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Connecting genotypes to image phenotypes is crucial for a comprehensive understanding of
cancer. To learn such connections, new machine learning approaches must be developed for
the better integration of imaging and genomic data. Here we propose a novel approach called
Discriminative Bag-of-Cells (DBC) for predicting genomic markers using imaging features,
which addresses the challenge of summarizing histopathological images by representing cells
with learned discriminative types, or codewords. We also developed a reliable and efficient
patch-based nuclear segmentation scheme using convolutional neural networks from which
nuclear and cellular features are extracted. Applying DBC on TCGA breast cancer sam-
ples to predict basal subtype status yielded a class-balanced accuracy of 70% on a separate
test partition of 213 patients. As data sets of imaging and genomic data become increas-
ingly available, we believe DBC will be a useful approach for screening histopathological
images for genomic markers. Source code of nuclear segmentation and DBC are available
at: https://github.com/bchidest/DBC.
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1. Introduction

Cancer is a genetic disease that develops from accumulated genomic alterations that disrupt
normal cellular processes and give rise to phenotypic changes, such as cell size, shape, and
structural relationship within a tumor.1 High-throughput genomic approaches have revealed
new understandings of the complexity of cancer. We now know that even patient samples from
the same type of cancer may exhibit a high level of inter-tumor heterogeneity.2 For example,
breast cancer patients can be largely categorized into four molecular subtypes (luminal A and
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B, HER2-enriched, and basal) with distinct prognosis.3,4 Additionally, ‘imaging-genomics’ has
been coined to refer to recent developments in leveraging new insights gained from genomics
with traditional imaging of radiology or histopathology.5–8 For histopathological images, fea-
tures of cells and nuclei, which are used by pathologists to diagnose cancer, provide the most
direct connection to the genomic signatures of a patient’s tumor. Yet whole slide images
(WSIs) contain tens of thousands of cells with diverse characteristics, which makes associat-
ing phenotype with genomics challenging. Previous works in imaging-genomics have sought to
draw connections by first clustering nuclei and cells into types in an unsupervised fashion and
then associating with genomic markers, such as gene expression.5,7,8 Others have looked for
connections with specific cell types, leveraging biological understanding, such as the affect of
the cellularity of lymphocytes on copy number variation in tumors.6 There remains a need for
machine learning tools that can effectively capture the diversity of cellular phenotypes within
and across tumors for high-throughput investigation of general image-genomic associations.

To address this need, we propose a novel, general framework for predicting arbitrary ge-
nomic markers from imaging features called Discriminative Bag-of-Cells (DBC). In this frame-
work, cells within a histopathological image are grouped into types and the image is summa-
rized succinctly by a histogram of cell types, and a classifier is learned from these histograms
of types to predict genomic markers (e.g., mutation, gene expression, or molecular subtype).
Our framework is inspired by the bag-of-words (BoW) approach, which has been successfully
applied to document classification and image classification.9 In addition to learning the BoW
classifier, our method also learns the cell-type, or codeword, assignments in a discriminative
fashion to find types that are more informative of the specific genomic marker. This avoids
the trouble of unsupervised clustering of cellular features,5,7,8 which does not optimize cell-
type assignments for genomic markers of interest. Some works have also proposed a similar
training of discriminative codebooks,10,11 which inspired this particular enhancement for our
BoW framework for histopathological images.

DBC has several advantages over other methods of high-throughput histopathological im-
age analysis. A primary advantage is the interpretability of the learned model. From the
learned cell types, we can distinguish what types of nuclei are important for classification.
This allows us to trace back to the original nuclei in the sample to visualize how they are
categorized and to learn which types of nuclei in the images are discriminative for specific
genomic markers. Another advantage of DBC is that it can learn what heterogeneity within a
tumor is informative of a particular genomic marker and what is not. For example, it is known
that a tumor can be comprised of multiple molecular subtypes,2 but there is still a need to
understand what cellular phenotypes are unique to which subtype. DBC seeks to account for
such diversity by learning how the mixing of cell types is informative of an assigned subtype.

