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Tumors are composed of heterogeneous populations of cells. Somatic genetic aberrations are one form of 
heterogeneity that allows clonal cells to adapt to chemotherapeutic stress, thus providing a path for resistance 
to arise. In silico modeling of tumors provides a platform for rapid, quantitative experiments to inexpensively 
study how compositional heterogeneity contributes to drug resistance. Accordingly, we have built a 
spatiotemporal model of a lung metastasis originating from a primary bladder tumor, incorporating in vivo 
drug concentrations of first-line chemotherapy, resistance data from bladder cancer cell lines, vascular density 
of lung metastases, and gains in resistance in cells that survive chemotherapy. In metastatic bladder cancer, a 
first-line drug regimen includes six cycles of gemcitabine plus cisplatin (GC) delivered simultaneously on 
day 1, and gemcitabine on day 8 in each 21-day cycle. The interaction between gemcitabine and cisplatin has 
been shown to be synergistic in vitro, and results in better outcomes in patients. Our model shows that during 
simulated treatment with this regimen, GC synergy does begin to kill cells that are more resistant to cisplatin, 
but repopulation by resistant cells occurs. Post-regimen populations are mixtures of the original, seeded 
resistant clones, and/or new clones that have gained resistance to cisplatin, gemcitabine, or both drugs. The 
emergence of a tumor with increased resistance is qualitatively consistent with the five-year survival of 6.8% 
for patients with metastatic transitional cell carcinoma of the urinary bladder treated with a GC regimen. The 
model can be further used to explore the parameter space for clinically relevant variables, including the 
timing of drug delivery to optimize cell death, and patient-specific data such as vascular density, rates of 
resistance gain, disease progression, and molecular profiles, and can be expanded for data on toxicity. The 
model is specific to bladder cancer, which has not previously been modeled in this context, but can be 
adapted to represent other cancers.  

 
1.  Introduction 
1.1.  Tumor heterogeneity and drug resistance 

Intratumoral heterogeneity is increasingly recognized as a major contributor to cancer progression, 
metastatic potential, and drug resistance.1,2 Metastatic tumors that arise from the primary site are 
generally established from single clones, but may also display initial genetic heterogeneity.3,4,5 

Sub-clonal cell phenotypes with varying metastatic potential and drug resistance have also been 
shown to develop in 90% of lung metastases within weeks of establishment in mice.5 This 
heterogeneity can lead to differential drug response within or among metastases, with newly 
arising clones developing additional resistance.5 After the death of sensitive cells and continuing 
replication of resistant survivors, the spatial dynamics of drug diffusion and accumulation during 
later drug delivery cycles may change.  

A bottleneck in clinical research studies of drug resistance is the lack of tumor sample 
measurements over the course of treatment from the same patient that can be used to explore the 
relationship between tumor polyclonality and drug resistance.6 By building explicit computational 
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models with  evolving dynamics, we can manipulate, visualize, and quantitatively analyze patterns 
of resistance that emerge in a growing tumor. Here, we have created a spatiotemporal model of 
bladder cancer metastasis to the lung that includes cycles of drug delivery, tumor vascularity, and 
clumped clonal populations with different drug sensitivities. We model how a heterogeneous 
tumor responds to the standard first-line regimen of gemcitabine plus cisplatin (GC). Results show 
that a 100 cell simulated tumor, composed of four clonal populations ranging from highly 
sensitive to highly resistant cells will not be completely killed by this regimen, and will grow 
while gaining cross-resistance to both gemcitabine and cisplatin. In this work we aim to model 
drug response in bladder cancer metastases and establish a baseline set of results that can be 
extended to model additional visceral sites, determine how varying tumor composition affects 
drug response, and determine how altering drug scheduling will affect drug response. 

