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Characterizing the transcriptome architecture of the human brain is fundamental in gaining an
understanding of brain function and disease. A number of recent studies have investigated patterns of
brain gene expression obtained from an extensive anatomical coverage across the entire human brain
using experimental data generated by the Allen Human Brain Atlas (AHBA) project. In this paper,
we propose a new representation of a gene’s transcription activity that explicitly captures the pattern
of spatial co-expression across different anatomical brain regions. For each gene, we define a Spatial
Expression Network (SEN), a network quantifying co-expression patterns amongst several anatomical
locations. Network similarity measures are then employed to quantify the topological resemblance
between pairs of SENs and identify naturally occurring clusters. Using network-theoretical measures,
three large clusters have been detected featuring distinct topological properties. We then evaluate
whether topological diversity of the SENs reflects significant differences in biological function through
a gene ontology analysis. We report on evidence suggesting that one of the three SEN clusters consists
of genes specifically involved in the nervous system, including genes related to brain disorders, while
the remaining two clusters are representative of immunity, transcription and translation. These
findings are consistent with previous studies showing that brain gene clusters are generally associated
with one of these three major biological processes.
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1. Introduction

The human brain is a complex interconnected structure controlling all elementary and high-
level cognitive tasks1. This complexity is a result of the cellular diversity distributed across
hundreds of distinct brain anatomical structures2,3. One of the main tasks of the neuroscience
community in the past decade has been to connect the underlying genetic information of
the anatomical structures to their underlying biological function3–5. A useful data source for
such studies is the Allen Human Brain Atlas (AHBA)3, which provides microarray expression
profiles of almost every gene of the human genome with emphasis on an extensive anatomical
coverage across the entire human brain.
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In this paper, we make use of the experimental data provided by the AHBA project
to study the spatial microarray variability at the single gene level. Analyzing the complete
transcription architecture of the human brain in this way may be informative of the impact
of genetic disorders on different brain regions that would otherwise not be apparent due to
the coarse resolution.

To gain new insights into the expression patterns of the human brain and identify po-
tentially important biomarkers, many studies involving the AHBA data explore gene to gene
relationships3,4. Each gene is represented by its expression levels across anatomical locations.
Genes with correlated expression profiles are grouped together based on an appropriate sim-
ilarity measure. The analysis of the resulting gene co-expression networks provides evidence
that transcriptional regulation relates to anatomy and brain function2–4. There are also studies
that consider the genetic similarity between pairs of regions, and show that transcriptional
regulation varies enormously with anatomic location3,4,6,7. These findings indicate the neces-
sity to adopt a new representation of a gene’s transcription activity that explicitly captures
the pattern of spatial co-expression across different anatomical brain regions.

We propose a new and unexplored way to model the spatial variability at the single gene
level. For each gene, we create a spatial expression network, or SEN. Each node of the network
corresponds to a pre-defined brain region for which we have sufficient transcriptomic data, and
each edge weight represents the similarity in gene expression levels, for that gene, between two
brain regions. Applying this procedure to genes that have been found to be stably expressed
across specimens gives rise to a population of approximately 17, 000 gene networks, each one
representing a brain-wide spatial pattern of gene expression. Using this representation, we
investigate whether the topological similarity of the SENs reflects the biological similarity of
genes through an integrative analysis based on network clustering and gene ontologies. Our
hypothesis is that, if clusters of topologically similar SENs can be identified, the corresponding
genes within each cluster may also share similar biological properties.

A robust cluster analysis of all SENs has indicated the presence of three large and stable
clusters of SENs, each one having significantly different topological features as well as different
biological function. In particular, one of the clusters has been found to be uniquely enriched
for brain-related terms, neurological diseases and genes with enriched expression in neurons.
Overall, our analysis provides evidence supporting the notion that topological proximity of
spatial gene networks is indicative of similar biological function.

