
 

 

 

EXPLORING THE PHARMACOGENOMICS KNOWLEDGE BASE (PHARMGKB) FOR 

REPOSITIONING BREAST CANCER DRUGS BY LEVERAGING WEB ONTOLOGY LANGUAGE (OWL) 

AND CHEMINFORMATICS APPROACHES* 

QIAN ZHU 

Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA  

Email: zhu.qian@mayo.edu 

CUI TAO 

School of Biomedical Informatics, University of Texas Health Science Center at Houston, TX 77030, USA 

Email: cui.tao@uth.tmc.edu 

FEICHEN SHEN 

School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA 

Email: fsm89@mail.umkc.edu 

CHRISTOPHER G. CHUTE 

Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA  

Email: chute@mayo.edu 

 

Computational drug repositioning leverages computational technology and high volume of 
biomedical data to identify new indications for existing drugs. Since it does not require costly 
experiments that have a high risk of failure, it has attracted increasing interest from diverse 
fields such as biomedical, pharmaceutical, and informatics areas. In this study, we used 
pharmacogenomics data generated from pharmacogenomics studies, applied informatics and 
Semantic Web technologies to address the drug repositioning problem. Specifically, we 
explored PharmGKB to identify pharmacogenomics related associations as 
pharmacogenomics profiles for US Food and Drug Administration (FDA) approved breast 
cancer drugs. We then converted and represented these profiles in Semantic Web notations, 
which support automated semantic inference. We successfully evaluated the performance 
and efficacy of the breast cancer drug pharmacogenomics profiles by case studies. Our results 
demonstrate that combination of pharmacogenomics data and Semantic Web 
technology/Cheminformatics approaches yields better performance of new indication and 
possible adverse effects prediction for breast cancer drugs. 
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1.  Introduction 

Traditional drug development is costly and labor-intensive, and scientists are devoted to finding an 

alternative way to facilitate the drug discovery process. Drug repositioning, finding new therapeutic 

uses for existing drugs, is one of the most efficient and efficacious approaches to speed drug 

discovery. With the advance in computational technology, computational drug repositioning has 

shown its advantage as many studies been published recently. Ye et al. [1] explored a disease-

oriented strategy for evaluating the relationship between drugs and disease on the basis of their 

pathway profile; Napolitano et al. [2] investigated machine-learning algorithms to predict drug 

repositioning; Li and Lu[3] presented an approach for identifying potential new indications of an 

existing drug through its relation to similar drugs. Butte’s lab has reported their efforts on 

computational drug repurposing by exploring gene expression data [4, 5]. These studies drew on 

different technologies to address the problem of computational drug repositioning. However, none of 

them attempted to leverage data from emerging pharmacogenomics (PGx) studies in an integrated 

and transformable manner and explore Semantic Web technology as core implementation tool to 

address drug repositioning, which is our proposed aim for this study. PGx study investigates how 

genetic variations affect drug responses for the individual patient, consequently high volume of PGx 

information including relations among drugs, genes, single nucleotide polymorphisms (SNPs), etc. 

has been accumulated. The overarching goal of this study was to provide PGx profiles for FDA 

approved breast cancer drugs (BCDs) by leveraging informatics approaches and Semantic Web 

technologies, and ultimately to facilitate oncology-relevant biomedical and clinical studies and to 

support breast cancer drug repositioning.  

Currently in the PGx world, different formats are being used for different data resources, which is the 

main obstacle to integration of PGx data to support development of relevant applications. Different 

formats might be preferred to represent scientific data, based on the nature of the source, the way 

the data are to be queried or visualized, or the type of analyses to be performed. Traditionally, 

investigators have relied heavily on tools such as Excel spreadsheets and relational databases to 

store and represent their research findings. However, these tools lack interoperability and capability 

to make inferences. In contrast, Semantic Web technology can manage scientific data in a more 

integrative and intelligent way. It is “a rigorous mechanism for defining and linking data using Web 

protocols in such a way that the data can be used by machines not just for display, but also for 

automation, integration, and reuse across various applications”[6]. Web Ontology Language (OWL), 

as a Semantic Web standard, can formally represent domain knowledge; it “organizes concepts or 

entities within classification (specialization or “is-a”) hierarchies that provide for inheritance of 

attributes”[7]. Reusing existing resources in an integrative manner is essential, but exploring new 

associations is much more challenging. A Semantic Web reasoner enables identification of new BCD 

PGx associations, with an ultimate goal of repositioning BCDs. Dumontier [10] has demonstrated 

some advantages by expressing PGX data, PharmGKB in OWL for personalized medicine purpose.  



