on classical structure-based drug design and chemical-genomic similarity 

methods, combined with molecular graph theories for this task. Briefly, a pharmacophore modeling method 

was employed to guide the selection of docked poses resulting from our high-throughput virtual screening. 

We then evaluated if complementary results (hits missed by docking) can be obtained by using a novel 

chemo-genomic similarity approach based on chemical/sequence information. Finally, we developed a 

bipartite-graph based on the extensive data curation of DrugBank, PDB, and UniProt. This drug-target 

bipartite graph was used to assess similarity of different inhibitors based on their connections to other 

compounds and targets. The approaches were applied to the repurposing of existing drugs against ACK1,  a 

novel cancer target significantly overexpressed in breast and prostate cancers during their progression. Upon 

screening of ~1,447 marketed drugs, a final set of 10 hits were selected for experimental testing. Among 

them, four drugs were identified as potent ACK1 inhibitors. Especially the inhibition of ACK1 by Dasatinib 

was as strong as IC50=1nM. We anticipate that our novel, integrative strategy can be easily extended to other 

biological targets with a more comprehensive coverage of known bio-chemical space for repurposing studies. 

 

1.  Introduction 

The continual decline of the number of new small molecular entities from the pharmaceutical 
industry pipelines has been well documented1. The stop-gap measures such as mergers and 
outsourcing associated with the modern drug discovery process are unlikely to improve the drug 
discovery success rates in the long run2. Of several approaches under consideration to improve the 
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pipeline output, drug repositioning is the one that aims to increase the applicability of already 
discovered therapeutics to hitherto unknown clinical conditions. This approach may save time and 
costs associated with the discovery phase2. Drug repurposing certainly comes with some distinct 
advantages and the efforts have been driven by several important factors including: the access to 
increasing amounts of experimental data (e.g. kinase profiling3), better understanding of 
compound polypharmacology4, biological data mining (BioCreative III)5, and regulatory impetus 
from FDA and NIH2. Current successful examples are mostly from serendipitous discoveries such 
as the repurposing of buproprion from depression to smoking cessation as Zyban6 and Duloxetine7 
from depression to stress urinary incontinence. Without doubt, there is an unmet need to develop 
novel, comprehensive methods for systematic drug repositioning to improve the efficiency.  

In silico methods, either receptor-based or ligand-based, have been applied to drug repurposing 
projects. Keiser et al. predicted and validated 23 novel drug-target associations using two-
dimensional chemical similarity approach (SEA)8. Recently the approach was employed for a 
large-scale prediction and testing of drug activity on side-effect targets9. Ligand-based quantitative 
structure-activity relationship (QSAR) models have been used by Yang et al. to predict indications 
for 145 diseases using the side effects as features10. With structure-based techniques, inverse 
docking was also used for drug repositioning11, 12.  Likewise by mining drug phenotypic side effect 
similarities, Campillos et al. identified novel drug-target interactions13; Oprea et al. incorporated 
semantic method-based text mining for predicting novel drug actions2. With bipartite graph-based 
methods, Yildirim et al. linked FDA approved drugs to targets using binary associations14, and 
Yamanishi predicted drug-target interactions using a combination of graph and chem-genomic 
approaches15. Our group recently conducted a comprehensive review of using molecular networks 
for drug discovery and development16. By developing models with other publicly available data, 
Dudley et al. repositioned Topiramate, an anti-convulsant drug to potential usage as an 
inflammatory bowel disease drug17. However, these unimodal approaches are likely to be limited 
by their respective shortcomings, e.g. inverse docking by scoring limitations18. Thus we propose 
that multimodal approaches may offer better solutions by offsetting the weakness of individual 
methods. In this study, we describe an integrative computational framework based on structure-
based drug design and chemical-genomic similarity methods, combined with molecular network 
theories for drug repurposing. The approaches were applied to identification of existing drugs to 
target ACK1 for cancer treatment.   