2. Materials and Methods

2.1. Spatial Expression Networks (SENs)

The Allen Human Brain Atlas (AHBA)3,8 is a publicly available atlas of the human brain with
microarray-based genome-wide transcriptional profiling of specific brain regions spanning all
major anatomical structures of the adult brain. The data set includes transcriptional profiling
data from more than 3500 samples comprising approximately 200 brain regions in 6 clinically
unremarkable adult human brains. The Agilent 4 × 44 Whole Human Genome platform was
used for gene expression extraction. Two donors contributed samples representing approxi-
mately 1000 structures across the whole brain, while the other four approximately 500 samples
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from the left hemisphere. Our analyses is based on 16, 906 pre-selected genes from a previous
study5. We use the normalized expression levels, which were normalized across samples and
across different brains as in previous analyses9.

Fig. 1. Anatomical maps of the 105 brain regions used to construct the SENs. The maps show the brain regions
as seen from inferior, lateral and superior views, from left to right. All regions are in the left hemisphere and
they are located in the Thalamus, Cerebellum, Pons, Midbrain, Medulla and Cerebral cortex. Coloring of the
regions is consistent with anatomical tissue and is obtained from AHBA ontology atlas.8

For each of the 16, 906 genes, we constructed an individual spatial expression network
(SEN) representing patterns of expression variability in the brain. Only brain regions with
at least one measurement in all 6 brains were included in the analysis resulting in a total of
N = 105 regions from the left hemisphere, as shown in Fig. 1.

The mean expression level for a gene in brain region i is denoted by gi. The distribution of
the mean and median values for each brain region over all genes were not found statistically
different (Kolmogorov-Smirnov test10; all p >> 0.05). Furthermore, for more than 97% of all
region samples across all genes, the standard deviation of the expression values is less than 20%

of the mean value, indicating that the mean can be taken as representative of the expression
values at a given region for a given gene.

Formally, we define a SEN as a fully connected network G = (V,E) with node set V = {i :

i = 1, 2, ..., N} indicating the brain regions and weighted edge set E = {Eij : i, j = 1, 2, ..., N ; i 6=
j}. Each edge weight Eij ∈ [0, 1] quantifies the similarity in gene expression between regions
i and j. The maximum value is reached when the mean expression levels in the two brain
regions are equal. We impose that Eij monotonically decreases with an increasing absolute
difference between mean expression levels; accordingly, the edge weights are defined as

Eij :=
1

1 + |gi − gj |
.

This network representation allows us to capture the interconnected variability of gene ex-
pression across the brain at the gene level.
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2.2. Clustering SENs

In order to address our hypothesis that topological similarity may reflect biological similarity,
initially we set out to explore whether SENs form naturally occurring clusters. For this we first
required an appropriate measure of topological dissimilarity between pairs of SENs. We first
mapped each SEN G to a N -dimensional feature vector d = (d1, d2, ..., dN ) with each elements
representing the node degree, i.e. di =

∑N
j=1Ei,j. The degree for each node captures the global

transcriptomic similarity of the corresponding brain region to all other brain regions for a
given gene. If the node degrees for two SENs are very different, then the corresponding genes
have very different global transcriptomic patterns. The dissimilarity between two SENs, Gl

and Gk, was taken to be the Euclidean distance between the corresponding feature vectors, dl

and dk.
Three different clustering algorithms were used – partitioning around medoids (PAM)11,

k-means12 and fuzzy C -means13 – all providing a partition of all the SENs into k different clus-
ters. To determine an appropriate number of clusters k using each one of these algorithms we
performed a stability analysis12. The k clusters are deemed “stable” if random changes in the
SEN configurations generate almost identical k clusters. To introduce random changes in the
networks, we use a randomization strategy by which the observed networks in network space
Γ are perturbed slightly. For this analysis we used two different randomization procedures: (a)
vertex permutations, i.e. we permuted the node labels of a random subset of networks so as
to preserve the node degrees but not their order, (b) edge perturbation, i.e. we perturbed the
edge weights of a random subset of networks so as to make the cluster robust against white
noise.