 

 

 

Additionally, novel PGx information may be detected from a chemical perspective. Drugs with 

chemical structure similar to that of cancer drugs or genes associated with drugs with similar 

chemical structure can be identified using cheminformatics approaches[8]. Cheminformatics, a suite 

of computational technologies to solve a range of chemical problems, can be used to identify and 

evaluate new PGx associations. More precisely, we implemented a similar-structure searching 

algorithm to identify drugs similar to BCDs and find potential new uses for these drugs. 

The paper is organized into the following sections. First, we introduce materials being used in this 

study; second, in the Methods section, we introduce details about PGx OWL profiles generation for 

BCDs and case study; third, we illustrate our results generated from each step in the Results section, 

which is followed by Discussion and Conclusion. 

2.  Materials 

2.1. PharmGKB 

The PharmGKB contains genomic, phenotype and clinical information collected from PGx studies. 

PharmGKB provides information regarding variant annotations, drug-centered pathway, 

pharmacogene summaries, clinical annotations, PGx-based drug-dosing guidelines, and drug labels 

with PGx information[9].  

In this study, we used PGx information extracted from a relationship file received from PharmGKB by 

May 8, 2013, to generate the PGx profile for FDA-approved BCDs. Figure 1 shows some concrete PGx 

related association examples from the PharmGKB relationship file. Particularly, we extracted “Entity 

id”, “Entity name”, and “Entity type” for this study. Other fields, such as PubMed IDs (PMIDs), will be 

explored and integrated in a future study to support selection of the best PGx associations with 

publications as evidence. 

 
Fig. 1. Examples of PGx relations available in PharmGKB 

In addition to the PGx information from the PharmGKB relationship file shown in Figure 1, 

PharmGKB also provides pathway information, which includes associations between pathway and 



 

 

 

 

 

drug, pathway and gene, and pathway and disease. Overall ten associations among drugs, genes, 

diseases, pathways, SNPs are available from PharmGKB. Table 1 shows these associations from two 

PharmGKB data files. Haplotype related associations are beyond the scope of this study. 

Table 1.  PGx related associations available from PharmGKB 

2.2. FDA approved BCDs 

The National Cancer Institute (NCI) maintains cancer drugs approved by the FDA for breast 

cancer[11]. In this study, we did not consider drug combinations that are not approved by the FDA, 

even though the individual drugs are approved. Of 23 BCDs from NCI, a total of 18 BCDs have been 

manually mapped to the PharmGKB relationship file. The PGx profiles have been generated for these 

18 BCDs, as described in the following sections. Table 2 shows the 23 BCDs from NCI vs 18 BCDs 

mapped to PharmGKB.   

Table 2.  BCDs from NCI and PharmGKBa 
BCDs available from NCI BCDs identified in PharmGKB relationship file 

ado-trastuzumab emtansine   

anastrozole   

capecitabine   

cyclophosphamide   

docetaxel   

doxorubicin hydrochloride   

epirubicin hydrochloride   

everolimus   

exemestane   

fluorouracil   

fulvestrant   

gemcitabine hydrochloride   

ixabepilone   

lapatinib ditosylate   

letrozole   

megestrol acetate   

methotrexate   

paclitaxel   

paclitaxel albumin-stabilized nanoparticle formulation  

pertuzumab  

 tamoxifen citrate  

 trastuzumab  

 toremifene  
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aDrugs that failed to map to PharmGKB are 

shown in bold. 
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2.3. Semantic Web Technologies 