1.2.  Prior spatiotemporal models of drug delivery, tumor heterogeneity, and resistance 

Our model is a cellular Potts model, which represents cells and chemical fields on a spatial lattice, 
interacting and evolving over time. Spatiotemporal models have been used to represent disease 
development and drug delivery in a variety of cancers, and have generated observations that are 
not easy to measure in real biological systems.7–9 They have incorporated parameters such as 
response to oxygen, information sources provided to the cell such as nutrients and toxicity, and 
distance from the information source.8 Spatiotemporal cancer therapy models have used cell cycle, 
chemotherapy, and radiation data to predict changes in tumor size during treatment. Some have 
included more specialized events and data, such as bystander effects (in which tumor cells assist in 
killing damaged cells) resulting from radiotherapy10 and patient data from CT scans in models of 
brain cancer.11,12 These models have successfully produced qualitatively and semi-quantitatively 
comparable results to in vitro studies, mouse models, and patient outcomes, showing the promise 
of spatiotemporal modeling for in silico oncology. To our knowledge, there are no existing 
spatiotemporal models of drug delivery to lung metastases arising from bladder cancer. 

Tumor heterogeneity and resistance have been explored with spatiotemporal methods, 
including two agent-based models (one incorporating game theory for trade-offs between 
proliferation and migration), field theory, a cellular automaton/cellular Potts model, and a pure 
cellular automaton. Interestingly, in three of these models,13,14,15 slowing of the cell cycle was an 
important predictor of resistance, whether due to cells being driven into quiescence by drugs, by a 
shortage of oxygen and nutrients, or from initial heterogeneity between clonal populations in their 
endogenous cell cycles; cells with inherently slow growth were reservoirs for survival during 
therapies that depend on cell division.14,15 This last model is the most similar to ours, and is part of 
a comparison of spatiotemporal implementations, showing that there are trade-offs between 
performance and resolution for different model types, but that similar types parameterized to the 
same system will produce cross-validating results. The simulated tumor in ref. 15 was composed 
of cell populations having heterogeneous cell cycles that changed in response to oxygen, 
chemotherapy, and radiation (in a 300×300 cellular Potts model). Our model similarly includes 
cell cycles and chemotherapy, but is different in that it creates a site-specific tumor environment 
incorporating vascular density specific to metastases to the lung, with in vivo concentration curves 
for drug delivery, and initial and gained resistance modeled using bladder cancer cell lines. In both 
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models, the spatial arrangement of vessels creates a drug concentration unique to each cell in a 
simulation, allowing spatially driven phenomena to emerge.  

1.3.  Bladder cancer drug regimen and cell response 

Annually, it is estimated that there will be nearly 77,000 new cases of bladder cancer with over 
16,000 succumbing to the disease.16 Overall survival has not improved since 1989.16 The most 
aggressive form, muscle-invasive bladder cancer, occurs in 30% of patients.17 Treatment is radical 
cystectomy, requiring removal of the bladder and sometimes surrounding tissues, followed by 
chemotherapy. The 5-year survival rate varies from 25-50%. Failure is likely due to occult 
metastases present before treatment, with the most common visceral metastatic sites in the liver 
and lungs.17,18 Patients with inoperable locally advanced or metastatic cancer who undergo GC or 
methotrexate/vinblastine/doxorubicin/cisplatin (MVAC) regimens have a 5-year overall survival 
of 13%, but a progression-free survival of 9.8%.19 Those with lung, liver, or bone18 metastases 
have a 5-year overall survival rate of 6.8%.19 Here, we model this last group of patients, with 
aggressive metastatic disease localized to the lung. 

The standard regimen defined by the National Comprehensive Cancer Network (NCCN) for 
metastatic bladder cancer includes six 21-day cycles, with GC delivered simultaneously on day 1 
(or cisplatin instead on day 2) and gemcitabine alone on day 8.20 For patients with muscle-invasive 
or metastatic cancer, who cannot receive cisplatin, monotherapy regimens without cisplatin 
produce no long-term disease-free survival, with a median survival of six to nine months.17 This 
was reflected in initial runs of the model, with rapid acquisition of resistance during cisplatin or 
gemcitabine monotherapy regimens. Reported efficacy of such regimens is derived from clinical 
trials. Computational models of drug delivery can additionally be used to generate hypotheses at a 
small scale where we can explore mechanisms of drug action and drug resistance, as well as adjust 
the regimen in a consequence-free environment where results for 18 weeks of time course data can 
be obtained in just hours.  

