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The revolution in sequencing techniques in the past decade has provided an extensive picture of the 
molecular mechanisms behind complex diseases such as cancer. The Cancer Cell Line Encyclopedia (CCLE) 
and The Cancer Genome Project (CGP) have provided an unprecedented opportunity to examine copy 
number, gene expression, and mutational information for over 1000 cell lines of multiple tumor types 
alongside IC50 values for over 150 different drugs and drug related compounds. We present a novel pipeline 
called DIRPP, Drug Intervention Response Predictions with PARADIGM7, which predicts a cell line’s 
response to a drug intervention from molecular data. PARADIGM (Pathway Recognition Algorithm using 
Data Integration on Genomic Models) is a probabilistic graphical model used to infer patient specific genetic 
activity by integrating copy number and gene expression data into a factor graph model of a cellular network. 
We evaluated the performance of DIRPP on endometrial, ovarian, and breast cancer related cell lines from 
the CCLE and CGP for nine drugs. The pipeline is sensitive enough to predict the response of a cell line with 
accuracy and precision across datasets as high as 80 and 88% respectively. We then classify drugs by the 
specific pathway mechanisms governing drug response. This classification allows us to compare drugs by 
cellular response mechanisms rather than simply by their specific gene targets. This pipeline represents a 
novel approach for predicting clinical drug response and generating novel candidates for drug repurposing 
and repositioning. 

 

1. Introduction 
 
The potential for bioinformatics techniques to bring about transformative results in personalized 
medicine is just beginning to be realized.  Large scale studies such as The Cancer Genome Atlas 
(TCGA), the Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome Project (CGP) have 
provided bioinformaticians with a wealth of –omic and pharmacologic data to interrogate1-5. Novel 
algorithms have been developed to perform detailed signaling pathway analysis6, integrate diverse 
–omic data types7-11, and even predict markers of drug sensitivity and resistance12. Analytical 
efforts are also underway to identify candidates for drug repurposing or repositioning and to 
computationally predict new drug indications for disease13.  



 

 

 

Despite this wealth of innovation, the complexity for interpretation and translation of 
results to cancer patients remains challenging. The diversity of computational approaches has 
made it difficult to identify which of these have the most potential to improve the treatment of 
patients and improve clinical outcomes14. Each algorithm relies on a different type of –omic or 
combination of –omic data making it difficult to integrate them in a single analytical pipeline12, 13.  

An important goal of computational bioinformatics pipelines is to provide actionable results to 
help physicians make optimal therapeutic decisions for a patient. To this end, the patient’s 
likelihood to respond to a specific treatment regimen is of particular interest to clinicians. The 
typical clinical case includes investigators looking to discover alternative therapies for patients 
who demonstrate resistance to the primary treatment. Both drug repurposing, the recycling of 
shelved or failed drugs, and drug repositioning, the use of active therapies for new applications, 
represent opportunities for the development of second line therapies. In order to maximize the 
impact of such an analysis pipeline, it should be versatile enough to address a myriad of clinical 
and scientific questions and easily integrate with existing clinical pipelines to assist physicians.    

To address these clinical and analytical challenges we propose an integrative pipeline called 
DIRPP, Drug Intervention Response Predictions with PARADIGM (Pathway Recognition 
Algorithm using Data Integration on Genomic Models)7. Our pipeline aims to classify a cell line 
as either sensitive or resistant to a given therapy and to define specific genetic backgrounds 
represented in the cell line, potentially applicable to specific patients, associated with drug 
response phenotypes. This classification is performed using an extension of an open source 
probabilistic graphical model called PARADIGM. Drawing on multiple data types, DIRPP 
proceeds to integrate the copy number and gene expression data for a cell line into a biological 
pathway activity score which includes the result of a simulated drug intervention. Once the cell 
line (which may be a surrogate for a patient of interest) has been classified as sensitive or resistant 
to a given therapy, downstream gene set enrichment analysis (GSEA) on the pathway activity 
scores illustrates the underlying biological pathway mechanisms at work driving the drug response 
phenotype. The method can be applied to assess the impact of a wide variety of therapies on one 
particular cancer, or multiple cancers at a time to develop precision medicine strategies. 
 
