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Eighty percent of DNA outside protein coding regions was shown biochemically functional by the 
ENCODE project, enabling studies of their interactions. Studies have since explored how convergent 
downstream mechanisms arise from independent genetic risks of one complex disease. However, the 
cross-talk and epistasis between intergenic risks associated with distinct complex diseases have not 
been comprehensively characterized. Our recent integrative genomic analysis unveiled downstream 
biological effectors of disease-specific polymorphisms buried in intergenic regions, and we then 
validated their genetic synergy and antagonism in distinct GWAS. We extend this approach to 
characterize convergent downstream candidate mechanisms of distinct intergenic SNPs across 
distinct diseases within the same clinical classification. We construct a multipartite network 
consisting of 467 diseases organized in 15 classes, 2,358 disease-associated SNPs, 6,301 SNP-
associated mRNAs by eQTL, and mRNA annotations to 4,538 Gene Ontology mechanisms. 
Functional similarity between two SNPs (similar SNP pairs) is imputed using a nested information 
theoretic distance model for which p-values are assigned by conservative scale-free permutation of 
network edges without replacement (node degrees constant). At FDR≤5%, we prioritized 3,870 
intergenic SNP pairs associated, among which 755 are associated with distinct diseases sharing the 
same disease class, implicating 167 intergenic SNPs, 14 classes, 230 mRNAs, and 134 GO terms. 
Co-classified SNP pairs were more likely to be prioritized as compared to those of distinct classes 
confirming a noncoding genetic underpinning to clinical classification (odds ratio ~3.8; p≤10-25). The 
prioritized pairs were also enriched in regions bound to the same/interacting transcription factors 
and/or interacting in long-range chromatin interactions suggestive of epistasis (odds ratio ~ 2,500; 
p≤10-25). This prioritized network implicates complex epistasis between intergenic polymorphisms 
of co-classified diseases and offers a roadmap for a novel therapeutic paradigm: repositioning 
medications that target proteins within downstream mechanisms of intergenic disease-associated 
SNPs. Supplementary information and software: http://lussiergroup.org/publications/disease_class 
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1.  Introduction 

Human diseases can be classified via multiple criteria: cell type, tissue, organ, system, 
topological body region, pathophysiological, epidemiological characteristics, and etiological causes. 
Thus, in clinical classification of diseases, genetic disorders have conventionally relegated to a 
subset of the classification pertaining to its etiology. The advent of genomic assays now offers the 
opportunity to utilize unbiasedly a broad number of molecules of life to redefine the architecture of 
clinical classifications.  

For example, cancers pertaining to distinct organ and cell types have been shown to share 
common somatic mutations 1 or transcriptomes and sometimes respond to the same therapy in spite 
of their distinct conventional classification, suggesting a new systems oncology etiology to cancer 
pathophysiology. We have previously shown that the miRNome of tumors classify the primary 
cancers by organ of origin as expected, while their paired metastases remarkably classify according 
to their progression (oligometastatic vs. polymetastatic) regardless of the primary site and metastatic 
site 2. Recently, Genome-Wide Association Studies (GWAS) have implicated the same 
polymorphisms to distinct diseases of the same clinical class (e.g., cardiovascular system). Many 
distinct autoimmune diseases are found to have the same polymorphisms relating to the major 
histocompatibility complex region of chromosome 6, along with some other chromosome regions 
involving signaling in immune response (e.g., cytokine, interleukin, and interferon) 3, 4. These same 
polymorphisms have also been associated with distinct traits of the metabolic syndrome 5.  

In addition to studying each disease class separately, studies have also been conducted at a 
system level to unveil mechanisms that link individual diseases to a disease class. A disease class is 
likely to be driven by common genes and even common biological sub-networks, thus rendering a 
cluster structure or modularity in the biological network that separates it from other classes 6. The 
modularity for disease classes has been observed in various types of molecular networks based on 
their risks identified in shared intragenic regions, including disease-gene networks 7-10, drug-target 
networks 11, transcription factor networks 6, 12, and protein-protein interaction networks 13. Ohn 
broadened the similarity between diseases by looking into correlated polymorphisms by GWAS p-
values 14. In addition, two studies leveraged trans- Expression Quantitative Trait Loci (eQTL) 
analyses studies respectively limited to the immune systems and node-degree properties 15, 16. On 
the other hand, traditional genetic-interaction studies such as PLINK 17 and BOOST 18, as well as 
recent integrative functional studies on non-coding disease variants 19, 20 such as GWAS3D 21 and 
CEPID 22 may also provide insight into how distinct diseases of the same disease class co-classify 
together. In spite of the genetic, genomic, and biological network studies generally conducted for 
specific disease classes, the biological mechanisms of the majority of disease-associated intergenic 
polymorphisms remain obscure as well as their contribution to explaining these risks at the disease 
class level.   