To obtain a measure of cluster instability, we use the following steps: First, we generate
perturbed versions Γb (b = 1, 2, ..., bmax) of Γ, and cluster the networks in Γb into k clusters
thus obtaining Cb(k). In addition, we randomize the cluster assignments14 in Cb (k) to obtain
random clustering Cb,rand (k) . Second, for b, b′ = 1, 2, ..., bmax, we compute the pairwise distances
[1−NMI(Cb(k), Cb′(k))] between the clusterings Cb(k) and Cb′(k), and between the randomized
clusterings Cb,rand(k) and Cb′,rand(k). The normalized mutual information (NMI) is used as a
similarity measure between partitions15. The cluster instability index is defined as the mean
distance between clusterings Cb(k), i.e.

I(k) =
1

b2max

bmax∑
b,b′=1

[1−NMI(Cb(k), Cb′(k))] . (1)

We use the normalized instability index, Inorm(k) := I(k)/Irand(k), which corrects for a scaling14

of I(k) with an increasing number of clusters k. We choose number of clusters k that gives the
lowest Inorm(k).

2.3. Topological characterization of SEN clusters

To characterize the topological properties of SENs in each cluster, we use global topological
measures that capture different aspect of the network such as its density, the tendency of its
nodes to cluster and form communities, the presence of central and hub nodes. Overall, we use
eight such different measures: average node degree16, average closeness centrality16, weighted
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diameter17, global clustering coefficient for weighted networks17, number of non-overlapping
communities, average authority score18, the number of nodes with authority score > 0.95, and
the number of nodes with authority score < 0.05. All measures were computed for all SENs
within each cluster. To test for statistically significant differences in network topology across
clusters, we performed a multivariate ANOVA test19.

Furthermore, for each SEN we derived a measure of community structure20. In our con-
text, the presence of a community in a given SEN indicates that there is a set of highly
interconnected brain regions whose gene expression similarity is higher compared to the rest
of the network. For this analysis we used the Fast Greedy algorithm21, which is based on the
optimization of the modularity function that sums the edge weights within a community and
corrects for the expected edge weights by chance. The algorithm is discriminative of small
edge weight differences and can yield sensitive separation of brain regions into communities.
Genes with similar community structures indicate the presence of similar local coherent tran-
scriptomic patterns for groups of brain regions.

For each cluster, we quantify the similarity of a pair of brain regions using the communities
detected in all the SENs by counting the number of times the two regions fall within the same
community. This count is then divided by the total number of SENs in the cluster in order
to obtain an index lying in the [0, 1] range, which we call the “coherence index”. Values close
to 1 indicate high coherency between the two brain regions, i.e. the average tendency to fall
within communities of highly interconnected brain regions.

2.4. Biological characterization of SEN clusters

In order to investigate whether naturally occurring clusters formed by SENs can be related
to distinct biological function, we require a procedure which assigns representative biological
terms to each cluster. For this purpose we use a Gene Ontology (GO) enrichment analysis
pipeline which first collects broad GO information for the biological context of genes in each
of the main clusters, and then reduces this information to representative GO terms for final
interpretation of the clusters.

Each SEN cluster was first annotated for significantly enriched Biological Process (BP)
terms using a standard hypergeometric test for over-represented terms (p < 0.001) imple-
mented in the GOstats R package22. Using a clustering methodology implemented in the tool
REVIGO23, we group semantically similar GO terms based on the established SimRel measure.
The algorithm finds a representative term for each group based on the enrichment p-values,
with a bias away from very general parent GO terms. The size of the resulting summary list is
controlled by setting the threshold for the SimRel similarity measure at 0.5. Results are sum-
marized by retaining the cluster representatives for each GO term that can reveal underlying
function of these clusters.

Genes in each of the clusters were also annotated for disease enrichment using the We-
bGestalt tool24, which interfaces with the GLAD4U platform25 to retrieve and prioritize
disease-gene links from publications, using a hypergeometric test with multiple testing correc-
tion and the genome as background.
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3. Experimental results

3.1. Topologically different SEN clusters

Spectral Embedding Multidimensional Scaling

●

●

●

Cluster 1: 9045 genes

Cluster 2: 4413 genes

Cluster 3: 3448 genes

Fig. 2. Two-dimensional visualization of all SENs using two different dimensionality reduction algorithms:
spectral embedding26 (left) and multidimensional scaling27 (right). The color scheme indicates the cluster
membership as determined by the PAM algorithm. Both visualizations indicate three main clusters.

