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MicroRNAs play important roles in the development of many complex diseases. Because of their
importance, the analysis of signaling pathways including miRNA interactions holds the potential for
unveiling the mechanisms underlying such diseases. However, current signaling pathway databases
are limited to interactions between genes and ignore miRNAs. Here, we use the information on
miRNA targets to build a database of miRNA-augmented pathways (mirAP), and we show its ap-
plication in the contexts of integrative pathway analysis and disease subtyping. Our miRNA-mRNA
integrative pathway analysis pipeline incorporates a topology-aware approach that we previously
implemented. Our integrative disease subtyping pipeline takes into account survival data, gene and
miRNA expression, and knowledge of the interactions among genes. We demonstrate the advantages
of our approach by analyzing nine sample-matched datasets that provide both miRNA and mRNA
expression. We show that integrating miRNAs into pathway analysis results in greater statistical
power, and provides a more comprehensive view of the underlying phenomena. We also compare
our disease subtyping method with the state-of-the-art integrative analysis by analyzing a colorectal
cancer database from TCGA. The colorectal cancer subtypes identified by our approach are signif-
icantly different in terms of their survival expectation. These miRNA-augmented pathways offer a
more comprehensive view and a deeper understanding of biological pathways. A better understand-
ing of the molecular processes associated with patients’ survival can help to a better prognosis and
an appropriate treatment for each subtype.

1. Introduction

The identification of biological processes underlying conditions is crucial for disease progno-
sis and treatment programs. As gene signaling pathways are capable of representing complex
interactions between genes, pathway databases have become essential for several gene ex-
pression analyses. Signaling pathway databases are remarkably important because they allow
researchers to analyze high-throughput data in a functional context, reducing complexity and
increasing the explanatory power. However, there are other molecules that play important
roles in gene regulation, such as microRNAs, which are not included into current pathway
databases. MicroRNAs (miRNAs) are small RNA molecules capable of suppressing protein
production by binding to gene transcripts. In fact, more than 30% of the protein-coding genes
in humans are miRNA-regulated. Additionally, miRNAs have been shown to play an important
role in diagnosis and prognosis for different types of diseases1.

The integration of miRNA into signaling pathways have multiple applications, such as
pathway analysis and disease subtyping. Pathway analysis techniques and methods aim to
analyze high-throughput data with the goal of identifying pathways that are significantly
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impacted by a given condition. The typical input of pathway analysis includes gene expres-
sion data from two different phenotypes (e.g., condition vs. control) and a set of signaling
pathways. Although current pathway analysis methods using gene expression (mRNA) have
achieved excellent results2–4, mRNA expression alone is unable to capture the complete pic-
ture of biological processes, as other entities also play important roles. Relevant work has
been done to elucidate the important interplay between miRNAs and biological pathways5–9.
The state-of-the-art approach for miRNA-mRNA pathway analysis is microGraphite8 which
uses an empirical gene set approach. microGraphite’s main goal is the identification of signal
transduction paths correlated with the condition under study10.

A second crucial process in the understanding of complex diseases is disease subtyping.
Identifying clinically meaningful subtypes in complex diseases is crucial for improving prog-
nosis, treatment, and precision medicine11. A typical input of disease subtyping consists of
various clinical variables and gene expression data from patients affected by a particular dis-
ease. The expected output consists of well-identified groups of patients that highly correlate
with one or more variables, such as observed survival (e.g., long-term vs. short-term survival
patients). Disease subtyping is typically expressed as a clustering problem with the goal of
partition patients in groups based on their genetic similarities with the additional complexity
that the number of clusters is unknown. Several methods for disease subtyping using gene ex-
pression data have been developed11–15. Integrative analysis using clinical data, multi-‘omics’
data, and prior biological knowledge can leverage current disease subtyping methods.

In this paper, we present a tool for integrating miRNA into signaling pathways (mirInte-
grator), a publicly available miRNA-augmented pathway database (mirAP), and we show the
applications of such augmentation to pathway analysis and disease subtyping. We have used
mirIntegrator previously as a part of our orthogonal meta-analysis approach16.