We recently reported that downstream functional effects of distinct intergenic Single Nucleotide 
Polymorphisms (SNP pairs) associated with the same complex disease are likely to converge at 
some levels of biology such as sharing downstream transcripts or regulating functionally similar 
biological pathways or processes 23. Our collaborators, Moore and Denny research groups, 
confirmed genetic synergy or antagonism between the top prioritized convergent intergenic SNP-
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pairs in a GWAS of Alzheimer’s and a Phenome-Wide Association Study (PheWAS) of rheumatoid 
arthritis 23. However, this study did not address the convergent mechanism of SNP pairs between 
distinct diseases associated with the same clinical classification (co-classified).  

Here, the downstream functional similarity between two SNPs (similar SNP pairs) is imputed 
using a multiscale information theoretic distance model for which p-values are assigned by 
conservative permutation resampling of network edges without replacement (node degrees 
constant). We hypothesized that we could extend this approach to identify downstream mechanisms 
of intergenic SNPs with distinct co-classified diseases, by integrating the classification 
information of the NHGRI diseases/traits and reanalyzing the results, to infer the noncoding genetic 
architecture of disease classes, which has implications for drug repositioning and mitigation of risks 
for multiple diseases within the same class.  

2.  Methods 

2.1.  Main Datasets 

We surveyed Lead SNPs (SNPs investigated in GWAS) from two datasets, the National Human 
Genome Research Institute (NHGRI) GWAS catalog 24 and the eQTL association dataset named 
SNP and Copy Number Variant Annotation (SCAN) database 25. The NHGRI GWAS catalog 
provides a comprehensive resource by systematically cataloging and summarizing the key 
characteristics of reproducible trait/disease-associated SNPs from currently published GWAS 24. 
The NHGRI GWAS catalog comprises 7,236 associations between 574 diseases/traits and 6,432 
distinct SNPs (6/7/2012). The SCAN database contains 4,189,682 eQTL associations between 
833,004 distinct SNPs and 11,860 mRNA at P£10-4 from lymphoblastic cell lines. The integration 
of these two datasets yields 2,358 Lead SNPs in common (1,092 intergenic SNPs), along with their 
traits/diseases and mRNA information. The 574 NHGRI diseases/traits were classified into 15 organ 
& clinical systems disease classes according to Maurano et al. 6 along with curation (Suppl. Tab. 1).  

A pairwise analysis was conducted on all possible combinations of two Lead SNPs inherited in 
distinct haplotypes (pairs of SNPs in strong linkage disequilibrium (LD) were removed from our 
study). The HapMap CEU LD dataset 26 was used to determine LD level and the exclusion criterion 
of r2≥ 0.8. Since our major interest is in intergenic variants (i.e., located between genes), the pairs 
in which both SNPs are intragenic (i.e., located within genes) were also excluded. The definition of 
“intergenic” and “intragenic” are derived from dbSNP (Build 138 on 2/21/2014) 27, which considers 
a SNP in a gene region to be intragenic if it is within 2kb upstream (5’ side) or 0.5 kb downstream 
(3’ side) of that gene. ~2.8 million pairwise combinations were derived from these Lead SNPs with 
r2<0.8, associated with 467 diseases, 6,301 mRNAs, 1,635 molecular functions (MF), and 2,903 
biological processes (BP). Among them, 1,977,927 pairs contain at least one intergenic SNP (named 
as intergenic Lead SNP pairs): 595,053 intergenic-intragenic and 1,382,874 intergenic-intergenic. 
800,438 pairs are intragenic-intragenic. Among the intergenic Lead SNP pairs, 211,808 are 
associated with same disease classes (i.e., each SNP in one pair is associated with a specific disease 
class) while 1,766,119 are associated with distinct ones. 
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2.2.  Calculation of SNP similarity 

The prioritization process was applied to the intergenic Lead SNP pairs based on their convergence 
of eQTL-associated biological mechanisms. Three approaches were exploited to determine such 
shared (convergent) candidate mechanisms: (1) eQTL-associated mRNA overlap, (2) molecular 
function (MF) similarity of eQTL-associated mRNA, and (3) biological process (BP) similarity. We 
extracted MFs and BPs of each mRNA associated with a SNP from gene ontology (GO) annotations 
28, 29 to calculate the similarity of a SNP pair 23 (Table 1 & Figure 1).  
Table 1. Biological similarity calculations between two SNPs using nested Information Theoretic Similarity (ITS) 