Cisplatin and gemcitabine are genotoxic agents, damaging DNA and causing a cell to undergo 
apoptosis during cell division. Cisplatin incorporates into DNA as platinum-DNA adducts,21 
whereas gemcitabine is a nucleoside analog that interrupts DNA synthesis and triggers apoptosis.22 
The 50% inhibitory concentration (IC50) is a concentration of drug that inhibits a cellular process 
by 50%. IC50 for cytotoxicity and drug accumulation in cells are linearly correlated for both 
cisplatin and gemcitabine, especially at clinically relevant concentrations, which tend to be at the 
lower end of cytotoxicities measured in vitro.23–25 There is also a linear relationship between tissue 
platinum concentration and tumor size reduction.26 These relationships were used to parameterize 
cellular accumulation of the two drugs. 

Synergy between gemcitabine and cisplatin occurs during pre-treatment with gemcitabine or 
co-treatment with GC in ovarian and neuroblastoma cells.27,28 In these studies, one in four and one 
in five cell lines did not respond synergistically. Patients with non-small-cell lung cancer also 
responded better to a day 1 combination of gemcitabine and cisplatin than to day 1 cisplatin alone 
(30.4% response compared to 11%, p<1e-4), with improved median time to progression and 
improved overall survival.29 Synergy in cisplatin during the GC regimen is an important dynamic 
that we include in the model. 
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2.  Methods 
2.1.  Summary of model design 

Our model represents a partially drug-resistant lung metastasis that arose from a primary bladder 
tumor, containing four clonal cell patches with different sensitivities to gemcitabine and cisplatin. 
The drugs are delivered through vasculature in the tumor at levels found in patient plasma based 
on the regimen dosages. Drugs diffuse from vessels with effective diffusion coefficients measured 
in tumor tissue, and accumulation is a cell-type-specific proportion of drug concentration at the 
cell site. Synergy between the drugs causes increased intracellular cisplatin accumulation. If cells 
attempting to replicate have accumulated enough drug to reach their IC50 or greater, they will 
either die with 50% probability or increase their resistance. Finally, when a cell divides, its 
accumulated drug is halved between the two child cells. Drug delivery frequency and dosage are 
from the basic GC drug regimen for metastatic bladder cancer (see Fig. 1 for model). 

Tumor and vessel cell types are represented, along with cell division, cell death, and clearance 
of dead cells as a proxy for the immune system. Vascular density for lung metastases is equal to 
the ratio of microvessel density between primary and lung metastases in non-clear cell renal cell 
carcinoma.30,31 Further biometric parameters, derivations, fits for drug concentrations in patients, 
and their sources can be found in Table 1. Model permutations include runs with and without 
synergy, variations on the drug regimen, and variations in rates of resistance gain in the cells.  

The modeling platform is Compucell3D (CC3D),32 an integrated programming and 
visualization environment for cellular Potts models. Cellular Potts models couple mobile, single-
cell agents to a cellular automaton process at the cells’ surfaces. Cell agents live on their own 2-D 
or 3-D lattice, and chemical fields can be layered on in other lattices. Partial differential equations 
for drug diffusion are solved using the Forward Euler method. For more explicit descriptions of 
the cellular Potts model for modeling drug delivery in tumors, please see Kanigel Winner, et al.,33 
and Extended Methods are available at https://synapse.org/MetHet. In short, pre-defined biological 
rules comprise an energy function that drives the behavior of the cellular automaton process at the 
cell surface during each Monte Carlo time step (MCS). Meeting the rules (by convention) lowers 
this energy or keeps it the same, allowing biologically reasonable cellular events contributing to 
growth, division, and death (though stochasticity can be added). Cell death, cell type switches due 
to drug accumulation, and drug delivery calculated from continuous functions (fits to patient 
plasma drug concentrations) are expansions of the basic CC3D model coded in a Python wrapper. 
These processes are non-stochastic. More modeling methods, details of parameter acquisition, and 
source code that is plug-and-play in CC3D can be found at https://synapse.org/MetHet. 