All SENs were clustered into up to six clusters using the procedures outlined in Sec. 2.2. The
two instability analyses were each performed using bmax = 500. Using the first randomization
scheme, 5% of networks were randomly sampled for node permutation, while in the second
procedure 20% of networks were randomly sampled and white noise was introduced by adding
±20% to each edge weight. The results for all three clustering procedures, Tab. 1, show that
PAM clustering has the lowest instability followed by fuzzy C -means. Furthermore, for all three
clustering methods grouping data into two and three clusters leads to the lowest instabilities.

Table 1. Different stability analyses for three different clustering al-
gorithms using two randomization strategies (vertex and edge permu-
tation).

Vertex permutation Edge perturbation

Inorm(k) PAM Cmeans k-means PAM Cmeans k-means

Inorm(2) 0.016 0.020 0.065 0.009 0.015 0.065
Inorm(3) 0.018 0.023 0.076 0.010 0.016 0.071
Inorm(4) 0.023 0.031 0.092 0.019 0.033 0.180
Inorm(5) 0.026 0.038 0.171 0.025 0.030 0.191
Inorm(6) 0.031 0.080 0.187 0.027 0.086 0.208
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The PAM algorithm was chosen to generate the final partitions as it yields the lowest
instability index. As an additional validation to support the choice of three PAM clusters, we
used three internal validation measures: the Sillhouette width28, the Dunn index13 and the
within-cluster variance29. The Dunn index and Silhouette width support the presence of two
to three clusters, see Tab. 2. However, the intra-cluster variance, which is known to be more
sensitive to the existence of sub-clusters30, shows that grouping data into two clusters leads
to high within-cluster variability compared to a higher number of clusters. By taking all these
criteria into account, we have chosen to consider k = 3 since this leads to the lowest instability
and within-cluster variability whilst having as high as possible Dunn and Sillhouette scores.

Table 2. Cluster validation measures for cluster-
ing SENs into k clusters using PAM.

k Dunn Silhouette Within-cluster Variance

2 2.20 0.66 0.276
3 1.20 0.44 0.225
4 0.61 0.30 0.215
5 0.63 0.23 0.223
6 0.48 0.18 0.211

In an attempt to visually assess whether this choice seems appropriate, we used a distance-
preserving projection of all 16906 SENs into a 2D-dimensional space using two different di-
mensionality reduction procedures: spectral embedding26 and multidimensional clustering27.
The resulting projections can be found in Fig. 2. All three clusters – 1 (turquoise), 2 (blue)
and 3 (brown) – appear well-separated.

3.2. Topological differences amongst SEN clusters

To validate that the three SEN clusters have distinct topological structure, we used the eight
global network measures outlined in Sec. 2.3. The frequency distribution of the topological
measures for each cluster is summarized in Fig. 3 where a clear mean difference can be ob-
served for each individual measure across clusters. Using a MANOVA test, we reject the null
hypothesis of equality of topological features across clusters (p < 2.2e−16; Wilk’s Λ = 0.3589).

We have found that Cluster 1 mostly consists of SENs with the highest node degree,
centrality measures, diameter, authority score and number of nodes with high authority score,
while there are only a few number of communities and few nodes with low authority score.
These properties imply coherent expression levels across all brain regions. On the other hand,
Cluster 2 comprises of SENs with the lowest node degree, centrality measures, diameter,
authority score and number of nodes with high authority scores, and the highest number
of communities and nodes with low authority score. This indicates that most SENs within
this cluster are sparse, and that there is high variability between expression levels across
brain regions. Finally, Cluster 3 consists of SENs with medium ranged values for all network
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Fig. 3. Distribution of topological network measures in the three clusters obtained using the PAM algorithm.
High node degrees imply high edge weights with fewer low-weighted shortest paths and fewer discrepancies
in edge values. This leads to high transitivity and closeness values, simultaneously reducing the number of
communities SENs are partitioned into. Higher node degrees lead to more nodes having high authority scores
thus increasing both the average authority scores and the number of nodes with high authority. Low node
degrees signify sparseness of the SENs and more low-weighted shortest paths. This results in more nodes being
grouped in their own communities, in addition to low closeness and transitivity. Sparse networks and low node
degrees result in lower authority scores and fewer nodes with high authority score.

measures, implying moderate variability between expression levels across brain regions.