2. Materials and Methods 
 
2.1. Datasets, Pathway Sources, and Pharmacologic Profile Data 

Copy number, gene expression, and drug sensitivity data for 202 cancer cell lines from two 
recently published preclinical studies, the cancer genome project (CGP)4 and the cancer cell line 
encyclopedia (CCLE)5 were used for analysis. The distribution of cell lines by cancer type was: 20 
ovarian, 39 breast, and 6 endometrial cancer cell lines from the CGP for testing of the algorithm 
and 51 ovarian, 59 breast, and 27 endometrial cancer cell lines from the CCLE for an independent 
dataset to validate the algorithm. Of the 16 drugs in common between the two studies, 9 inhibitory 
drugs were selected for analysis based on their clinical potential for treatment of ovarian cancer 
and repurposing/repositioning in breast and endometrial cancers (Table 1).  Genetically similar 



 

 

 

sub-types of these cancers represented in this array of cell lines have been the subject of numerous 
genomic and drug repositioning studies and provide a robust sample set for analysis.  
 
        Table 1. Nine (9) anticancer inhibitory drugs analyzed in both the CGP and CCLE with primary clinical                     
            relevance to ovarian cancer and secondary clinical relevance to breast, and endometrial cancer.   

Drug Name Target(s) Class 
Erlotinib EGFR Kinase Inhibitor 
Irinotecan Topoisomerase Cytotoxic 
AZD0530 Src, ABL/BCR-ABL, EGFR Kinase Inhibitor 
AZD6244 MEK, ERK, MAPK Kinase Inhibitor 
PD0325901 MEK, RAF, MAPK Kinase Inhibitor 
Lapatinib EGFR, HER2 Kinase Inhibitor 
17-AAG HSP90 Other 
Sorafenib KIT, PDGFRB, FLT3, FLT4, KDR, RAF1, BRAF Kinase Inhibitor 
Paclitaxel Microtubules Cytotoxic 

 
All cell line drug sensitivity values were reported as IC50 values, the concentration at 

which a drug inhibits 50% of cellular growth4, 5. Gene expression probes were normalized by 
centering on the gene’s median expression across all cell lines and then taking the base 2 log of 
that value7. SuperPathway, a merged biological pathway of 1,441 curated signal transduction, 
transcriptional, and metabolic pathways, was used to analyze the comprehensive cellular network 
of activity in the cell lines. This framework captures the global interactions of any perturbation in 
a cell while removing redundant pathway elements15. For each drug of interest, detailed 
pharmacological information about gene targets and mechanism of action was obtained from the 
drugbank and selleckchem databases16-18.  

 
2.2. Analysis Pipeline 

The DIRPP7 pipeline was implemented and tested using the overall scheme and specific steps laid 
out in Figure 1. Two runs of the PARADIGM algorithm are completed, one with –omic data, the 
two factor analysis, the other with –omic data and a simulated drug intervention, a three factor 
analysis. PARADIGM represents each entity in a biological pathway as a node whose value 
depends upon a defined internal set of “evidence nodes” whose connectivity mirrors the central 
dogma of molecular biology (Figure 2). These “evidence nodes” enable the integration of patient 
data into the biological pathway network. After assessing the signaling pathway activity of the cell 
lines with an initial run of the PARADIGM algorithm, where a DNA node interacts with a mRNA 
node to propagate biological information to the cellular network7, a second run of PARADIGM is 
performed while including a drug induced re-wiring of the cellular network (Figure 2). The 
resulting IPLs were then compared on a per-patient-per-gene basis to assess the impact of the drug 
intervention on perturbing the signaling network of a cancer cell line by computing a paired t-test 
p-value using the IPLs of the two PARADIGM runs for each cell line. The least perturbed cell 
lines were deemed the most resistant (least sensitive). All cell lines were then ranked in order of 
increasing sensitivity. Biological pathways involved in drug sensitivity and resistance were then 
identified using Gene Set Enrichment Analysis (GSEA) 6. 



 

 

 

 

Figure 2. Comparison of the PARADIGM standard central dogma with an alternative dogma which 
represents a drug induced re-wiring of the network. The drug intervention propagates through the network 
based on an inferred interaction at the DNA node as a surrogate for its actual influence on protein activity. 

 
 
Figure 1. Experimental design of DIRPP. For each cell line dataset, gene expression and copy number data were 
analyzed in 2-factor PARADIGM analysis. These inferred pathway levels IPL’s were compared to those from 3-factor 
PARADIGM analysis with a simulated drug intervention to generate a ranking by drug sensitivity. This ranking was 
then validated on the CGP and CCLE data. Response mechanisms were classified with GSEA. 
 