2.2.  Specifics of biological parameters and model dynamics 

• IC50 data for gemcitabine and cisplatin sensitivity in 18 bladder cancer cell lines were 
acquired from the Genomics of Drug Sensitivity in Cancer (GDSC) database.34 

• Cell growth and division occurred in all cancer cells. Replication rate was approximated from 
the averages of 14 cancer cell lines varying in metastatic capacity (31 to 33 hrs.).22,36,37 

• Cisplatin and gemcitabine in normal cells (lung and phagocytic cells) were given accumulation 
rates for the bladder cancer cell line (SW780) closest to the middle of the range for both drugs. 
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• Acquired resistance was modeled as an increase in the IC50 of any cell that survived an IC50 

accumulation of gemcitabine or cisplatin at division time, increasing the chances of being 
below IC50 and another gain in resistance at the next division time. The quantity to be added 
to the IC50 for each gain in resistance (Table 1) was derived from bladder cancer cell lines, 
passaged to increase resistance, as the increase per division required to acquire maximum 
resistance over one year (“quick”) or two years (“slow”) for cells with a 30-hour cell cycle.35 

• Cell accumulation rate and peak of gemcitabine is linearly correlated with concentration in 
vitro and in vivo.38 In bladder cancer cells, cytotoxicity is linearly correlated with gemcitabine 
concentration,25 and accumulation is correlated with IC50.36 Cisplatin DNA lesion counts are 
linearly correlated with concentration.27 We therefore fit cellular accumulation rates for both 
gemcitabine and cisplatin linearly to the IC50 of each cell type, with some modifications.36,39 

• Cells at IC50 for both gemcitabine and cisplatin at division underwent two chances at death. 
• Gemcitabine and cisplatin were modeled with the same effective diffusion coefficient as 

sodium fluorescein.40 For details on this choice, please see ref. 33. Both molecules diffused at 
the same rate in all cell types except for blood vessel, which either took away molecules, 
ostensibly into flowing blood, or delivered them from the vessel surface. 

. 

Figure 1. Flow chart of events in the model at each time step, reflecting body- and cellular-scale processes 
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3.  Results 

3.1.  No standard or alternate regimen prevents regrowth of a drug resistant tumor 

In preliminary simulations containing only GC dual-sensitive cells, cells declined over time and 
the population was killed late on day 48, five days after the third round of GC. However, for an 
initial tumor with three additional cell types that had increased resistance to gemcitabine, 
cisplatin, or both, neither the standard GC regimen (Figs. 2,3), nor an unrealistically high rate of 
delivery of gemcitabine could kill all cells. 

The initial 2-D tumor of 100 cells consistently quadrupled to 400 cells in 14 to 15 days. At 
simulation end, 0 to 18 days after the last round of drug (depending on the simulation) the domain 
was completely filled with drug-resistant tumor cells, primarily cisplatin-resistant and GC dual-
resistant cells, as well as a sub-population of the most GC dual-resistant seed population. Within 

Table 1. Model parameters and fits to data 

Parameter Value Units Source 

Cell diameter (BC* T24 line, aggressive/invasive) 30 µm 42 
Eff. diffusion coefficient sodium fluorescein 6.40E-06 cm2/s 40 
Division time (mean, S.D.) 30, 1 h 22,36,37 
Time from death to complete phagocytosis 24 h 43 
Fraction cross-sectional microvessel area in metastasis 
from urinary system cancer to lung 

0.146  30 

Pixel dimension 1 cell  
Cisplatin resistance gain per survived division 0.125 – 0.25 + IC50 35 
Gemcitabine resistance gain per survived division 0.05 – 0.1 + IC50 35 
IC50 cis. accumulation for initial cell lines.  
Seed gem. & cis. sensitive, Seed res. gem./sens. cis., 
Seed res. cis./sens. gem., Seed gem. & cis. resistant 