3.3. Biological differences amongst SEN clusters

We investigated the local transcriptomic patterns within each of the three clusters using the
“coherence index” defined in Sec. 2.3. The three clusters have different transcriptomic patterns,
Fig. 4, and comparing heatmaps of the three clusters to one for all 16906 genes shows that
Cluster 1 is closest to the genome-wide global patterning, while Cluster 2 and Cluster 3 are
carriers of imposed heterogeneity. The patterns of the 16906 genes are also consistent with
existing work, and largely replicate previous findings3,4,6. In particular, homogeneity within
the Neocortex and Cerebellum, and increased heterogeneity in the Basal Ganglia, have been
previously reported. Cluster 2 has few coherency patterns in the Basal Ganglia regions and
Cerebellum. Cluster 1 exhibits high homogeneity within the Cerebellum and the Neocortex,
and between subdivisions of the subcortical structure and the Hippocampus. Cluster 3 appears
to have coherent patterns in the Cerebellum and the Neocortex but increased variability in
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the Basal Ganglia.

Fig. 4. Heatmaps representing the “coherence index” between pairs of brain regions in each of the three
SEN clusters and across all 16906 genes. Each pixel on the heatmap is the “coherence index” between the
two corresponding brain regions. Each heatmap is accompanied by a color key, where higher values indicate
high homogeneity of expression levels and lower values indicate heterogeneous expression levels. The 105 brain
regions are mapped to 17 major brain structures using the AHBA ontology atlas8 and abbreviated as indicated
in Fig. 1.

Obtaining detailed annotation as described in Sec. 2.4 revealed that all three clusters are
significantly enriched (p < 0.001) for a variety of GO BP terms. We reduced these large sets
of GO terms to smaller non-redundant sets by applying REVIGO23.

The BP representative terms selected on the basis of enrichment p-values and semantic
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similarity indicate that Cluster 1 genes can be described primarily by “RNA processing” and
“ribonucleoprotein complex biogenesis”. Cluster 2 genes are predominantly involved in immu-
nity including “immune system process”, “leukocyte proliferation” and “G-protein coupled
receptor signaling pathway” terms primarily associated to the immune system, whereas Clus-
ter 3 genes are uniquely involved in “behavior”, “metal ion transport” and “nervous system
development”. On closer inspection of Cluster 3, these representative terms comprise several
linked biological processes specific to the Nervous System, and which are not found on either
Cluster 1 or 2, such as “synaptic transmission” and “dendrite extension”.

The significant disease enrichment (adjusted p < 0.001) also supported the functional dis-
tinctiveness of the three clusters, with Cluster 1 being enriched for Mitochondrial disease,
Cluster 2 being significantly enriched for genes involved with Immune System and Inflamma-
tory disease, and Cluster 3 being principally involved in Nervous system disorders. Given the
observed functional differentiation between clusters, we investigated whether this might cor-
respond to cell-type specialization. We obtained lists of neuron- and microglia-enriched genes
in a repository of detailed RNA-sequencing and splicing data from purified cell cultures31 ,
and computed significant intersections using the SuperExactTest32. This showed that genes in
Cluster 3 have significant overlap with neuron- and microglia-specific genes (p < 0.05). Cluster
2, on the other hand, has a unique association to microglia-specific genes only (p < 0.05).

4. Discussion

Analyzing the transcriptome architecture of the human brain is a challenging task due to the
high-dimensionality and biological complexity of the data. This is compounded by technical
factors related to sample acquisition and measurement error that can influence the results.
We addressed the issue of anatomical variability in gene expression by proposing to model
each gene’s spatial co-expression pattern across anatomical regions as an individual spatial
network, or SEN. To explore whether topological similarity of gene expression as captured
by SENs is related to biological similarity, we used network dissimilarity to obtain clusters of
genes with similar patterns of spatial co-expression. We aimed to gain additional insights into
the biological interpretation of regional anatomical specialization of the brain.