Our framework relies upon extraction of nuclear features from histopathological images,
from which the cell types are learned. For hematoxylin and eosin (H&E) histopathological
imaging, due to the high degree of variation in sample acquisition, such as stain intensity and
slice thickness, and the care required to produce quality samples, segmenting nuclei and ex-
tracting image features is often unreliable. Most studies have relied upon popular microscopy
image analysis software, such as CellProfiler,12 to perform image feature extraction,13 but the
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Fig. 1. Overview of our method for combined nuclear segmentation and feature extraction from
WSI tiles.

commonly used available algorithms fail to generalize adequately to the significant variation
of most large-scale histopathological image data sets. Recently, several methods for nuclear
detection and segmentation have been developed using deep learning and convolutional neu-
ral networks (CNNs),14–17 which have shown improvements over traditional methods. For our
framework, we developed our own patch-based CNN for nuclear segmentation, which we op-
timized for computational efficiency and trained using additional image data from TCGA.
Additionally, unlike CellProfiler, our patch-based CNN method requires no parameter tuning,
which allows for easy analysis by non-specialists, which would help facilitate high-throughput
imaging studies. The contribution of this work is to apply deep-learning-based nuclear segmen-
tation in conjunction with nuclear feature extraction to show its utility for high-throughput
histopathological image analysis, specifically for predicting genomic markers.

As a proof of principle, we applied our method to breast cancer patient samples from
TCGA4 to detect the basal subtype. For this task, the learned model achieved a class-balanced
accuracy of 70% (i.e., sensitivity and specificity scores were both 0.7) on a separate test par-
tition of 213 patients, of which 39 patients were of the basal subtype, which is a significant
improvement over the standard method of summarizing images by the statistics of the distri-
bution of cellular features. The algorithm also learned eight cell types relevant to the basal
subtype. To our knowledge, this is the first work that attempts to predict molecular sub-
type solely from histopathological images. With improved nuclear segmentation and increased
access to imaging-genomic data sets, DBC has the potential to be a useful tool for cancer
screening of genomic markers.

2. Methods

2.1. Overview

To represent an H&E image as a histogram of nuclear words, we first extract nuclear and
cellular features. These features are derived from the segmentation result of a patch-based
CNN scheme. From the segmentation, CellProfiler computes cellular features of shape, texture,
and color. The overall method for nuclear segmentation and feature extraction is shown in
Fig. 1. With each cell in the image represented by its extracted feature vector, DBC jointly
learns a cell-type assignment and a BoW classifier to predict a genomic marker of interest.
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Fig. 2. Example nucleus and non-nucleus patches (top) from the training data for our CNN. Once
trained, our CNN (bottom) classifies each local patch of a WSI tile individually, yielding a full nuclear
segmentation mask for the tile.

2.2. WSI Tiling

Though DBC can be applied to any H&E image, whether it be a biopsy or a WSI, to process
WSIs specifically, we divide them into non-overlapping tiles to be processed individually. From
the WSIs, representative tiles of cancerous tissue regions that are free from artifacts, such as
out-of-focus regions and tissue folds, are selected. Although this is performed mostly manually
now, deep learning algorithms for segmenting cancerous regions of WSIs could be potentially
incorporated.18 For processing TCGA WSIs, we selected up to 15 representative tiles for each
slide, with a tile size of 1000×1000 pixels.

2.3. Nuclear Segmentation Module Based on CNN

To achieve computationally efficient and reliable nuclear segmentation, we developed a patch-
based CNN method that learns to detect nuclear pixels from the statistics of local patches.
Similar to other recent patch-based CNN approaches,17 the segmentation module produces
a segmentation mask for an H&E image by generating, for each patch within the image, a
binary label, indicating whether the center pixel of each patch belongs to a nucleus or not.
Since nuclei only occupy a patch of a few pixels, the CNN needs to operate only on a small
patch surrounding each pixel to produce its label. The training data for our network was
imaged at 40× magnification, for which we chose the local patch size to be 51 × 51 pixels.
Fig. 2 shows a diagram of the segmentation module operating on a WSI tile to produce a full
nuclear segmentation mask.