Our pathway analysis pipeline uses mirAP and Impact Analysis3,4, a topology-aware path-
way analysis method previously developed by our group. To demonstrate the advantage of our
method, we analyze 9 datasets studying 7 different diseases with mRNA and miRNA expres-
sion. We show that the proposed approach is able to identify the pathways that describe the
underlying diseases as significant. The p-values and rankings of these pathways are significantly
smaller than those obtained without data integration as well as when using microGraphite8.

Our disease subtyping pipeline uses miRNA and mRNA expression data, available clinical
variables, and prior biological knowledge. This method includes a feature selection approach
based on mirAP to reduce the effective dimensionality of the unsupervised clustering problem.
We analyze colorectal cancer miRNA, gene expression data, and clinical records downloaded
from the Cancer Genome Atlas (TCGA) with our pipeline and SNF15, a recently proposed
integrative disease subtyping method. The colorectal cancer-relevant pathways and subgroups
identified with our approach are significantly different in terms of their survival expectation,
outperforming the approach that does not use miRNA, and providing information on biological
mechanisms relevant to the difference in survival.
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2. Methods

In this section, we propose an algorithm for integrating miRNA into signaling pathways. We
also describe two pipelines using miRNA-augmented pathways (mirAP). The first pipeline is
for pathway analysis (PA) and the second one is for disease subtyping (DS). The scenarios for
these analyses are different. PA is used in biological studies comparing genetic samples from
two different phenotypes (e.g., disease vs. control samples), and DS is used in studies with
samples of patients undergoing the same disease for which the clinical subtypes are unknown.
Our PA pipeline is able to integrate miRNA and mRNA expression data and identify pathways
that are related to the disease under study. Our DS pipeline is able of incorporate biological
pathways to partition patients into groups with very different survival patterns.

2.1. Pathway augmentation

This method augments the graphical representation of original signaling pathways with in-
teractions between miRNAs and their target genes. The input of this method includes a set
of signaling pathways and known miRNA-mRNA interactions (Fig. 1a,b). The output is a
set of augmented pathways that consists of the original genes, the miRNAs that target those
genes and their interactions. Let P = (V,E) denote the graphical representation of the original
gene-gene pathway, and T : M → V a function that identifies the target genes of miRNAs in
M . An edge e ∈ E can be represented as a 3-tuple e = (g1, g2, interaction). We augment the
nodes and edges of the original pathway as follows:

V̄ = V ∪ {m ∈M |T (m) ∩ V 6= ∅}
Ē = E ∪ {(m, g, inhibition)|m ∈ V ∩M ∧ g ∈ T (m)}

We implemented this algorithm in R and published it as the Bioconductor package named
mirIntegrator (http://bit.ly/mirIntegrator). mirIntegrator is flexible and allows users to
integrate user-specific pathway databases with user-specific miRNA-mRNA target databases.
Additionally, it generates graphical representations of the augmented pathways (see Fig. 5).
We integrated pathways from Kyoto Encyclopedia of Genes and Genomes17 (KEGG) (version
73) with miRNA targets from miRTarBase18 (version 4.5) to generate mirAP, a database of
miRNA-augmented pathways (http://www.cs.wayne.edu/dmd/mirAP).

2.2. Integrative pathway analysis

Our pathway analysis pipeline consists of two main steps. In the first step, we augment the
signaling pathways with interactions between miRNAs and their targets. Once this is done, the
data integration problem is mapped to the original pathway analysis problem for which existing
methods can be applied. The difference is that here both miRNA and mRNA expression can
be taken into consideration. In the second step, we apply any pathway analysis that uses
fold change and p-value as input, e.g., Over-representation analysis19 (ORA) and Impact
Analysis3,4. ORA and Impact Analysis are well-known methods developed by our group to
identify signaling pathways that are impacted by the effects of diseases. Fig. 1 displays the
overall pipeline of our approach.
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Fig. 1. Workflow of pathway analysis using augmented pathways.