0.8106177157, 
3.774888444, 
6.586828431, 
5.923917064 

µM  
per cell 

calculated 
using fit 
from 44 

IC50 gem. accumulation for initial cell lines. 
Seed gem. & cis. sensitive, Seed res. gem./sens. cis., 
Seed res. cis./sens. gem., Seed gem. & cis. resistant 

0.000017923, 
270.913928515, 
0.145644144, 
46.134163935 

µM  
per cell 

calculated 
using fit 
from 36 

Accumulation rates of cis. in initial cell lines. 
Seed gem. & cis. sensitive, Seed res. gem./sens. cis., 
Seed res. cis./sens. gem., Seed gem. & cis. resistant 

7.98701E-05,  
6.82909E-05,  
7.42347E-06,  
5.46716E-05 

* cis. 
(µM) at 
cell site 
per MCS 

fit from 44 

Accumulation rates of gem. in initial cell lines. 

Seed gem. & cis. sensitive, Seed res. gem./sens. cis., 
Seed res. cis./sens. gem., Seed gem. & cis. resistant 

4.41575E-04,  
2.68443E-04,  
4.41518E-04,  
4.22858E-04 

* gem. 
(µM) at 
cell site 
per MCS 

fit from 36 

Fit for cisplatin plasma concentrations during 3h 
infusion (top) and decay (bottom) 

= 0.11*hrs3  
- 0.83*hrs2  
+ 2.2*hrs - 2.6E-16 
= 57.4124 * e(-1.0927 * hrs) 

µM 46 

Fit for gemcitabine plasma concentrations 
during 30m infusion (top) and decay (bottom) 

= 6.8*(min/15 - 1) + 7.3 
= 101.3452 * e(- 0.0676 * min) 

µM 45 

Synergy multiplier for cisplatin accumulation 2.5  27,28 
Total Monte Carlo (simulation) Steps (126 days) 11,916,800   
Time in one Monte Carlo Step (MCS) 0.914 s  

* Bladder Cancer 

Pacific Symposium on Biocomputing 2017

616



 
 

 

 

six hours of regimen start, the two most sensitive cell types reached the IC50 for gemcitabine 
accumulation. While some of these sensitive cells died, some went on to propagate as sub-clones 
with gained resistance. 

 

3.2.  Effects of acquired resistance 

3.2.1.  Ability of cells to gain resistance increases likelihood of dual resistance 

When acquired resistance was allowed to arise in the cell populations, cells with acquired 
resistance comprised the majority of the final tumor (Figs. 2, 3). GC dual-resistant sub-clones 
arose at day 43, after the third cycle of GC, suggesting that increased dosage or delivery rate prior 
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Figure 2. A simulation with random uniform “slow” to “quick” acquired resistance for all cells, and drug synergy 
in all cells. Pulses of gemcitabine and cisplatin or gemcitabine alone for the first-line chemotherapy regimen are 
displayed and matched to the simulation. Cells in the simulation were seeded in 100-cell tumors shown in the top-
leftmost simulated tumor diagram. The row of simulated tumors on the top represent the state of the tumor before 
the start of a chemotherapy cycle; the row of simulated tumors on the bottom represent the state of the tumor 7 
hours after a GC cycle. Resistant seed cells, cells with dual resistance, and cells with cisplatin resistance 
composed the final population as shown as the final simulated tumor after 126 days of treatment. 
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to this time point may help to keep cross-resistant strains from arising. Interestingly, the fastest 
rate of acquired resistance for both gemcitabine and cisplatin drove cells with acquired resistance 
to cisplatin to dominate the population. 

 

3.2.2.  Simulated tumors show complete resilience to even intense treatment 

In simulations with an added pulse of gemcitabine at  day 18 during each cycle (we mirrored the 
timing of the 28-day regimen, which has an additional gemcitabine infusion on day 18), we found 
an earlier rise of the GC dual-resistant phenotype, and more gemcitabine-resistant cells. We also 
applied single-drug regimens with cisplatin or gemcitabine alone at standard frequencies. Cells 
with resistance to the treatment drug were the majority of the final population.  