ACK1 (activated CDC42 kinase 1) is a ubiquitously expressed atypical non-receptor tyrosine 
kinase that integrates and delivers signals from multiple ligand-activated receptor tyrosine kinases 
such as EGFR, HER2 and PDGFR19. It also regulates several downstream proteins (e.g. AR, AKT 
and Wwox) implicated in cell survival roles19, 20. The activated ACK1 phosphorylates androgen 
receptor at Tyr-267 that leads to increased transcription of androgen receptors involved in the 
development of advanced metastatic prostate cancer or androgen independent prostate cancer21, 22. 
The knockdown of ACK1 increases cell apoptosis in prostate cancer cell lines, suggesting its 
importance as an anti-oncogenic drug target22, 23. Unlike the limited efficacies of conventional 
targeted therapeutics against RTKs, it has been hinted that ACK1 inhibitors may have higher 
efficacy for cancer treatment as it integrates signals from multiple RTKs and thus restraining the 
compensatory mechanisms of RTK signaling20. Although inhibitors targeting ACK1 have been 



 

developed, publicly available data on them are still limited and few late stage clinical trials are 
being conducted to date. Therefore, it is an attractive cancer target for drug repurposing.  

Fig. 1. The schematic Diagram of our modeling workflow. The first step is the construction of the drug-target 
bipartite graph. Drugs and targets are represented as circles and rectangles, respectively. Node sizes and color are 
proportional to the degree of each node. The larger shapes and the red color represent nodes with higher degrees. 
After three steps: A. high-throughput docking; B. Chemical similarity search using AIM-100, a known inhibitor 
of ACK1; C. Genomic similarity search of ACK1 against proteins in the drug-target graph to identify similar 
proteins and only the corresponding interacting drugs are selected; D. Using only the drug-target graph to identify 
drugs similar to those identified from steps A-C. 

With our integrative approach consisting of classical structure-based drug design and chem-
genomic similarity analysis approaches in tandem with the bipartite drug-target graph method, we 
identified 10 drugs for experimental testing. Four of them (Dasatinib, Sunitinib, Flavopiridol and 
Gefitinib) were confirmed active with IC50<20uM. In particular, the IC50 of Dasatinib is as low as 
1nM. Our results showed that integrative analysis of chemical-genomic features and molecular 
networks of drug-targeted interactions, combined with structure-based high-throughput docking 
could be successfully applied to drug repurposing for potent inhibitor discovery. 



 

2.  Methods and Materials 

2.1.  Overall Approach 

Our drug repositioning workflow is illustrated by Fig. 1 using an integrated three-level approach 
consisting of virtual screening, chemical genomic similarity, and bipartite-graph methods. The 
bipartite-graphs were developed based on the extensive data curation of DrugBank23, Protein Data 
Bank (PDB)24, and Protein Knowledge Base (UniProt)25 using in-house developed python scripts. 
In brief, we employed high-throughput virtual screening followed by a pharmacophore-guided 
method to select a set of drugs as potential ACK1 inhibitors. Next, we evaluated if complementary 
results (hits missed by docking) can be obtained by using a novel chemo-genomic similarity 
approach based on chemical/sequence information. Finally, employing only the drug-target 
bipartite graph-based similarity, we identified a third set of drugs as potential ACK1 inhibitors. 
These three sets were further evaluated and merged into our final set consisting of 10 drugs which 
were evaluated using a qPCR-based kinase assays26. Four hits showed strong inhibition of ACK1 
(1nM~20μM) and they can be potentially used for prostate cancer treatment.  

2.2.  Virtual Screening 

Several structures of the ACK1 kinase domain are available in PDB. For virtual screening we 
chose two of them (3EQR and 1U4D) which are co-crystallized with very different ligands (T74 
and DBQ, respectively). This strategy would implicitly accommodate for receptor flexibility and 
also possibly help us identify diverse chemotypes. Analysis of these two crystal structures revealed 
the importance of residues Ala208, Thr205, Glu206, Ala208 and Asp270 because they form 
hydrogen-bonding interactions with ligands. Particularly in 3EQR, the amine moiety on the 2,6-
dimethylphenyl group of T74 interacts with the hydroxyl group on the conserved Thr205 residue. 
This hydrogen bond was found to significantly enhance the ACK1 inhibition in both biochemical 
and auto-phosphorylation assays as compared to its parent compound (N-aryl pyrimidine-5-
carboxamide series)27. It suggests the importance of using this interaction as a pharmacophoric 
feature for subsequent hit selection. The high-throughput docking was conducted with the Glide 
software (www.schrodinger.com). Default parameters were used unless otherwise stated. The grid 
box with size 10Å X 10Å X 10Å was centered on the centroid of ligands (T74 or DBQ), and the 
active site flexibility was addressed with the induced-fit protocol. Only the approved/experimental 
drugs from DrugBank were selected for screening, and they were prepared with Epik, including 
their protonation and tautomer states at pH 7.0. The standard-precision (SP) mode was used for 
docking and scoring. To validate our protocol, both T74 and DBQ were re-docked into their 
respective co-crystallized crystal structure. In both cases, the ligands were docked within 1Å of 
their crystal structure binding poses. The Glide docking scores for T74 and DBQ were -10.4 and -
9.26, respectively. Therefore, screened compounds with Glide scores above –9.26 were retained 
during hit selection via pharmacophore-based visual inspection. The pharmacophores were derived 
using MOE based on the analysis of the crystal structures and known ACK1 inhibitors (e.g., AIM-
100)28. To be selected, the hits have to mimic at least three pharmacophoric features: 1). a 
hydrophobic moiety in the nucleotide binding pocket surrounded by residues Ile190, Met203, and 
Leu207; 2). hydrogen bonds with either Ala208, Thr205, Glu206 or Asp270; and 3). a polar 