Impact Analysis3,4 is a widely
used topology-aware method that
combines two types of evidence:
i) the over-representation (ORA)
of differentially expressed (DE)
genes in a pathway19, and ii) the
perturbation (PERT) of such
a pathway, as measured by
propagating expression changes
through the pathway topology.
These two types of evidence are
captured by two independent p-
values4: pORA and pPERT . These p-values are combined using Fisher’s method to obtain a
global p-value per pathway. Each global p-value represents the probability of having the ob-
served number of DE genes, as well as the observed amount of impact just by chance (i.e. when
the null hypothesis is true)4. To calculate pORA on mirAP, we assumed that the number of DE
entities (genes and miRNAs) on the given pathway follows a hypergeometric distribution. The
following information is needed to compute pORA: i) the total number of measured entities,
ii) the number of entities belonging to the given augmented pathway, iii) the total number of
DE entities, and iv) the number of DE entities in the given augmented pathway. To calculate
pPERT on mirAP, we perform a bootstrap procedure using the following input: i) the log-fold
change of DE entities, and ii) the given augmented pathway.

2.3. Integrative disease subtyping

Our disease subtyping pipeline is presented on Fig. 2. The input includes: i) mRNA and
miRNA sample-matched expression data, ii) survival records, iii) a database of miRNA-target
gene interactions, and iv) a database of signaling pathways (see Fig. 2a). The output is a set of
selected pathways (Fig. 2f) yielding to subtypes with significantly distinct survival patterns.

First, we obtain the miRNA-augmented pathways from mirAP (Fig. 2b). Second, we parti-
tion the patients using the genes and miRNAs provided by each augmented pathway (Fig. 2c).
e.g., let us say that we want to analyze gene and miRNA expression from N number of patients
and we obtained P number of augmented pathways from mirAP. Taking one pathway at the
time, we filter the gene expression data by selecting only genes that belong to the pathway.
Similarly, we filter the miRNA expression data by selecting only miRNAs that belong to the
pathway. Now, we need to combine the filtered gene expression and miRNA data and then per-
form clustering on the combined data. So, we use Similarity Network Fusion method15 (SNF)
in conjunction with spectral clustering20 for this purpose. We repeat this process with each
pathway to obtain P different pathway-based clusterings, one per each pathway.

Third, we perform survival analysis on each of the pathway-based clusterings (Fig. 2d).
In order to do this, we compute the log-rank test p-value (Cp) of Cox proportional
hazards regression analysis by using the input survival information.This p-value rep-
resents how significant the difference between the survival curves is. For instance, a
Cox log-rank test p-value close to zero may indicate that these groups have well-
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differentiated survival patterns. Now the question is whether we could obtain the same
clustering just by chance21. To answer this question we use the random sampling tech-
nique. For example, if the pathway has G number of genes and m number of miRNAs,

Fig. 2. The proposed pipeline for disease subtyping.

we randomly select G genes
and m miRNAs from the mea-
sured values. Then, we par-
tition the patients using this
randomly selected set of en-
tities and then compute its
Cox p-value (rCp). We repeat
this random selection a large
number of times (e.g., 2, 000

times) to construct an empiri-
cal distribution of Cox p-values
(Fig. 2d). Next, we compare
the observed Cox p-value Cp

with the distribution of rCp,
calculated from randomly se-
lected genes and miRNAs. We
estimate the probability of ob-
taining this Cp by computing
the proportion of resampling p-
values less than or equal to the
observed Cp (e.g., In Fig. 2d the
vertical red line indicates the
observed Cp). For each path-
way, we estimate this probability in order to quantify how likely it is to observe by chance a
Cox p-value less than or equal to the one observed with the actual genes and miRNAs in the
pathway.

The final step is to select the pathways that are relevant to survival, i.e., pathways yielding
to significantly distinct survival curves. To do this, we adjust the pi p-values for multiple
comparisons using False Discovery Rate (FDR). We then rank the pathways by FDR.p-value
and select those less than or equal to the significance threshold of 5% as relevant pathways. We
note that this pipeline can be used in conjunction with other integrative clustering methods.