Emerging Semantic Web technologies provide a formal mechanism to represent domain knowledge 

and data and to perform semantic reasoning on top of this knowledge. Semantic Web technology 

supports flexible, extensible, and evolvable knowledge transfer and reuse. It has been widely used in 

biomedical domains to formalize and model medical and biological systems. The Resource 

Description Framework (RDF)[12] is a World Wide Web Consortium (W3C) standard that specifies a 

graph-based data model for representing Semantic Web data. Each piece of information is 

represented in three parts (a triple): subject, predicate, and object. The RDF representations allow 

efficient querying and visualization of relationships between important biomedical entities.  OWL 

[13] is a standard ontology language for the Semantic Web. A distinguishing characteristic of RDF 

and ontologies compared with the conventional relational database is “their degree of 

connectedness, their ability to model coherent, linked relationships”[14]. Representing the 

associations using OWl will enable powerful data integration among heterogeneous data sets, which 

is a well-known challenge in the translational science study community. 

3.  Methods 

In this study, we focused on FDA approved 

BCDs and generated PGx OWL profiles by 

leveraging PharmGKB data and semantic web 

technologies. The OWL profiles explicitly 

capture BCD concepts and relationships and 

enable the semantic inference for novel drug 

associations. The overall architecture of the 

proposed project is shown in Figure 2. The 

details about each step are described in the 

following sections. 

3.1.  Generation of Integrative Breast Cancer PGx Profiles  

3.1.1.  BCD PGx related association extraction  

The PGx related associations shown in Table 1 were explored in this study for generation of PGx 

profiles. We programmatically extracted the PGx related associations from the relationship file that is 

tab delimited. In addition, we manually identified associations among pathways, drugs, genes and 

diseases for 18 BCDs from the PharmGKB pathway file that is a plain text file. Additional associations 

were inferred by invoking a rule-based OWL reasoner described in section 3.2.   

Fig. 2. Building blocks for the overall architecture 



 

 

 

 

 

3.1.2.  Chemical structure based similarity calculation 

To identify inferred associations for BCDs from a chemical perspective, two steps were involved: 

retrieval of chemical representations (by the simplified molecular-input line-entry system [SMILES] 

[15] or the IUPAC International Chemical Identifier InChI [16]) and structural similarity calculation. 

Except for the drugs with SMILES annotated by PharmGKB, we first converted active ingredient 

names to chemical representations through publically accessible services, such as the PubChem 

Entrez web service [17] and the NCI Chemical Identifier Resolver [18].  We then translated such 

chemical representations to chemical fingerprints and compared chemical structure similarity 

between BCDs and drugs from the PharmGKB by calculating the Tanimoto coefficient [19]. A 

cheminformatics toolkit, the Chemical Development Kit [20], has been explored to automate these 

two steps. Finally, PharmGKB drugs with similarity scores higher than 0.7 compared with BCDs were 

marked as structurally similar BCDs. Thus, more PGx related associations were transformable to 

BCDs via similar PharmGKB drugs. Appropriate properties for describing the similar structural 

relationships have been defined and used for inference in PGx OWL profiles for BCDs. 

3.2.  BCD PGx OWL profile construction and semantic inference 

We captured and integrated PGx related associations for BCDs as PGx profiles. These integrated PGx 

profiles can then serve as a knowledge base to further infer new drug targets or associations. We 

established an OWL ontology-based approach for this purpose. More specifically, we developed an 

OWL ontology that captures 1) comprehensive BCDs’ PGx profiles and 2) rules to infer drug targets 

or other associations based on the profiles. We used the Protégé system[21] for OWL ontology 

development.  

3.2.1.  Meta-ontology model definition  

We first defined a meta-ontology model to describe base classes and relationships for the BCD 

profiles. Base classes include “Drug,” “Gene,” “Disease,” “SNP,” and “Pathway.” Specific subclasses of 

these base classes, such as “Breast Cancer Drug” or “Breast Cancer Drug Associated SNP,” can also be 

defined. Relationships between these classes, such as “associatedwithDrug,” “associatedwithDisease,” 

“associatedwithSNP,” and “associatedwithPathway,” have also been defined as object properties with 

appropriate domains and ranges.  