We demonstrated that there is evidence to support the presence of three topologically
distinct clusters of SENs, with each cluster being characterised by particular network proper-
ties. Furthermore, investigating the community structure of the SENs, we identified possible
anatomical basis for the difference in the topological properties in the three clusters. The
differences between clusters are mainly due to the heterogeneity of expression levels in the
Basal Ganglia, and between the Neocortex and Cerebellum.

We also found these three topologically distinct clusters to have biologically distinct prop-
erties. On closer inspection we find Cluster 3 to be specific to the nervous system, while
Cluster 2 appears to be involved with immunity and Cluster 1 with transcription and transla-
tion. These associations are in line with previous results on the AHBA data set3,4, where the
majority of clusters obtained using WGCNA33, a well-known gene clustering procedure, were
also associated to immunity, nervous system or transcription and translation.

To gain an insight into possible cellular contributions to these differences, we included
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cell-type specific data and observe that the overlap of neuron- and microglia- specific genes
in Cluster 3 is in keeping with current hypotheses regarding the significant interactions be-
tween these two cell-types, including the possible modulatory activity of microglia in synaptic
pruning and cell communication beyond purely immune functions34.

We found significant disease associations for all three clusters, implying the high biological
impact of the genes involved and the utility of our modular clustering approach for the identi-
fication of therapeutic targets. There is a preponderance of neurological and neuropsychiatric
conditions linked to Cluster 3 genes, and immune disorders linked to Cluster 2, reflecting their
biological functions as described above and supporting those annotations.

One important concern was whether the above results were specific to using node degrees
or they could be reproduced using other feature vectors. Thus we constructed two different
sets of feature vectors based on node centrality as captured by the authority score and based
on the raw edges of the SEN. Based on each new set of feature vectors, results not included
in this paper demonstrated evidence to support the presence of three topologically distinct
clusters of SENs. For both feature vectors, the three clusters were again marked by different
topological properties although there were shifts in the distributions of those properties. Even
so, in both cases the three clusters were uniquely associated to the immune system, nervous
system or transcription and translation.

For comparison purposes, we used WGCNA on the gene expression values of the 16906

genes for the 105 brain regions. Results not included in this paper showed that WGCNA did
not assign a cluster membership to the majority of genes in Cluster 2 due to the sparseness of
their expression levels. More and smaller clusters were discovered with higher instability. The
advantage of our method compared to WGCNA is that the structure of SENs allows us to use
a number of clustering procedures to detect stable gene clusters, whose validation could be
achieved using both topological and biological measures. We determine the biological function
of a cluster using the gene ontology of the entire set of genes in the cluster, which is robust
to slight changes in the cluster membership.

A next step in the analysis of SENs should consider additional clusters to detect more
specialized biological functions. Furthermore, it is well known that gene expressions in the
cerebellum, subcortical and cortical regions differ significantly from each other based on their
composition of different cell types3,4. Future work in this direction will include an analysis
where only neocortex regions are used to construct SENs.

5. Conclusion

An important and challenging task in studying the brain transcriptional architecture is inte-
grating and modelling the high dimensionality of the gene expression across the brain. To the
best of our knowledge, our work is the first to perform a region-wise comprehensive profiling of
gene-specific co-expression patterns across the human brain. By modelling gene expression as
SENs and employing network embeddings, we identified distinct clusters of genes associated
to specific biological functions, topological properties and cell-types, with potential implica-
tions for neuropsychiatric disease. Modelling genes as SENs across brain regions could be used
for future studies in helping to identify genes with particular co-expression patterns across
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a set of spatial brain locations of interest, enabling the identification of genes that act in
spatially contextualized clusters with high biological impact. As more microarray gene ex-
pression data become available at higher spatial resolution and cell-type specificity, modelling
gene co-expression across the brain will be increasingly important to understanding the brain
transcriptome architecture at a microstructural scale.
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