3. Results

In this section, we present the results of our pathway analysis and disease subtyping pipelines
using the miRNA-augmented pathways (mirAP). First, we perform pathway analysis of 9
mRNA/miRNA sample-matched datasets using two different methods (Impact Analysis and
ORA) and show that mirAP offers a significant improvement over analyzing mRNA data alone.
We also compare the obtained results with the state-of-the-art method (microGraphite)8.
Second, we perform disease subtyping of a colorectal cancer dataset from TCGA using our
subtyping pipeline and compare with the traditional pipeline for subtyping.
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3.1. Validation of our pathway analysis pipeline

We analyze nine sample-matched datasets from seven different diseases: GSE43592 (multi-
ple sclerosis, 10 controls, 10 cases), GSE35389 (melanoma, 4 controls, 4 cases), GSE35982
(colorectal cancer, 8 controls, 8 cases), GSE26168 (type II diabetes, 8 controls, 9 cases),
GSE62699 (alcoholism, 18 controls, 18 cases), GSE35834 (colorectal cancer, 23 controls, 55
cases), GSE43797 (pancreatic cancer, 5 controls, 7 cases), GSE29250 (non-small cell lung can-
cer, 6 controls, 6 cases), and GSE32688 (pancreatic cancer, 7 controls, 25 cases). For each of
these datasets, we used the normalized expression values as found in GEO.22 The microarray
probes were annotated according to their corresponding platform’s metadata using GEO-
query.23 Next, we estimated log-fold-change between disease and control groups by fitting to a
gene-wise linear model using the R package limma24. We use the following two criteria to iden-
tify differentially expressed (DE) genes: i) genes with adjusted p-value lower than 5%, and ii)
among the genes that satisfy the first criterion, we choose the genes with the highest log-fold
change, up to 10% of measured genes. We use the same criteria to identify DE miRNAs.

The nine datasets were selected due to two important reasons. First, these datasets have
both mRNA and miRNA measurements for the same set of patients. Second, for each of the
underlying diseases, there is a KEGG pathway, henceforth target pathway, that was created
to describe the underlying mechanisms of the disease. To demonstrate the advantage of the
miRNA data integration, we compare the use of the original KEGG pathways with the use of
our miRNA augmented pathways (mirAP) by performing two pathway analysis methods that
use p-value and fold-change: Impact Analysis (IA)4 and over-representation analysis (ORA)19.
The input for IA and ORA using KEGG is mRNA expression data. The input for IA and ORA
using mirAP includes both mRNA and miRNA expression data. The output of each method
is a list of p-values – one per pathway. These p-values are adjusted for multiple comparisons
using False Discovery Rate (FDR)25.

We also analyze the nine GEO datasets using microGraphite8 after quantile normalization
to compare with our pipeline. The main goal of microGraphite is the identification of signal
transduction paths correlated with the condition under study. It is implemented in a four-
steps recursive procedure as follows: (i) selection of pathways, (ii) best path identification,
(iii) metapathway construction, and (iv) metapathway analysis. Here we only consider the
first step of the approach, which is the selection of significant pathways. This selection is
based on the significance levels obtained from the test on the mean of the pathways (alpha-
mean). The input is the mRNA and miRNA expression data and it does not take in account
fold-changes nor differentially expressed entities.

For each dataset, we expect a good method to identify the target pathway as significant,
as well as to rank it on top. For instance, in the colorectal cancer dataset which compares
colorectal cancer tissue vs. normal, the Colorectal cancer pathway must be shown as significant
and should be as close to the top of the ranking as possible since this is the pathway that
describes the phenomena involved in colorectal cancer. Based on this, we compare the rank
and p-value of the target pathway in each disease using the five methods: i) mRNA expression
alone using standard KEGG pathways with ORA and ii) IA, iii) mRNA and miRNA expression
data using the augmented pathways (mirAP) with iii) ORA and iv) IA, and v) mRNA and
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miRNA expression data analyzed with microGraphite.