 

solvent exposed group in the phosphate binding region of ACK1 surrounded by Asp215 and 
Arg216.  With this strategy, the aim was to reduce the false positives by eliminating the 
dependence on docking scores as the only parameter because frequently many high ranked 
compounds could have completely wrong poses due to inaccuracies in scoring functions.  

2.3.  Chem-genomic Similarity 

To compensate for the limitations of docking methods (e.g. inaccurate scoring functions), we 
implemented a novel approach by combining chemical and genomic similarity metrics. This was 
to identify those missing ACK1 inhibitors from virtual screening. The underlying assumption of 
our chemical similarity metric is that similar chemistry may result in similar biological activity. To 
this end, the MACCS fingerprints were employed as they represent chemical substructures within 
compounds as a bitstring using pre-defined substructures and are suitable for such applications. 
The similarity was expressed with Tanimoto coefficient defined as  

 ܶܿ൫݀൯ = 	 ݅ܣ| ∩ ݅ܣ|/|݆ܤ ∪  .Eq. 1                                   |݆ܤ

Where: Tc(݀) = Tanimoto coefficient between drugs i and j. Ai = number of on bits (1 is for on 
and 0 is for off) in drug i, Bj = number of on bits in drug j. This cheminformatics approach was 
implemented using the Openbabel toolkit (www.openbabel.org). Briefly, a known ACK1 inhibitor 
AIM-10029 was used as the query compound and compared with all of the small molecule drugs in 
our curation. In order to determine the cutoff Tanimoto coefficient, AIM-100 was compared with 
Dasatinib (Tc = 0.61) as it was shown to be active against ACK1 in our virtual screening study. 
Therefore, only those drugs that were similar to AIM-100 with ± 5% of Tc = 0.61 were selected, 
and their affiliated targets in our curated data were obtained. 

Genomic-based approaches in such studies were reported to be complementary to their 
cheminformatics counterparts30. Hence to enable rational selection of hits for experimental testing, 
all protein sequences from PDB were compared with the ACK1 kinase domain. For those 
sequences/targets with a meaningful genomic similarity with ACK1 (defined as sequence 
identity>40%), their corresponding drugs, if available in our data curation, were selected for 
experimental testing. For this step, the Needleman-Wunsch algorithm was employed to identify 
proteins from PDB similar to ACK1 and the proteins must be represented in our bipartite drug-
target graph (described below). We considered the drugs connected to these proteins in the 
bipartite-graph as likely inhibitor candidates against ACK1. 

2.4.  The Unweighted Drug-Target Bipartite Graph 

To use drug-target networks14 in this study, we extensively curated data (e.g., structures, 
annotations, etc.) from multiple databases including DrugBank, PDB and UniProt, and developed 
an unweighted drug-target bipartite graph16, 23. Once the proteins were identified (e.g. based on 
genomic similarity), the respective PDB codes would be obtained from PDB and their 
corresponding co-crystallized drugs would also be derived. However we only selected those drugs 
that were present in the drug-target bipartite graph but not identified either from virtual screening 
or from chem-genomic similarity search. To this end, the DrugBank database was downloaded 
from the website (www.drugbank.ca). The initial database containing 6,711 drug entries included 



 