 



 

 

 

2.3. PARADIGM Model 
 
Briefly, PARADIGM is a factor-graph-based approach which quantifies the activity of a gene 
given a pathway diagram and dataset of observations8. For the model proposed here, 
SuperPathway was used to define this pathway diagram where each gene, protein, or process is 
connected by a series of factors which encode the probabilistic constraints between variables7, 15. 
Each entity in the pathway infers its activity from a set of nodes which define an internal set of 
rules for how these data types interact to assign a value to the pathway entity. Nodes for DNA and 
mRNA connect to the active protein node which then passes information through the entire 
pathway diagram via the dependencies encoded in the factors. The DNA and RNA nodes of each 
gene in the pathway are assigned values as a function of the copy number and gene expression 
data respectively to include biological information from the cell lines. For each gene, 
PARADIGM is capable of integrating these diverse –omic data types to compute an inferred 
pathway level (IPL) for each gene in the pathway. These IPL scores were computed using a belief-
propagation algorithm on the factor graph diagram of the pathway. Each score represents a log-
posterior odds (LPO) ratio of the state of a pathway entity given the observed data. Positive IPLs 
correspond to an entity being active in a tumor relative to normal tissue and negative to inactivity7, 

8.  
 
2.4. Drug Intervention Simulation 
 
DIRPP exploits a versatile feature of PARADIGM which allows the user to define a drug induced 
re-wiring for a gene in a pathway. As designed, PARADIGM is capable of integrating DNA 
methylation data by including an extra node in a gene’s normal wiring connected at the DNA 
node7. The current algorithm utilized the DNA methylation feature to encode the action of a drug 
on that particular gene’s regulatory structure (Figure 2). A drug’s mechanism of action was 
retrieved from drugbank and selleckchem databases, which provide a list of genes (proteins) the 
drug targets16-18. A matrix of genes that correspond to a drug intervention was then defined. The 
edge connecting the intervention node to the DNA node encoded a factor which signaled a 
downregulation to the gene (similar to the standard use of methylation). Only genes listed in this 
intervention matrix had the extra node added to their wiring diagrams. In principle, the edge 
connecting the intervention node to the DNA node could be changed to act in an amplifying 
manner for an agonist.  

To assess the significance of a drug intervention, two runs of the PARADIGM algorithm 
were completed: one with copy number and gene expression data, the other with the addition of a 
third data type, the simulated drug intervention, with each run generating a matrix of IPL scores. 
The two resulting matrices of IPL scores were then compared on a per-cell line-per-gene basis 
using a paired t-test to calculate a p-value for that cell line. The cell lines were ranked in order of 
largest to smallest p-value corresponding to a ranking of least to most sensitive cell lines for a 
given drug.  
 
 
 



 

 

 

2.5. Validation 
 
To validate our approach, analysis of the CGP and CCLE data were independently performed by 
calculating the accuracy and precision statistics for each ranking. Accuracy assesses the 
algorithm’s overall performance for distinguishing between sensitive and resistant cancer cell lines 
while precision is used to assess the positive predictive value of the algorithm at identifying drug 
resistant cancer cell lines.  
 
                                                                                                               𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
                                                                                              (1) 

 
𝑝𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                                                                                                                                                         (2) 

A ranking of cell lines by p-value was first constructed using the results of the t-test. This ranking 
by p-value was compared to the actual ranking by IC50 value measuring drug sensitivity. The 
accuracy and precision statistics were calculated by defining a cutoff in the ranking where the cell 
lines change from primarily resistant (IC50>1) to primarily sensitive (IC50<0.1), where 
intermediately sensitive lines (0.1< IC50<1) were treated as resistant. There were generally more 
drug-resistant cancer cell lines than sensitive ones and for some drugs; no sensitive cell lines were 
available for comparison. For validation of these difficult drugs we defined our cutoff for drug 
resistance detection at an IC50 value of 8µM, where we considered values greater than 8µM to 
correspond to highly drug resistant cell lines and everything below to moderately drug resistant 
cell lines.  The CGP did not have any ovarian, breast, or endometrial cancer cell lines with IC50 
less than 8µM for Erlotinib. We then calculated DIRPP’s accuracy (1) and precision (2) for each 
dataset for each of the three cancers studied individually and together as a whole.Previous studies 
have indicated 78% accuracy as being a very high level, others have used a concordance index and 
set the cutoff at 0.6 to measure correlations12,13. We chose to use accuracy and precision cutoffs at 
0.67 to define an “acceptable” level of validation between these two cutoffs.   
 
3. Results 
 
3.1. Drug Simulations 
 
We simulated drug interventions for each of the drugs in Table 1 by defining mechanism-specific 
drug intervention files. The drug’s mechanism of action, the genes it targets, was propagated 
through the cancer cell line’s network via a drug intervention node coded in the PARADIGM 
algorithm’s rewiring for each effected gene. Four interventions were simulated for each drug in 
each dataset, one which included all breast, ovarian, and endometrial cancer cell lines as one 
cohort, and three other simulations for each cancer-type individually.  