Table 1. Results of target pathway identification using traditional ORA (column 3), traditional
IA (col. 4), ORA on mirAP (col. 5), IA on mirAP (col. 6), microGraphite (col. 7)

GEO ID Target pathway ORA IA ORAmir IAmir microGraphite

GSE26168 Type II diabetes mellitus no no no no yes
GSE29250 Non-small cell lung cancer no no yes no no
GSE35982 Colorectal cancer no no no no no
GSE32688 Pancreatic cancer no no yes yes no
GSE35389 Melanoma no no yes yes no
GSE35834 Colorectal cancer no no yes yes no
GSE43592 Amyotrophic lateral scle. no no no yes no
GSE43797 Pancreatic cancer no no yes yes yes
GSE62699 Alcoholism no no no yes no

Table 1 shows the target pathways and their significance for the 9 datasets. The first
and second columns display the datasets and their corresponding target pathways while the
other five columns indicate whether the target pathways are identified as significant using the
five methods: ORA of mRNA expression on KEGG pathways (ORA+KEGG), IA of mRNA
expression on KEGG (IA+KEGG), ORA of miRNA and mRNA expression data on mirRNA-
augmented pathways (ORA+mirAP), our approach IA of miRNA and mRNA expression on
mirAP (IA+mirAP), and miRNA and mRNA expression analysis using microGraphite, re-
spectively. The significance threshold is 5% for FDR p-values. IA and ORA fail to identify any
target pathway as significant when using only mRNA whereas our approach (IA+mirAP) cor-
rectly identify the target in 6 out of 9 datasets (GSE32688, GSE35389, GSE35834, GSE43592,
GSE43797, GSE62699) and ORA+mirAP correctly identify the target pathway as significant
in 5 out of 9 datasets (GSE29250, GSE32688, GSE35389, GSE35834, GSE43797). micro-
Graphite correctly identifies the target pathway as significant in only 2 out of 9 datasets
(GSE26168, GSE43797). The results demonstrate that our integration of mRNA and miRNA
lifts the statistical power for both pathway analysis techniques (ORA and IA) and outperforms
microGraphite in target pathway identification.

Fig. 3 shows the p-values and rankings of the target pathways using the five methods. The
panel (a) shows the FDR corrected p-values of the target pathways. We compare the lists of p-
values using Wilcoxon test. The FDR p-values produced by IA+mirAP are significantly smaller
than by IA+KEGG (p=0.007), ORA+KEGG (p=0.005), and microGraphite (p=0.009).

The panel (b) shows the rankings of the target pathways. Again, the rankings produced by
IA+mirAP are significantly smaller than those of IA+KEGG (p=0.03 using t-test, and p=0.04
using Wilcoxon test), ORA+KEGG (p=0.03 using t-test and p=0.04 using Wilcoxon test), and
microGraphite (p=0.0051 using t-test and p=0.0058 using Wilcoxon test). This confirms that
our augmented pathways, mirAP, improve the performance of traditional Impact Analysis and
ORA. Also, the results show that the proposed integrative pathway analysis also outperforms
microGraphite in terms of both p-values and rankings for target pathway identification.

Furthermore, our pathway database (mirAP) is generated with validated miRNA-mRNA
interactions, while microGraphite uses predicted interactions, which increases the number of
false positive miRNA-target interactions. Another drawback of microGraphite is it execution
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Fig. 3. Corrected p-values and rankings of the tar-
get pathways using different methods.

time. A typical analysis with microGraphite
takes approximately 22 hours while our ap-
proach takes only a few minutes. We ran these
experiments on a typical desktop workstation
with a 2.6 GHz Intel Core i5, 8GB of RAM, on
a single thread, and the OS X 10.11 operative
system.