Our network consists of six convolutional layers of {64, 64, 128, 128, 256, 256} 3 × 3 × N

filters, where N is the number of filters of the previous layer, and was implemented in Tensor-
Flow.19 At every other layer, starting at the second layer, the convolution operator is applied
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at a stride of two to gradually taper the dimension of each subsequent layer towards the fully-
connected layers near the output. The final two layers are a fully-connected layer of 50 nodes
and a softmax output layer of two nodes, respectively. Before being fed through the network,
each tile is unmixed into its hematoxylin and eosin stains and normalized20 to mitigate stain
variation and to reduce the last dimension N of the input layer filters from three to two.

For training our CNN, we used an available data set of segmented ER-positive epithelial
nuclei,17 supplemented with our own data set of nuclei patches from 68 TCGA-BRCA patients
that included epithelial nuclei, stromal nuclei, and lymphocytes. For each TCGA-BRCA pa-
tient, we extracted several hundred sample patches of nuclei and non-nuclei, comprising 32,174
patches in total. The patients used in the data set represented a variety of tissue source
sites to encourage the network to learn robustness to variation in sample acquisition. The
pre-processing of each patch consisted of normalizing the stain,20 separating the normalized
hematoxylin and eosin images, and generating rotations at 90 degree increments, as well as
horizontal and vertical flips of the images, to promote invariance to such manipulations, which
naturally arise in H&E images. Several example patches collected for our data set are shown
in Fig. 2.

Once the initial binary segmentation mask for each WSI tile is generated by the CNN, the
mask and the corresponding H&E image are passed to CellProfiler to be further enhanced by
smoothing the boundaries and separating clumped nuclei. Compared to relying solely upon
CellProfiler for segmentation, the CNN-based method produces more reliable performance, as
shown in Section 3.

2.4. Nuclear and Cellular Feature Extraction

After nuclear segmentation, we use CellProfiler to determine the boundaries of the cell cor-
responding to each nucleus. We consider only the pixels close to the nucleus boundary, but
not overlapping with neighboring cells, as belonging to the cell. In our analysis, the distance
we chose was 15 pixels. Features describing the shape, texture, and color of each nucleus and
cell for each patient are then extracted through CellProfiler from the segmented masks and
corresponding H&E images. From the nuclear and cellular segmentation boundaries computed
with our CNN and CellProfiler’s refinement steps, we extract a total of 219 image features for
each cell-nucleus pair.

2.5. Discriminative Bag-of-Cells

Each image is then summarized by a histogram of the various cell types it contains, where
the cell types are learned discriminatively for the specific genomic marker. We denote the
extracted feature vector for a cell by x ∈ Rd, where d is the number of extracted features. For
each sample, or patient, s, with Nx(s) segmented cells, we extract a set of Nx(s) cellular feature
vectors Xs = {xi}Nx(s)

i=1 . We denote the genomic marker of interest by y ∈ [0, 1, . . . ,K − 1], where
K is the number of possible states the marker can assume. Each patient then consists of a
pair of cellular feature vectors and a marker: (Xs, ys).

Our DBC framework consists of two learners: the cell-type assignment fx(·) and the BoW
classifier fb(·). The cell-type assignment produces the cell-type representation ci = fx(xi) ∈

Pacific Symposium on Biocomputing 2018

323



Fig. 3. Flow chart of DBC prediction on sample s.

[0, 1]C (satisfying
∑C

j ci,j = 1), which acts like a soft one-hot-encoded vector assignment to
one of C cell types, for each cell i. The cell-type representations are summed over all cells,
producing the BoW representation bs, which is normalized by Nmax, the maximal number of
cells associated with any sample. In practice, this was found to help the network to learn. The
final output of the DBC is the predicted marker ŷs = fb(bs). The flowchart describing DBC is
shown in Fig. 3.