6,580 small molecule drugs. For this study, entries containing biotech/nutraceuticals, withdrawn, 
illicit and other non-small molecule like (as defined by the chemical filter developed for this 
study) were excluded. This eventually resulted in 1,447 approved drugs in our curation. At the 
time of this work, the drugcard information did not contain The PDB codes were mapped to their 
respective UniProt codes using a a Biopython (www.biopython.org) based protocol to rationally 
reduce the complexity of the drug-target bipartite graph by eliminating redundant degrees as one 
UniProt code can effectively represent multiple pdb codes. Denoting the drug set as D = ሼ݀ଵ,݀ଶ, … , ݀ሽ and the target UniProt set as U =ሼݑଵ, ,ଶݑ … ,  ሽ, the drug-target bipartite graph wasݑ
developed as G(D,U,E) where E= {eij: di∈D, uj∈U}. A link (eij in E) is established between di and 
uj only when there is an explicit association in the respective drug record.  

2.5.  Graph-based Similarity 

The unweighted and undirected bipartite graph of drugs from DrugBank is shown in Fig. 1. Here, 
drugs are represented as vertices and their corresponding proteins as edges. Since this graph 
follows the power-law probability distribution31, it is feasible to calculate the similarity between 
two vertices (drugs) based on the shared edges (proteins). Once the similarity of two drugs is 
established, their affiliated edges (proteins), even unshared ones, may be established as a likely 
target for the drugs respectively. In our study, we attempted to identify those drugs that shared 
graph-based similarity with any hit identified from docking and chem-genomic approaches. For 
the similarity metric we utilized the Salton’s cosine measure as it normalizes the similarity 
measures and does not penalize/favor vertices that may have larger number of edges. This graph 
could easily be represented as an n × m adjacent matrix {aij} where aij = 1 if di and uj (drug and 
UniProt, respectively) were connected, or 0 if not. In an undirected network as in our case, the 
number nij of common neighbors of vertices i and j is given by: 
 ݊ = 	∑ ܣܣ                                                                    Eq. 2. 
 

Where A is the matrix. Thus, as proposed by Salton, the cosine similarity can be represented as:  
ߪ  = cos ߠ = (∑ ∑)/(ටܣܣ ଶܣ ට∑ ଶܣ )             Eq. 3. 

 

As our drug-protein network is an unweighted graph, the elements of the adjacency matrix take 
only the values of 0 and 1, so that ܣଶ = ∑  for all i, j. Thenܣ	 ଶܣ = 	∑ ܣ = 	݇  where ݇	is 
the degree (number of connections) of vertex i. Thus: 

ߪ  = 	 ∑ ೖೖೕೖඥೕ 	= 	 ೕඥೕ                                                  Eq. 4.	
 

In simple terms, the cosine similarity of i and j is therefore the number of common neighbors 
(in our case, proteins represented by UniProt IDs) between two vertices (represented as drugs) 
divided by the geometric mean of their degrees. Therefore in this approach, only graph-based 
geometric similarity is considered without including any chemical/biological information. 



 

2.6.   Experimental Testing 

To validate our predictions, the selected drugs were experimentally tested using the proprietary 
screening platform with a quantitative qPCR-based assay26. This approach measures the amount of 
DNA-tagged kinase that is unable to bind to an immobilized ligand attached to a fixed support. 
The kinase assays were developed as kinase-tagged T7 phage strains that are grown in parallel in 
24-well blocks in an E. coli host derived from the BL21 strain and tagged with DNA for qPCR 
detection. Streptavidin-coated magnetic beads treated with biotinylated small molecule ligands for 
30 minutes at room temperature were used to measure binding affinities for kinase assays. All hits 
were prepared as 40x stocks in 100% DMSO and directly diluted in the assays. All reactions were 
performed in polypropylene 384-well plates in final volume of 0.04 ml. The assay plates were 
incubated at room temperature with shaking for 1 hour, and the affinity beads was washed with 
buffer (1 X PBS, 0.05% Tween 20). The beads were re-suspended in elution buffer (1 X PBS, 
0.05% Tween 20 0.5μM non-biotinylated affinity ligand). The kinase concentration in the eluates 
was measured by qPCR. The compounds were screened at 0.1µM and 10µM. In addition to 
ACK1, five other kinases of our interest and implicated in important cancer signaling pathways 
were used to evaluate selectivity of these inhibitors. The results for primary screen binding 
interactions were reported as %Ctrl where lower numbers indicate stronger hits:  
 

%Ctrl calculation = 
୲ୣୱ୲	ୡ୭୫୮୭୳୬ୢ	ୱ୧୬ୟ୪ି୮୭ୱ୧୲୧୴ୣ	ୡ୭୬୲୰୭୪	ୱ୧୬ୟ୪୬ୣୟ୲୧୴ୣ	ୡ୭୬୲୰୭୪	ୱ୧୬ୟ୪ି୮୭ୱ୧୲୧୴ୣ	ୡ୭୬୲୰୭୪	ୱ୧୬ୟ୪	 ∗ 100         Eq. 5. 