To try treatment prior to all cells entering a new cell cycle (30 hrs) while using a potentially 
tolerable regimen, we shifted the three pulses of gemcitabine to the first three days of each 21-day 
cycle, at every 24 hours, in addition to the standard cisplatin every 21 days. This caused the end 
state to be dominated by GC dual-resistant cells. Finally, we pulsed gemcitabine every 24 hours 
for 126 days, with cisplatin every 21 days. The tumor was not killed, and the simulated tumor 
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Figure 3. (A) Quickly-acquired resistance and (B) slowly-acquired resistance resulted in tumors composed 
primarily of cells with newly acquired resistance, with a smaller population of highly GC dual-resistant seed 
cells. Quickly-acquired resistance drove the tumor toward greater cisplatin resistance. 
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area was fully repopulated, primarily with cisplatin-resistant cells after 126 pulses of gemcitabine 
reduced the gemcitabine-resistant populations. 

 

3.3.  In the absence of acquired resistance, diffusion of drug via cell division allows survival 

In simulations where cells did not acquire resistance, populations primarily composed of cells that 
randomly survived an IC50-cisplatin division (Fig. 4A) repopulated the simulation space. A 
subpopulation of initial highly GC dual-resistant seed cells also survived. Because of the division 
of drug equally between two progeny cells, acquired resistance was not required for tumor 
repopulation, suggesting that cells reaching IC50 accumulation may survive in vivo without newly 
acquired resistance. In simulations with synergy and resistance (Figs. 2, 3), one clone in the 
original tumor died during the second round of GC at day 21 (teal-colored; IC50cisplatin = 14.0µM 
in range 2.6µM to 225.2µM). When synergy and the ability to gain resistance were absent, this 
cell type comprised a substantial portion of the final tumor, the most heterogeneous final tumor in 
our models (Fig. 4B). Hence, for the most resistant seed cells, and in less resistant seed cells in 
which synergy may not be active, no acquisition of extra resistance was required for repopulation. 
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Figure 4. In simulations without acquired resistance, models were considered (A) with drug synergy between 
gemcitabine and cisplatin and (B) without synergy. The final tumor was composed of cells that survived 
division after reaching either cisplatin IC50 accumulation, or gemcitabine IC50 accumulation. Cells that 
survived both gemcitabine and cisplatin IC50 levels did not arise. When there was no synergy in cisplatin (2.5× 
normal accumulation rate, B), an extra cell type (teal-colored) derived from the seed populations remained. 
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4.  Discussion 

In this work, we were able to capture population-level responses to chemotherapy stress in a 
model of lung metastasis arising from the bladder. Unless the initial tumor was comprised of 
highly sensitive cells, the in vivo concentration and timing of the standard first-line regimen did 
not kill the metastasis. Cells were then able to proliferate and fill the simulation space after 
completion of treatment. A striking result was that in tumors without any ability to acquire 
resistance, some cells survived the IC50 threshold and were able to repopulate the space. When 
tumors were allowed to acquire resistance, there was consistent emergence of cells that had 
coordinately increased resistance to both gemcitabine and cisplatin around 43 days. This occurred 
after the third cycle of GC, suggesting that early aggressiveness in treatment may be important in 
avoiding cross-resistant sub-clones. In terms of drug-directed cell selection, when cells were given 
the ability to acquire resistance, even at slower rates described in vitro, final tumors were 
composed of a majority of cells with acquired resistance. Because metastases starting from single 
clonal populations in the lung have been shown to develop sub-clones within weeks of 
establishment,5 and because cell lines and living tumors are known to gain resistance mutations 
over time, metastases with large proportions of cells with acquired resistance is a likely scenario in 
a patient, and the model likely reflects selection in vivo. 