In the standard BoW approach, the type, or codeword, assignment fx(·) is learned inde-
pendent of the subsequent BoW classifier, usually by a clustering algorithm such as K-means.
The drawback of the standard approach is that the assignment to codewords may not be
discriminative of the classification task. However, in DBC, by constructing both learners with
neural networks, we can train the combined network end-to-end, allowing fx(·) to be optimized
for the discriminative task at hand. To enforce that the cell-type assignment fx(·) act like a
soft one-hot encoding, its output layer is a softmax layer of C nodes. The output layer of the
BoW classifier fb(·) is also a softmax layer, and the final predicted marker ŷ is the index of
the maximal value of the output softmax layer. The entire DBC framework was implemented
in TensorFlow.19

3. Results

3.1. Segmentation Evaluation

We evaluated our patch-based CNN segmentation module on the UCSB Bio-Segmentation
Benchmark.21 The segmentations for this data set are pixel-wise binary masks of nuclei pixels.
Boundaries between touching nuclei were not delineated on the masks, so in to order ensure
objectivity and reproducibility, we inferred these boundaries automatically using CellProfiler’s
nuclei separation tool. Since the images were captured at a lower magnification, and not 40×
magnification like the images for our training data, we resized them by a factor of 2 to
approximate 40× magnification. We refer to the resulting separated nuclei masks as the gold
standard. For our evaluation, a nucleus is considered a true positive if its center is within
a distance of 12 pixels of the center of a nucleus in the gold standard mask. When a gold
standard nucleus matches multiple predicted nuclei, its closest match is chosen.

The scores for our network, our CellProfiler pipeline, and the work of Janowczyk and
Madabhushi17 are shown in Table 1. The network of Ref. 17 produces a probability, which
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Table 1. Comparative detection accuracy of our CNN, our
CellProfiler pipeline, and the network Ref. 17 on UCSB breast
cancer H&E images.

Algorithm Precision Recall F1-Score

Our CNN 0.830 0.875 0.852
Janowczyk and Madabhushi17 0.850 0.850 0.850

CellProfiler 0.905 0.712 0.800

Table 2. Comparative segmentation accuracy of our CNN, our CellProfiler pipeline, and the network
of Ref. 17 UCSB breast cancer H&E images.

Algorithm DSC Mean DSC Median DSC STD HD Mean HD Median HD STD MAD Mean MAD Median MAD STD

Our CNN 0.72 0.80 0.20 4.24 3.00 3.83 1.82 1.26 1.43
Janowczyk and Madabhushi17 0.75 0.81 0.16 4.22 2.83 4.03 1.75 1.29 1.20

CellProfiler 0.76 0.82 0.18 4.62 2.83 4.70 1.84 1.24 1.64

allows for tuning by the user by varying the threshold to be applied to make a binary decision,
so we evaluated thresholds ranging from 0 to 0.92 by increments of 0.04 and reported the
the threshold with the best F1-score. It is expected that, assuming the training procedure
can determine a good set of parameters, our network should perform comparably, if perhaps
slightly better, than the network of Ref. 17, since we have an expanded data set with our own
training patches from TCGA, and indeed, our algorithm performs comparably. What is of
more importance is that compared to the results of CellProfiler, our approach shows a marked
improvement.

To evaluate the quality of the resulting nuclear boundaries, we used the the Dice similarity
coefficient (DSC), the Hausdorff distance (HD), and the mean absolute distance (MAD), which
were adopted from other works16 for consistency and comparison. Since these metrics can only
be applied to true positive nuclei, they do not capture the effects of false negatives and false
positives, so a desired balance must be considered when comparing algorithms. A comparison
of the results for each of these metrics is shown in Table 2. Again, our CNN and the network
of Ref. 17 perform similarly. CellProfiler performs slightly better in terms of DSC, but worse
in both HD and MAD, despite it having a significantly higher precision score, which indicates
that it is more conservative in what it detects as nuclei. We observed on this data set that our
patch-based CNN algorithm is able to detect and segment both stromal and epithelial nuclei,
but that it struggles with nuclei with fainter hematoxylin stain, which could be a consequence
of the difference in resolution between the 20×UCSB images and the 40×TCGA images on
which it was trained.