3.2. Validation
of our disease subtyping pipeline

To assess our disease subtyping pipeline we
use matched-sample gene and miRNA ex-
pression data (level 3 from platforms Agi-
lent G4502A-07 and Illumina GASeq miR-
NASeq, respectively) of colorectal cancer pa-
tients (COAD) downloaded from the Cancer
Genome Atlas (TCGA) (cancergenome.nih.
gov). We selected the largest set of patients
with miRNA-mRNA matched samples and
available survival records, as were selected in SNF15. The number of patients is M = 92,
the number of genes is Ng = 17, 814, and the number of miRNAs is Nm = 705. We performed
unsupervised clustering with the number of clusters set as k = 3 according to prior knowledge
of the number of subtypes of COAD15. We use SNF15 in conjunction with spectral clustering20

as integrative clustering method. To perform SNF clustering, we used the SNFtool package
with the suggested parameters.

For each miRNA-augmented pathway, our method partitions the patients using the genes
and miRNAs in the pathway as clustering features, resulting in a total of 184 clusterings. Then
for each pathway-based clustering, we construct the empirical distribution and then estimated
the p-value of how likely the pathway helps to improve disease subtyping. The p-values of the
relevant pathways are shown in Table 2. We select the pathways with a FDR-corrected p-
value ≤ 0.05 as relevant pathways. The horizontal red line represents the significance cutoff
at 5%. For TCGA-COAD, we identify three relevant pathways: Oxytocin signaling pathway,
Vibrio cholerae infection, and Regulation of lipolysis in adipocytes.

Table 2. List of relevant pathways for colorectal subtyping.

Pathway p-value p-value.fdr

Oxytocin signaling pathway 0.00580 0.0374
Vibrio cholerae infection 0.00680 0.0374
Regulation of lipolysis in adipocytes 0.01270 0.0466

Rheumatoid arthritis 0.02190 0.0547
... ... ...

We also cluster the 92 patients
using SNF with the traditional
pipeline, i.e., using all the mea-
sured genes and miRNAs. We com-
pare these partitions with those
obtained by our pipeline. To as-
sess the correlation between the ob-
tained groups and survival patterns
(e.g., long-term vs. short-term sur-
vival), we performed survival analysis for all the cases using Kaplan-Meier analysis.
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(a) Survival analysis, Tradition pipeline (all genes and miRNAs) (b) Survival analysis, Oxytocin signaling pathway
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a) Survival curve, SNF
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b) Survival curve: Oxytocin signaling path

 Cox p−value =  0.000104

group 1 (20)
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(c) Survival analysis, Vibrio cholerae infection (d) Survival analysis, Regulation of lipolysis in adipocytes
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c) Survival curve: Vibrio cholerae infecti
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d) Survival curve: Regulation of lipolysis

 Cox p−value =  0.00097

group 1 (73)
group 2 (14)
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Fig. 4. Kaplan-Meier survival analysis of the obtained COAD subtypes. a) Survival curves using all genes
and miRNAs. b), c), and d) Survival curves using relevant pathways.

Fig. 4 shows the Kaplan-Meier plots, each one represents the association of the obtained
groups with the observed patient survival. Fig. 4a shows the subtypes obtained with the
traditional pipeline using all 17, 814 genes and 705 miRNAs. In a Cox proportional hazards
regression analysis, we find that there is no statistically significant difference between survival
groups obtained with the traditional pipeline (log rank test p-value = 0.314). Fig. 4b, c, and
d. shows the resultant clustering on the relevant pathways identified with our approach (Ta-
ble 2). Clustering based on Oxytocin signaling pathway entities gives a log rank test p-value of
0.000104, which indicates a significant difference between the survival curves (Fig. 4b). Simi-
larly, clusterings based on Vibrio cholerae infection and Regulation of lipolysis in adipocytes
augmented pathways indicate significant differences between the survival curves with p-values
of p = 0.000154 and p = 0.00097, respectively (Fig. 4c and d). As we can see, integrative cluster-
ing based on relevant mirAP pathways produce subtypes significantly more related to survival
data than the traditional subtyping pipeline (approximately 1000 times lower p-values).