3.   Results 

3.1.  High-throughput virtual screening 

As described in the Methods section, small 
molecule drugs were docked and scored 
against two ACK1 crystal structures. Drugs 
scored above -9.26 were selected, also based 
on specific pharmacophoric features 
characterizing the binding poses. We 
particularly were interested in those hits with 
a hydrophobic moiety in the nucleotide 
binding pocket and forming hydrogen bonds 
with the Thr205 pocket. For example, 
Indinavir, a HIV protease inhibitor, was 
discarded despite being the best ranked hit 
(data not shown). On the other hand, although 
Dasatinib only ranked the 8th, it was selected 
because the drug demonstrated consistent 
binding pose with  ACK1 (Fig. 2). Similarly, 
Amodiaquine, Flavoxate, Imatinib and 
Lapatinib were also selected based on our 

Fig. 2. Dasatinib (magenta sticks) docked into ACK1 
(ribbon display). It was ranked top and has reasonable 
interactions with ACK1. The gray lines are critical 
residues in the active site. Hydrogen bonds are in 
magenta dashed lines. The spheres are pharmacophores: 
gray for hydrophobic, cyan for hydrogen bonds, and 
yellow for solvent exposed groups. 



 

docking studies with 3EQR and Mebendazole with 1U4D crystal structures. These hits also 
exhibited similar shape properties to the co-crystallized ligands of the respective crystal structure. 
We found that hits from 3EQR had high average molecular weight of 461Da (T74 MWT is 
514Da). Screening with 1U4D which has the smaller co-crysallized ligand (DBQ, MWT =254Da) 
resulted in smaller hit (e.g., Mebendazole MWT=295Da). This was in-line with our hypothesis 
that diverse chemotypes might be obtained when different crystal structures are used. 

3.2.  Chem-genomics based inhibitor identification 

 The fundamental principle behind this approach is: a). compounds with similar chemistry are 
likely to possess similar biological profiles, and b). if there is meaningful genomic similarity (e.g., 
high sequence identity) between two proteins (thus also similar tertiary profile), compounds 
binding to one protein may interact with the other protein as well. We employed AIM-100 
inhibitor for chemical similarity search. To determine the Tanimoto coefficient (Tc) threshold, 
AIM-100 was compared with Dasatinib (a promising binder based on docking) and we obtained 
Tc=0.61. Hence, all similar drugs within ±5% of Tc were kept. The small range of Tc is to ensure 
that the hits would maintain a certain degree of both chemical similarity and diversity. Based on 
drug-target bipartite graph, the corresponding targets of these selected drugs were also identified.  

On the other hand, all proteins in our dataset were identified based on their genomic similarity 
to ACK1 (sequence identity>40%), and then their corresponding bound drugs were also obtained. 
These two sets of selected drug-target pairs were merged if two pairs shared the same target or the 
same drug. This resulted in a graph as demonstrated in Fig 3. Based on this combined chem-
genomic similarity approach, Gefitinib, Sorafenib and Sunitinib were identified after excluding 
those (e.g., Imatinib) already identified by molecular docking. These observations were consistent 
with our postulation that combining in silico approaches, e.g. classical structure-based methods 
with molecular networks, might help identify unique and complementary sets of inhibitors. 

Fig. 3. A. The graph was derived from the drug chemical similarity and target genomic similarity. It represents 
the inhibitor AIM-100 (red square) and ACK1 (red circle) and those drugs obtained from the chemical similarity 
search (non-red squares) and proteins similar to ACK1 (green circles). B. The enlarged portion of graph A 
shows Gefitinib is similar to AIM-100 and its target (P00533) has significant genomic similarity to ACK1.  