The ranking of cell lines by p-value was compared to the ranking of cell lines by IC50 for 
each drug and the accuracy and precision of that ranking was assessed using the cutoffs for 
resistance and sensitivity either by IC50 value, or by the highly-moderately resistant cutoff 
previously described. Certain ovarian cell lines have been shown to be hypermutated or were 
potentially mislabeled as they are more similar to other tumor types19. These cell lines were 
excluded to ensure the consistency of this analysis for only breast, endometrial, and ovarian 



 

 

 

cancer. Except for AZD0530, the overall response of all drugs across both datasets was predicted 
within 67% average accuracy or greater, with most being predicted with over 75% accuracy 
(Table 2). DIRPP predicted the resistance of cell lines with precision of 0.67 or greater for all 
drugs except for Paclitaxel. Some drugs such as Irinotecan performed distinctly different between 
datasets (Table 2). DIRPP was able to detect resistant cell lines with an overall precision of 0.81 
across all datasets (Table 3). Across all cancers studied combined DIRPP performed with a 
precision of 0.78 and accuracy of 0.73. Ovarian cancer drug response was predicted better than the 
other cancers with an overall precision of 0.81 and accuracy of 0.79 (Table 3).  
 
     Table 2. Precision and accuracy statistics for each drug across all cancer types combined by dataset and overall. 
 CGP Data CCLE Data Overall 
 Resistance 

Precision  
Accuracy  Resistance 

Precision  
Accuracy  Average 

Precision 
Average 
Accuracy 

17AAG 0.88 0.77 0.72 0.59 0.80 0.68 

AZD0530 0.73 0.57 0.62 0.58 0.67 0.58 

AZD6244 0.84 0.76 0.90 0.81 0.87 0.79 

Erlotinib - - 0.88 0.80 0.88 0.80 

Irinotecan 0.44 0.63 0.91 0.88 0.68 0.75 

Lapatinib 0.90 0.75 0.72 0.58 0.81 0.67 

Paclitaxel 0.80 0.83 0.43 0.60 0.61 0.72 

PD0325901 0.79 0.69 0.93 0.86 0.86 0.78 

Sorafenib 1.0 1.0 0.71 0.59 0.86 0.80 

 
 

Table 3. Precision and accuracy statistics by dataset for all cancer types combined and by cancer type individually 
 CGP Data CCLE Data Overall 
 Resistance 

Precision 
Accuracy Resistance 

Precision 
Accuracy Precision Accuracy 

All Cancers 0.81 0.78 0.76 0.70 0.78 0.73 

Breast  0.83 0.80 0.73 0.67 0.78 0.73 

Ovarian 0.75 0.81 0.84 0.78 0.81 0.79 

Endometrial 0.83 0.83 0.74 0.65 0.76 0.70 

 



 

 

 

3.2. Mechanisms of Drug Resistance 
 
Once the cell lines were classified as either sensitive or resistant to a drug we performed gene set 
enrichment analysis (GSEA) by drug response phenotype to uncover the biological pathway 
mechanisms driving drug resistance. For this analysis we required cell lines with IC50 values 
greater than 1 or less than 0.1 to define, resistant and sensitive, respectively. Only 17AAG, 
Irinotecan, Paclitaxel, and PD0325901 had sufficiently diverse drug sensitivity profiles to classify 
cell lines using the above definition in order to perform GSEA. Each of these drugs has a distinct 
mechanism of action and no overlapping molecular targets. Despite this, we were able to identify 
several signaling pathway mechanisms that these cell lines shared related to drug resistance.  

We ran GSEA using the IPL values generated by PARADIGM using the simulation that 
combined copy number and gene expression data. Permutation analysis of the phenotypes 
(sensitive or resistant) was used to judge significance. Pathways which had nominal p-values less 
than 0.05 were selected for further comparison across drugs. There was a common activation of 
PDGF signaling associated with resistance to PD0325901, Paclitaxel, and Irinotecan in the 
resistant endometrial, breast, and ovarian cancer cell lines. This confirms previous work which 
associates PDGF upregulation with Paclitaxel resistance in breast and ovarian cancer20, 21 and 
suggests that the genetically similar endometrial cancer1 may also share this mechanism of drug 
resistance. Irinotecan and Paclitaxel shared 9 mechanisms of resistance with each cancer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Number of common pathways implicated in drug resistance between 17AAG, Irinotecan, 
Paclitaxel, and PD0325901 (1,441 total pathways tested). 