Qualitative comparisons can be made between prior data and model outcomes. Overall, the 
acquired resistance model produced rounds of cell death under drug concentrations in patients, 
showing that the parameters are biologically reasonable. The results are consistent with survival 
data for patients with inoperable locally advanced or metastatic bladder cancer undergoing a GC 
or MVAC regimen; those who had lung, liver, or bone metastases had a 5-year overall survival 
rate of 6.8%.19 The likelihood of a patient presenting with a completely drug-sensitive metastatic 
population is low, creating low likelihood of complete cell killing in the tumor. Similarly, in the 
model, we saw only the most sensitive populations being eradicated by the standard regimen. A 
patient’s metastatic population might have been completely sensitive if metastasis was recently 
established from a sensitive primary cell and lacked the time t o gain genetic heterogeneity. Less 
likely still, several weeks or more after establishment, the metastases may have either not gained 
new genetic heterogeneity, or simply not acquired resistance through genetic aberrations. Finally, 
cells in the model had IC50s derived from cell lines, and some cells died at in vivo drug 
concentrations, suggesting that cell line data reasonably reflects the range of resistances found in 
patients’ tumor cells. While these comparisons to patients and cells are speculative, they are 
valuable observations for generating hypotheses and represent opportunities for empirical 
validation as we develop the model further. 

When acquisition of resistance was removed, some cells that had initial resistance survived 
and propagated. This “resistance” occurred because accumulated drug was divided in half between 
offspring, giving both sensitive and resistant primary sub-clones more time to grow and replicate 
before reaching IC50, with proliferation outpacing the delivery of drug. This result, in which cells 
randomly evade death without incorporating new resistance mechanisms, emphasizes the 
importance of considering growth rate in an aggressive metastatic population.  
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To estimate the number of doses required to actually kill a metastasis, we simulated delivery 
of gemcitabine every 24 hours over 126 days, along with synergistic cisplatin every 21 days. Even 
this unrealistic regimen did not kill the tumor, and drove it to gain cisplatin resistance. Increasing 
gemcitabine dosage, in combination with increasing the frequency of cisplatin at lower doses 
should be explored in the future. Additionally, drug regimens that incorporate other drugs besides 
cisplatin and gemcitabine will be explored in future iterations of the model.  

There are caveats to this approach that we must consider. Our model is small (20×20×1 cells) 
for relatively fast computation so that many scenarios could be explored. Although this size still 
allowed differential effects to emerge between different drug scenarios, and computational costs 
scaled proportionally to the number of cells during growth from 100 to 400 cells, larger grids will 
be part of future work, hopefully approaching the clinical detection limit for lung metastases. The 
system modeled is specific to bladder cancer; however, lung is a common metastatic site for many 
other cancers. This and the available data on vascularity at urogenital metastatic sites helped 
justify the choice of the system modeled. Additionally, the model is simple and general, in part 
because a GC regimen is used in a variety of cancers, and can be relatively easily adapted to other 
metastatic or primary sites by replacing parameters in the code. The primary bottleneck to 
adaptation to other cancers will be the availability of empirical data to derive model parameters.  

The model may be allowing consistent tumor survival despite an aggressive drug regimen due 
to a cell cycle time of 30h +/-1h (S.D.); slower- (or even faster-) cycling cells may create different 
dynamics. Drug is not delivered from vessels outside of the tumor, inherent cell death rates are not 
included, and the immune system is not directly considered. Most importantly, although the model 
can be manipulated unrealistically, useful hypothetical regimens must include practical 
considerations for regimens given to patients. If a new regimen kills more cells, perhaps the 
immune system will have a greater chance to reduce a smaller residual population. A simple 
increase in cell kill under an organizational and dosing scheme reasonable for patients is therefore 
a goal for this modeling process and the subject of future studies. 

Finally, our model results recapitulate prior work by Powathil et al.15 regarding the importance 
of accounting for cell cycle in drug delivery. Also our results concur with aspects of Waclaw et 
al.,41 showing that after cell kill opens up space in the tumor, it takes only one or two cells to 
repopulate the vacant area with a new more resistant sub-clone. Such cell behavior is extremely 
difficult to track through time in a patient, and even in experimental models such as mice. 
Therefore, the importance of spatiotemporal models incorporating realistic parameters, with 
behavior that can be tracked over time to clinically relevant outcomes, cannot be underestimated. 
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