3.2.2.  PGx profile representation  

Specific BCDs, SNPs, genes, and pathways were represented as OWL individuals with appropriate 

types. For example, line 1 in Figure 3 defines Tamoxifen as an instance of the Drug class. Lines 2-5 

further represent additional PGx profile information about the Drug Tamoxifen. Similarly, 

information about particular genes, SNPs, diseases, and pathways can also be stored using RDF 



 

 

 

triples. For example, lines 8-10 and 

13-14 represent a partial profile of 

SNP rs2234693 and the drug 

clomifene, respectively.  

3.2.3.  Identifying new indications for 

BCDs via semantic inference  

New indication candidates 

identification for BCDs is built on the 

basis of PGx related associations and predefined axioms.  We used Description Logic (DL)[22] to 

define axioms shown in Figure 4. For instance, we defined that a disease di may associate with a drug 

dr if di is either directly associated with dr or associated with any gene, pathway, or SNP that is 

associated with dr. For example, we can find tamoxifen-associated diseases using the first axiom 

listed in Figure 4. Similarly, we can define a tamoxifen-associated SNP, gene, and pathway using OWL 

DL. Another way to find tamoxifen-associated disease is to search on the basis of its chemical 

structure. Our method is based on the fact that drugs with the similar structure 

(isStructuralSimilarto) are very likely to share the same biological properties, which would likely 

lead to the same disease profile. The second axiom in Figure 4 defines this feature. 

 
Fig. 4. Rule representation for PGx OWL profiles.  

4.  Case Study 

Using the above semantic definitions, we can infer more information about a particular BCD. We 

chose tamoxifen, as a use case testbed. “Tamoxifen treats advanced breast cancer in men and women, 

and early breast cancer in women. And it may prevent breast cancer in women who are at a high risk 

because of age, family history, or other 

factors”[23].  We did not invite domain experts to 

evaluate our inference results for this study, 

hence, we attempted to validate the performance 

and usability of PGx OWL profiles by detecting 

existing hints from the literature as evidence. 

Tamoxifen is associated with the BRCA1 gene (a 

TamoxifenGene, in Figure 3) and BRCA1 is 

associated with the disease “Ovarian Neoplasms”. 

The reasoner can infer ovarian cancer might be associated with tamoxifen via the first axiom listed in 

Fig. 5  Structural comparison between 
tamoxifen and clomifene. 

Fig. 3. RDF representation for PGx profiles 



 

 

 

 

 

Figure 4.  That is to say, tamoxifen can not only treat breast cancer, but also may be used to treat 

ovarian cancer. Several publications and clinical trials have reported this use of tamoxifen.[24, 25] 

“Clomifene treats ovulation problems in women who want to become pregnant”[26]. There are no 

explicit hints to tie together an ovulation drug and a BCD. However, PGx OWL profiles identified a 

possible linkage between these two agents. As shown in Figure 5, clomifene and tamoxifen are 

structurally similar with a similarity score 0.75, which is higher than the threshold 0.7 that we setup. 

Then the reasoner can infer that tamoxifen may be associated with diseases associated with 

clomifene (eg, Polycystic_Ovary_Syndrome) via the second axiom shown in Figure 4. In 

2011,Dhaliwal et al [27]  reported that tamoxifen can be prescribed as an alternative to clomifene in 

women with polycystic ovary syndrome.  