Data sets such as TCGA pose a much greater challenge for segmentation since the ac-
quisition procedures across the various tissue source cites are less controlled and prone to
introduce significant variation. A prominent advantage of our network is that it has been
trained on WSIs from TCGA-BRCA patients, increasing its robust to these variations. We
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Fig. 4. Cell and nucleus segmentation results of our patch-based CNN approach (top row) and
CellProfiler (bottom row) on several regions of diagnostic WSIs of the TCGA-BRCA data set. Nuclear
boundaries are drawn in red and cellular boundaries in blue.

chose a small subset of 1000 × 1000 tiles from TCGA-BRCA WSIs with varying slide quality
and hue on which to qualitatively compare our trained patch-based CNN approach and Cell-
Profiler. The CellProfiler pipeline we tested consisted of adaptive thresholding to remove white
background pixels, adaptive three class thresholding of the unmixed hematoxylin channel to
segment nuclei, declumping of nuclei, and removal of overly large or small nuclei. We tuned the
parameters to generalize the segmentation as best as possible across the test images, limiting
the white pixel background threshold on the hematoxylin channel to lie between 0 to 0.3 and
the adaptive three class threshold for nuclei segmentation to lie between 0.4 to 1. The yielded
nuclear and cellular boundaries of both methods for regions of five images from the test set
are shown in Fig. 4. Increasing the later threshold improved performance on darker images,
but at the cost of missing most nuclei in lighter images. In contrast, our approach was able to
detect and segment nuclei well despite the stark differences in intensity and hue. In particular,
it was better able to avoid clumping large nuclei together, as seen in the two darker images.
We also note that, unlike CellProfiler, our method required no parameter tuning for this test
set, which is crucial for high-throughput analysis of large data sets of WSIs.

Computational cost is also an important consideration for high-throughput analysis. Seg-
menting each 1000×1000 tile using our approach required only an additional 5.7 seconds on
average for processing with our patch-based CNN on a single Intel Xeon E5-1603 v3 (2.8GHz)
CPU with 16GB of RAM and a single NVIDIA GeForce GTX 1080Ti GPU, which is a minimal
overhead for the increased accuracy gained.

3.2. Detecting BRCA Basal Subtype with Discriminative Bag-of-Cells

We applied DBC on the extracted cellular features of 607 TCGA-BRCA patients to predict
the status of the basal molecular subtype. The set of patients was split into 50% training, 15%
validation, and 35% testing, which yielded a test set of 213 patients, of which 39 were of the
basal subtype. To prevent overfitting to the training partition, during training, the accuracy
of the model on the validation set was monitored and training was ended when this accuracy
began to steadily decrease. Additionally, we removed all nuclear features with variance below
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Fig. 5. Example nuclei from TCGA-BRCA patient WSIs for each of the eight learned codewords.
Codeword two had no dominant example nuclei.

Fig. 6. BoW histograms for several example TCGA-BRCA patients. (left) Non-basal patients.
(right) basal patients. Sample patches of the WSI for each patient are shown on the left of each
of the two columns. The markings to the right of the BoW histograms indicate if the predicted
subtype was correct.

0.001 across the training set to keep the model from fitting noise. For this particular prediction
task, we trained a codeword assignment with two hidden layers of {25, 15} nodes and a BoW
classifier with just one hidden layer of six nodes. We found that a codebook of size C = 8

allowed for an accurate BoW classifier while minimizing overfitting. To help the model train,
the nuclear features were normalized to a mean of 0.5 and a variance of 0.5.