 

3.3.  Graph-based similarity 

In this step, we attempted to identify potential ACK1 inhibitors based on their similarity to those 
already identified in the previous steps. However, the strategy was not based on chemical structure 
or genomic sequence similarities. Instead, the similarity was defined purely with our drug-target 
graph-based geometry (e.g., vertices and edges) without considering other chemical/biological 
information. We tried to investigate if this could provide us any extra hits. Using Salton’s cosine 
index we calculated a similarity matrix based on the bipartite graph with the shared edges 
(proteins). A snapshot of the entire matrix is shown in Fig. 4. The hypothesis was that any small 
molecule drugs that showed some similarity to the previously identified inhibitors from the 
docking and chem-genomic similarity steps might be an inhibitor as well. As expected, we were 
able to identify the majority of the common hits such as Dasatinib and Imatinib (identified by both 
docking and similarity search methods). But we also identified new hits such as Flavopiridol as 
one of the ACK1 inhibitors, based on its graph similarity to Lapatinib. Though several other drugs 
were also identified, only Flavopiridol, along with another 9 drugs, was purchased for 
experimental testing due to the constraints of their commercial availability and our budgets. 

3.4.  Experimental Results 

The Kinomescan’s proprietary platform based on several thousands of profiled kinase inhibitors 
allowed the estimation of binding affinities of any compound based on their primary screening. 
The specific assay details of this approach are described elsewhere26. In addition to ACK1, we 
screened our selected compounds against several other kinases including EGFR, MEK1, PDPK1, 
PIK3CA and ABL2, because these targets are suggested to play important and diverse roles in 

various cancer pathways. EGFR, 
PDPK1 and PIK3CA are located in the 
signal transduction pathways that aid 
tumor growth and reduce apoptosis. 
MEK1 is located in the MAPK cell 
signaling that might affect the 
prognosis of the androgen-independent 
prostate cancer. We also tested ABL2 
as it is the reported target of several 
drugs (e.g., Imatinib and Dasatinib). 

At the end, 10 hits were purchased 
and tested. Among them, four drugs 
including Dasatinib, Sunitinib, 
Flavopiridol and Gefitinib, showed 
significant inhibition of ACK1 with 
estimated IC50<25µM. The activities of 

these compounds are illustrated in Table 1. These true ACK1 inhibitors were originally designed 
for different kinases, demonstrating the well-known polypharmacological properties of kinase 
inhibitors. In particular, Dasatinib was originally designed as a multi-BCR/ABL and Src family 

Fig. 4. A representative heat-map of purely graph-based cosine 
similarities of Flavopiridol against drugs identified from docking 
and chem-genomic similarity. The higher values (darker red) 
means higher graph-based similarity. 



 

tyrosine kinase inhibitor approved for chronic myelogenous leukemia (CML). Here we 
demonstrated that it also strongly inhibited ACK1 (further experiments showed IC50=1nM) which 
is implicated in advanced prostate cancer patients. This provided a strong mechanistic support of 
using Dasatinib to treat prostate cancer. Interestingly, just after our experimental testing of these 
ACK1 inhibitors, Dr. Whang's group from UNC Chapel Hill published their evaluation of 
Dasatinib on inhibiting ACK1-related prostate cancer progression in vitro and in vivo32. Their 
discovery highly conformed to our in silico predictions. Currently we are teaming up to further 
explore repurposing of our identified drugs to treat advanced prostate cancer by targeting ACK1. 

Table1. Experimental screening results of in silico drug hits against six kinases. 

Sunitinib, Flavopiridol and Gefitinib were originally developed as PDGFR-Beta, CDK-2, and 
EGFR inhibitors, respectively, but also inhibited ACK1 based on our results. Imatinib and 
Sorafenib only showed moderate inhibition of ACK1. Flavoxate and Mebendazole were initially 
considered interesting as they are not kinase inhibitors but were predicted to inhibit ACK1. 
Unfortunately experimental results indicated that they were either false positives or weak ACK1 
inhibitors. Therefore no further work is being performed on them but our efforts of identifying 
new chemotypes (non-kinase inhibitors) as ACK1 inhibitors are still undergoing. 