 

 

 

 
 
Paclitaxel also shared 8 mechanisms of drug resistance with 17AAG when comparing all; however 
none of these pathways overlapped between 17AAG and Irinotecan. Our results suggest that 
resistance to Paclitaxel is closely tied to that of Irinotecan and 17AAG. 

We were able to identify common pathways which confer drug sensitivity in all three 
cancers to multiple drugs. 17AAG shared 7 sensitivity based biological pathways with Irinotecan 
and 4 with Paclitaxel.  This is contrasted by the single biological pathway Paclitaxel and 
Irinotecan share associated with drug sensitivity. We can then begin to compare drugs on the basis 
of which biological pathways play a role in conferring drug sensitivity or resistance. Hierarchical 
schemas of drug similarity are illustrated in Figures 3 and 4.   

Our results suggest that cancer cell resistant to Paclitaxel is likely to also resist 17AAG and 
Irinotecan. As Irinotecan and 17AAG appear to have quite distinct biological pathway 
mechanisms of action for drug resistance, it is less likely that a cancer cell line resistant to one will 
be resistant to another (Figure 3). On the other hand, as sensitivity to Irinotecan has some pathway 
similarities to sensitivity to 17AAG it is more likely that a cell line that is sensitive to one is 
sensitive to another (Figure 4). These results may suggest that a good starting point for the 
repurposing and repositioning of drugs is to classify them by their impact on the biological 
network of a cancer cell rather than by their distinct mechanism of action.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Number of common pathways implicated in drug sensitivity between 17AAG, Irinotecan, Paclitaxel, 
and PD0325901 (1,441 total pathways tested). 



 

 

 

 
 
4. Discussion  
 
Though there are some success stories, many clinical biomarkers have had limited impact7, and a 
shift is needed to more global explanations of disease and drug response phenotypes. Since a 
single gene is often involved in multiple pathways, it is difficult to assess the significance of a 
given genetic aberration without considering the broader context in which the dysregulation 
occurs7. In addition, many cancer patients have multiple genetic aberrations and multiple signaling 
pathways may be dysregulated and associated with drug resistance. However, the current analysis 
suggests that these signaling pathways related to drug resistance are shared by four drugs with 
completely different mechanisms of action. These results suggest that grouping drugs for 
treatment, repurposing, and repositioning by shared mechanisms which govern resistance and 
sensitivity may be more accurate than grouping them by the specific genes they appear to target. 
Such classification allows for simplification of the drug repurposing and repositioning process by 
making it a simple matter of  counting and comparing biological pathway mechanisms. 

DIRPP is a novel pipeline for classifying cell lines by drug sensitivity and for elucidating 
biological pathway mechanisms that drive drug response. PARADIGM forms the foundation of 
DIRPP and thus its scalability and comparability to other pathway based ones will be similar to 
that of PARADIGM. PARADIGM has been utilized in the hallmark TCGA papers and is an 
integral part of their pipeline easily scaling up to over 400 patient samples1-3.  When compared to 
other pathway based methods, PARADIGM was shown to perform better compared to other 
methods7,9. Though PARADIGM has been used to compare separate groups of patients known to 
respond better to a selected therapies than others, it has never been used in a discovery manner as 
presented here. The DIRPP pipeline thus represents a novel extension of PARADIGM’s 
capabilities. Though we chose to connect the drug-intervention node to the DNA entity in 
PARADIGM’s central dogma, many drug targets are proteins. This could be reflected in future 
refinements of the method by modifying the connecting point for the drug-intervention node.   

DIRPP performs comparably well on two independent datasets and is generalizable to 
other datasets with gene expression, copy number data, or both. The high predictive power of 
DIRPP across multiple drugs and cancers makes it a versatile tool to aid pre-clinical research. 
Further work to assess the utility of DIRPP is required. The CCLE and CGP datasets contain cell 
lines for ovarian cancer which were not screened for drug response and do not have IC50 values. 
Once a robust ranking of cell lines with known drug response is built and the accuracy is 
validated, DIRPP can be used to classify the unknown cell line(s) as either sensitive or resistant to 
a particular drug. Further analysis will utilize the –omic data for tumor samples from TCGA and 
other publically available datasets to predict drug response phenotypes by applying the knowledge 
learned and methods developed from the current analysis.   

The complexity of cancer presents many challenges to predicting therapeutic effectiveness 
if using individual biomarkers alone. Pathway level approaches such as DIRPP bring us one step 
closer to the goal of personalized medicine by utilizing complex –omic data and knowledge on 
biological pathways in order to robustly identify drug sensitivity.     
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