Fig. 5 shows randomly selected example nuclei for the eight learned cell types by the
codeword assignment of DBC. These are nuclei for which the maximal codeword index is the
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Fig. 7. ROC curves for predicting basal subtype (Positive = basal, Negative = other) on the test
partition of TCGA-BRCA patients. SVM-Stat represents a standard approach to histopathologi-
cal image summarization and classification, in which an image is summarized by statistics of the
distribution of cellular features.

column in which they are shown, though since the codeword assignments are soft, some nuclei
may be encoded as a mixture of several codewords. Patterns can be seen in the assignments,
such as small, dark, lymphocytic cells and thin stromal cells, as well as the grouping of mostly
hollow, highly textured nuclei. We found that codeword two never received the maximal
mixture coefficient for any nuclei, which is why no examples are shown. With the knowledge
of what types of cells are being mapped to which codewords, we can then investigate the
BoW representations for WSIs to provide further insight. Fig. 6 shows BoW representations
for the WSIs of several patients of basal and non-basal subtypes using the learned codeword
assignment. The H&E images on the left of the two columns are randomly selected sample 500
× 500 pixel patches from the tiles of the WSIs of these patients which were used for feature
extraction. The markings on the right indicate if the subtype of the patient was predicted
correctly. A general trend for the basal subtype of higher counts of codeword five and lower
counts of codewords one and six can be seen, though the true relationship lies in the weights of
the learned neural network of the BoW classifier. We observe that most non-basal patients had
a higher count of codeword one than codeword six. The upper left non-basal patient conversely
had a higher count of codeword six and was predicted by the BoW classifier to be of the basal
type. Similarly, the lower right basal patient had roughly equal counts of codewords one and
six and a low count of codeword five and was predicted not to be of the basal type.

The output of our BoW classifier is a scalar value between [0, 1], which can be interpreted
as the probability of belonging to the basal subtype and which can be thresholded at vary-
ing levels to trade-off between the false and true positive rates. Varying this threshold, we
generated the ROC curve of DBC on the separate partition of test patients shown in Fig. 7.
From the ROC curve, we observe that our trained DBC is well-balanced between classifying
basal and non-basal subtypes, achieving the reported class-balanced accuracy of 70% at a false
positive rate of 0.3 and a true positive rate of 0.7. We compared the performance of DBC to
a standard approach of summarizing histopathological images,13 in which images are summa-
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rized by statistics of the distribution of cellular features. For this comparison, we used the
mean and variance, which became the feature vector for each patient to be fed into a classifier.
We trained a SVM classifier with a RBF kernel using Scikit-learn22 on this feature vector and
called the overall method SVM-Stat. The ROC of this approach using the same training and
testing sets is also shown in Fig. 7. DBC shows a significant improvement over this standard
approach, which we attribute to the significant loss of information in summarizing all cellular
features together.

4. Discussion

We have shown the potential for DBC as a screening tool of histopathological images for
genomic markers. As a proof of principle, we showed the application of our approach for
identifying the basal molecular subtype based on imaging features, though our method could
easily be trained for other genomic markers, thereby learning new cell types relevant to that
marker. The effectiveness of DBC stems from its flexibility in learning what types of cells
are informative of the specific genomic marker and how best to jointly leverage the extracted
cellular features to define these cell types. Our overall method requires only a few minutes
per H&E image of 1000 ×1000 pixels to process, which is sufficiently fast for high-throughput
image-genomic analysis if WSIs can first be efficiently pruned for representative tiles, which
could be helped by the use of parallel GPU computing.

Furthermore, we believe several areas can be improved for our method. As a tumor pro-
gresses, the spatial relationship of cells changes, becoming increasingly disordered,1 and so
image features should consist not just of those of individual cells but also those describing
their spatial relationship. Graphical features of cells have been shown to increase accuracy of
automated non-small cell lung cancer subtype identification,23 and these features could easily
be appended to our BoW image representation to be used in the subsequent classification step.
The DBC framework could also easily be extended hierarchically to learn words for local re-
gions of nuclei in a spatial pyramid scheme9 to capture cellular heterogeneity at various scales.
Additionally, as more segmentation and imaging-genomic training data become available, the
performance of DBC is expected to also increase. Nevertheless, we believe our approach has
the potential to become a highly useful tool to connect imaging features with genomic signals
to unravel the phenotypic impact of genomic alterations in cancer.
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