3.5.  Comparison of Different Methods 

Our multi-modal approach clearly differs from other unimodal methods developed for drug 
repurposing such as SEA30 and AERS-based method33. Cheng et al. recently evaluated multiple 
schemes and they found that their network-based interference (NBI) approach obtained better 
results in their cases34. In this study, we focused on a combined strategy but also investigated in 
details how each method is different from the others in their ability to identify ACK1 inhibitors. 
Table 2 demonstrates docking-based virtual screening could reveal more diverse chemotypes 
including both kinase and non-kinase inhibitors. As expected, drugs uncovered with chemical 
structure and protein sequence based similarity analysis are all kinase inhibitors. Gefitinib and 
Sunitinib were shown to have low micromolar affinity to ACK1. Lastly, the graph-based similarity 
method, which does not include any chemical, biological, or sequence/structure information, 

     Target 
ACK1 PIK3CA PDPK1 ABL2 EGFR MEK 

Compounds 0.1µM 10µM 0.1µM 10µM 0.1µM 10µM 0.1µM 10µM 0.1µM 10µM 0.1µM 10µM 

Amodiaquine 89 100 97 93 100 93 97 100 100 91 95 96 

Gefitinib 100 77 100 100 100 1000 100 83 2.2 0 100 83 

Lapatinib 100 93 98 92 100 100 99 100 0.25 0.05 95 87 

Imatinib 100 82 100 92 100 100 43 3.2 100 71 95 94 

Dasatinib 4 0 95 98 100 100 0.15 0 59 1.2 89 3.2 

Sorafenib 100 89 100 99 100 85 97 33 100 96 100 99 

Mebendazole 100 98 100 100 100 100 100 33 100 83 100 38 

Flavoxate 100 94 100 100 100 100 100 94 100 88 94 95 

Sunitinib 93 33 100 83 100 39 92 51 92 72 51 0.1 

Flavopiridol 100 74 100 97 100 100 100 80 100 53 92 92 



 

identified a different chemotype drug -- Flavopiridol. It exhibits ~25uM inhibition of ACK1. The 
common hits (blue in Table 2) by these methods are Imatinib and Dasatinib, and in particular, the 
later demonstrates a nanomolar IC50. Clearly this multi-modal approach shows improved 
performance over each individual methods in the present study.  
 
However, certain limitations still 
exist. For structure-based 
docking methods, the target 3D 
structures are usually required. 
To reduce false predictions, we 
incorporated as much known 
expert knowledge as possible 
such as using multiple ACK1-
inhibitor complex structures to 
partially compensate for target flexibility18. We also filtered the top-ranked hits with protein 
pharmacophores27. The chemical similarity based methods are generally reliable, but combination 
with shape-based techniques may give better results35. For the graph-based analysis we were 
limited to the publicly available drug-protein interaction information. As the data increases, we 
expect our predictions will be continuously improved.  

4.  Conclusions 

Understanding the drug polypharmacology may hold a great promise in our next generation of 
drug discovery and development. Along the line, drug repurposing applications are getting more 
and more attention as it may provide an efficient and effective way to fuel the current drug 
discovery engines. Both FDA and NIH have recently put a significant amount of funding and 
effort to promote drug repurposing. From in silico point of view, more multi-modal approaches 
and data integration are needed to increase our opportunity of success. To this end, our present 
study is to integrate the classical structure-based methods with chem-genomic similarity 
approaches, along with molecular graph theories to develop new strategies for drug repurposing. 
Our approach was applied to identification of existing drugs as ACK1 inhibitors for prostate 
cancer treatment, and multiple potent inhibitors have been discovered. 

Our three-pronged approach consisted of curating currently available drug-target information 
into high-quality bio-chemical databases. Next, by combining the high-throughput molecular 
docking, chem-genomic similarity search and our in-house drug-target bipartite graphs, we 
identified 10 promising hits. Subsequent experimental profiling of these selected drugs against six 
kinases indicated that four of them, including Dasatinib, Sunitinib, Flavopiridol, and Gefitinib, 
could significantly inhibit ACK1. In particular, the IC50 of Dasatinib was as low as 1nM. 
Therefore we have demonstrated that, extensive analysis of chemical-genomic features, 
characterization of drug-target relations with graph-based approaches, and classical high-
throughput docking are complementary to each other. The combination use of these methods can 
efficiently and accurately reveal strong inhibitors, corroborating our hypothesis of the need for an 
integrative approach for drug repurposing. In principle, this approach can be easily extended to 
other biological targets and chemical databases as a general tools for drug repurposing. 

Table 2.  Drugs identified by different methods. 
High-throughput 

Docking 
Chem-genomic 

Similarity Analysis 
Graph-based 

Similarity Analysis 
Imatinib Imatinib Imatinib 
Dasatinib Sunitinib Dasatinib 
Lapatinib Gefitinib Flavopiridol 

Mebendazole Sorafenib  
Amodiaquine   

Flavoxate   
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