In addition to repositioning tamoxifen with other therapeutic uses, we also can identify potential 

adverse effects by running our PGx OWL profiles based reasoner. From our OWL profiles, as shown in 

Figure 3, we identified that tamoxifen is associated with the ESR1 gene as a “TamoxifenGene.” Since 

the SNP rs2234693 is associated with ESR1 (a “TamoxifenGene”), rs2234693 is classified as a 

“TamoxifenSNP” by the reasoner. Furthermore, since rs2234693 is “associatedwithDisease” 

Rheumatoid Arthritis, then rheumatoid arthritis is identified as a disease that might be associated 

with tamoxifen by the reasoner. In the real world, as of June 24, 2013, a total of 7,947 people have 

been reported to have adverse effects when taking tamoxifen citrate. Among them, 35 people 

(0.44%) have rheumatoid arthritis. [28] 

5.  Results 

We generated and presented PGx profiles for 18 breast cancer drugs from NCI by exploring PGx 

information from PharmGKB. To enable semantic reasoning and to identify more novel PGx 

associations for BCDs, we created OWL ontology to capture and represent the concepts and relations 

from PGx profiles. 

5.1.  BCD PGx profile generation 

We identified 955 associations for 18 BCDs from the PharmGKB relationship file, which include 

associations among drugs, genes, and SNPs.  We manually identified 287 associations for 18 BCDs 

from the PharmGKB pathway file, which include associations among pathways, drugs, genes, and 

diseases. 

5.2.  Chemical structural similarity calculation 

To integrate structural similarity, we calculated drug pairs between BCDs and drugs from the 

PharmGKB. Of 679 unique PharmGKB drugs (including drug classes) extracted from the PharmGKB 

relationship file, 339 are without SMILES. We invoked NCI chemical resolver to generate SMILES for 



 

 

 

these 339 drugs by given drug names, 193 have retrieved SMILES.  For the rest of 146 drugs and drug 

classes without SMILES, we ran PubChem entrez web service to generate SMILES and 37drugs 

assigned with SMILES. In total 78 drug classes and 31 drugs were excluded from similarity 

calculation because no SMILES were generated. For pathway file, we have identified another 71 

unique drugs. Among these drugs, there are 65 drugs assigned SMILES via PubChem Entrez web 

service. Total 5 drugs and 26 drug classes without SMILES were excluded for similarity calculation. 

5.3.  PGx OWL profile generation 

BCDs relevant PGx profiles were converted to OWL representation, the drugs, genes, diseases, SNPs 

from the PharmGKB relationship file and pathway file were also imported into the OWL ontology for 

inference purpose. A snapshot of the PGx OWL ontology is shown in Figure 6.  This ontology includes 

294 diseases, 750 drugs including 18 breast cancer drugs, 4277 genes including 215 breast cancer 

associated genes, 1,426 pathways including 15 breast cancer drugs involved pathways, and 1744 

SNPs including 346 breast cancer associated SNPs. It also includes the similarity scores of 10,159 

pairs of drugs. 

 
 Fig. 6. PGx OWL ontology snapshot 

6.  Discussion and Conclusion 

This report presents our preliminary work focusing on computational drug repositioning application 

development leveraging PGx information integration and Semantic Web technology exploration for 



 

 

 

 

 

FDA approved BCDs. We have successfully demonstrated the utility of this application to reposition 

existing BCDs with new uses, and detect potential adverse effects. Our work illustrates that PGx data 

provides sufficient information to support drug repositioning and, furthermore, that Semantic Web 

technology provides technical support for formal representation and semantic inference of data. 

This is our first attempt to use a PGx resource and Semantic Web technology to address drug 

repositioning in a computational way. With the promising results of this study, we will expand this 

investigation in several directions: 1) In the current study, we explored only PharmGKB as a PGx 

resource, which is not enough to identify more novel associations for BCDs. We will integrate 

additional PGx-related resources, such as an FDA biomarkers table, the DrugBank database, the 

Comparative Toxicogenomics Database, and the Kyoto Encyclopedia of Genes and Genomes. 2) Once 

more PGx resources are integrated, one drug might be inferred to multiple PGx associations. Then we 

will propose to define some “gold standards” for prioritizing the relevance of these associations to 

particular drugs. The standards might be built on the number of co-occurrences of the PGx 

associations, as supported by publications, etc.  3) We worked only on BCDs in this study. In future 

studies, we will extend our effort to other cancer drug categories or other categories of drugs, such as 

antidepressants, using the same strategy that we applied in this study. 
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