Given that our approach requires resampling for computing the pathways’ significance
(p-values), our pipeline is more time consuming than the traditional pipeline. For the compu-
tational experiments presented here, we generated 2, 000 random clusterings per each pathway.
Our pipeline took some hours to subtype the set of patients (approximately 4 hours) while
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running SNF alone takes only some minutes (less than 3 minutes).

3.2.1. Biological Significance of relevant Signaling Pathways

Our pipeline identifies the Oxytocin signaling pathway to be related to the survival subtyping
of colorectal cancer patients (p = 0.000104). Oxytocin (OXT) is a hormone with a well-known
effect on uterine smooth muscles and myoepithelial cells. Additionally, it has been shown that
oxytocin is expressed along the entire human gastrointestinal (GI) tract, including colon, and
it contributes to the control of the GI motility26. Moreover, studies have shown that exposure
to OXT leads to a significant decrease in cell proliferation for some epithelial cancer cells (e.g.,
breast and prostate cancer)27. In contrast, OXT has a growth-stimulating effect in other types
of cancer cells (e.g., small-cell lung cancer, endothelial cancer, and Kaposiâs sarcoma)28,29.
We think that the evidence of OXT expression on colon and the dual role that OXT has in
some cancer cells (as inhibitor and promoter of cancer cells proliferation) may indicate that
OXT could also play an important role in differentiating short and long-term survival COAD
patients. In addition, OXT is also known to be capable of mitigating symptoms caused by
stress, OXT levels increase in acute(short-lived) stress and decrease during chronic stress.
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Fig. 5. Portion of the miRNA-augmented Regu-
lation of lipolysis in adipocytes pathway.

Also, it is well-known that chronic stress has an
outstanding role in cancer growth and metas-
tasis.30 From this, we also hypothesize that pa-
tients in the short term survival group (Fig. 4b,
gr. 3) may have been in a metastatic stage with
chronic stress and different OXT expression
than patients in the other groups (Fig. 4b,1-2).

Similarly, we identify Vibrio cholerae in-
fection pathway as relevant. This pathway de-
scribes the colonization of the intestine by Vib-
rio cholerae bacteria (VC). The main factor in-
volved in this process is Cholera toxin (CTX).
Several studies have exhibit relations between
gastrointestinal tract bacteria and colon can-
cer progression. In particular, it has been
shown that CTX suppresses carcinogenesis of
inflammation-driven sporadic colon cancer31.

Ultimately, the Regulation of lipolysis in
adipocytes pathway describes a unique function
of white adipose tissue in which triacylglycerols
(TAGs) are broken down into fatty acids and glycerol. Fatty acid (FA) pathways play an
important role in cancer32. In particular, increased gene expression of AGPAT9(PNPLA2),
MAGL(MGLL), and HSL(LIPE), FA metabolism regulators, is associated with increased can-
cer cells proliferation in colorectal cancer32 (see blue boxes in Fig. 5). By instance, MAGL
pharmacological inhibition attenuated aggressiveness of colorectal cancer cells. On the other
hand, decreased gene expression of CD36/FAT regulator has been implicated in contribut-
ing to colorectal cancer progression, a higher metastasis grade, and low relapse-free survival33.
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Fig. 5 shows a portion of the Regulation of lipolysis in adipocytes augmented pathway obtained
from our database (see the complete pathway at http://bit.ly/hsa04923).The green boxes
show the protein coding genes while the orange boxes display the miRNAs. The black arrows
denote activation and the red bar-headed arrows denote repression.

4. Discussion

In this article, we present a method to augment signaling pathways with miRNA-target in-
teractions. The miRNA-augmented pathways (mirAP) offer a more comprehensive view and
a deeper understanding of complex diseases. We also present two pipelines that use mirAP
to integrate miRNA and mRNA expression data for the purpose of pathway analysis and
disease subtyping. As miRNA expression data are becoming freely accessible, miRNA-mRNA
integrative analyses are likely to become a routine.

Our pathway analysis pipeline augments gene-gene signaling pathways with miRNA-target
interactions. Then we perform a topology-based pathway analysis that takes into considera-
tion both types of molecular data. We analyze 9 sample-matched datasets that were assayed
in independent labs. Our pipeline outperforms traditional methods in identifying target path-
ways (smaller p-values and rankings of the target pathways). We plan to explore methods for
augmenting the pathways using only the process(es) described by each given pathway.

Our disease subtyping pipeline combines gene and miRNA expression data, clinical records,
and mirAP. The contribution of our disease subtyping pipeline is two-folds. First, this frame-
work introduces a way to exploit the additional information available in biological databases
and integrates clinical data, miRNA and gene expression data for disease subtyping. Second, it
identifies pathways associated with survival differentiated subgroups of diseases, which bring
us closer to the identification of causal pathways associated with survival. We analyze a col-
orectal cancer data downloaded from TCGA. Our framework provides pathways relevant to
survival patterns and subtypes significantly difference between the survival curves. It greatly
improves the former approach with p-values 1, 000 times lower than the former. This pipeline
is limited by the availability of datasets containing survival records, miRNA, and mRNA ex-
pression matched-samples. We plan to extend this study by investigating more diseases and
larger datasets.
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4. A. L. Tarca, S. Drǎghici, P. Khatri, S. S. Hassan, P. Mittal, J.-s. Kim, C. J. Kim, J. P. Kusanovic

and R. Romero, Bioinformatics 25, 75 (2009).

Pacific Symposium on Biocomputing 2017

400



5. C. Backes, E. Meese, H.-P. Lenhof and A. Keller, Nucleic Acids Research 38, 4476 (July 2010).
6. J. B.-K. Hsu, C.-M. Chiu, S.-D. Hsu, W.-Y. Huang, C.-H. Chien, T.-Y. Lee and H.-D. Huang,

BMC Bioinformatics 12, p. 300 (July 2011).
7. I. S. Vlachos, N. Kostoulas, T. Vergoulis, G. Georgakilas, M. Reczko, M. Maragkakis, M. D.

Paraskevopoulou, K. Prionidis, T. Dalamagas and A. G. Hatzigeorgiou, Nucleic Acids Research
40, W498 (July 2012).

8. E. Calura, P. Martini, G. Sales, L. Beltrame, G. Chiorino, M. D’Incalci, S. Marchini and C. Ro-
mualdi, Nucleic Acids Research 42, p. e96 (2014).

9. S. Nam, M. Li, K. Choi, C. Balch, S. Kim and K. P. Nephew, Nucleic Acids Research 37, W356
(May 2009).

10. P. Martini, G. Sales, M. S. Massa, M. Chiogna and C. Romualdi, Nucleic Acids Research 41,
e19 (2013).

11. S. Saria and A. Goldenberg, IEEE Intelligent Systems 30, 70 (2015).
12. T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,

M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield and E. S. Lander, Science 286, 531
(October 1999).

13. T. Sørlie, R. Tibshirani, J. Parker, T. Hastie, J. S. Marron, A. Nobel, S. Deng, H. Johnsen,
R. Pesich, S. Geisler et al., Proceedings of the National Academy of Sciences 100, 8418 (2003).

14. P. Wirapati, C. Sotiriou, S. Kunkel, P. Farmer, S. Pradervand, B. Haibe-Kains, C. Desmedt,
M. Ignatiadis, T. Sengstag et al., Breast Cancer Research 10, p. R65 (2008).

15. B. Wang, A. M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno, B. Haibe-Kains and A. Gold-
enberg, Nature Methods 11, 333 (2014).

16. T. Nguyen, D. Diaz, R. Tagett and S. Draghici, Nature Scientific Reports 6, p. 29251 (2016).
17. M. Kanehisa and S. Goto, Nucleic acids research 28, 27 (2000).
18. S.-D. Hsu, Y.-T. Tseng, S. Shrestha, Y.-L. Lin, A. Khaleel, C.-H. Chou, C.-F. Chu, H.-Y. Huang,

C.-M. Lin, S.-Y. Ho et al., Nucleic Acids Research 42, D78 (January 2014).
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