Nested calculations (3 steps) 
1. Calculate the Information Theoretic Similarity (ITS) between two GO terms (GOITS) associated with the two SNPs 
through mRNAs using Lin’s method 30, 31. 
2. Based on GOITS, calculate the information theoretic similarity between two distinct mRNAs (mRNAITS), each 
associated with a SNP within a SNP Pair, using a modified Tao’s approach 31-33. 
3. Determine the semantic biological similarity between two SNPs (SNPITS) within a SNP pair using the mRNAITS 
of pairs of mRNAs associated with the two SNPs respectively, using Li’s nested ITS approach we recently published 
23. The SNPITS values range from 0 to 1, with 0 corresponding to no similar downstream effects and 1 corresponding 
to identical downstream effects (e.g., either the same mRNAs or distinct mRNAs with the equivalent GO terms). The 
similarity measurement between SNPs can capture relationships between SNPs including the ones without any 
common mRNAs in their eQTL associations. 

 

 
Fig. 1. Nested Information theoretic calculations. The similarity between SNP pairs is calculated by three nested steps 
subsequently (I) similarity between two gene ontology terms (GOITS), (II) similarity between two genes (mRNAITS) 
using GO term similarities, and (III) similarity between two SNPs (SNPITS) using mRNA similarities. 

2.3.  Network permutation to establish the p-values for observed mRNA overlap and ITS scores 
between two SNPs  

To determine the statistical significance of imputed biologically convergent mechanisms of SNP 
pairs, permutation of the eQTL network was conducted for mRNA overlap, molecular function 
similarity, and biological process, separately. We also included the eQTL associations of SNPs not 
known to be associated with any diseases to create a null distribution of SNP mRNA overlap 
(statistical mRNA overlap) and ITS. When examining the significance of each of the three 
mechanisms, we controlled the original node degree (ND) of each specific SNP and each specific 
mRNA. Specifically, we kept the number of mRNAs associating with one SNP the same, or vice 
versa, during the resampling of the bipartite eQTL network (shuffling the associations between 

Step1: calculate GOITSStep1: calculate GOITS Step2: calculate mRNAITSStep2: calculate mRNAITS Step3: calculate SNPITSStep3: calculate SNPITS

SNPSNP

mRNAmRNA

BP/MFBP/MF
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SNPs and mRNAs). Deep permutations at 100,000 times were conducted on the Argonne Lab 
Beagle supercomputer to reach a sufficient power (20 million core hours). P-values were derived 
from the imputed results of the observed eQTL network and the set of permuted networks. False 
Discovery Rate (FDR) was used to adjust for multiplicity, and the SNP pairs with FDR<0.05 are 
termed prioritized Lead SNP pairs. 

For MF and BP similarity calculations, a similar permutation procedure was conducted as done 
for mRNA overlap, except that SNPs and mRNAs without corresponding GO annotations were 
removed and only those with BP or MF associations remained in the bipartite network for 
resampling. We further investigated the significance of overlapped GO terms from the SNP-GO-
SNP triplets for every pair of SNPs based on the same set of permutations and prioritized the 
overlapped terms between pairs of SNPs with a FDR<0.05. The whole procedure of permutations 
was conducted multiple times for different eQTL association cutoffs ranging from P£10-4 to P£10-6 
and at three levels of node degrees: ND≥1, ND≥3, and ND≥5. 

Through such stringent scale-free network controls, not only will the SNP pairs associated with 
same mRNAs be prioritized, but also the pairs in which two SNPs are associated with distinct 
mRNAs, if biological similarity exists. 

2.4.  Internal Validation: enrichment studies of co-classified intergenic SNP pairs among 
prioritized pairs  

To demonstrate whether the shared biological mechanisms of intergenic Lead SNP pairs are relevant 
to the underlying biology of disease classes, we assessed whether they are more likely to be found 
related to the same disease class than those across distinct classes. One-tailed Fisher’s Exact Test 
(FET) was applied for the enrichment study, and odds ratios of significant mRNA overlapping, MF, 
and BP similarities for SNP pairs associated with the same disease classes were calculated by FET 
at multiple eQTL p-value cutoffs and three levels of node degrees.  

2.5.  External Validation: ENCODE regulatory elements and chromatin interaction enrichment 
of co-classified prioritized intergenic SNP pairs  

The potential mechanisms at play for the prioritized SNP pairs were also investigated. We evaluated 
whether regulatory mechanisms were more likely to occur in prioritized intergenic SNP pairs 
associated with the same disease class as compared to their counterparts (distinct classes or 
insignificant). We integrated Encyclopedia of DNA Elements (ENCODE) data 19 of Lead SNPs and 
conducted Fisher’s Exact Test to assess the enrichment of molecular regulations within prioritized 
SNP pairs of the same disease classes. Three possible shared regulatory mechanisms are assessed 
for pairs of SNPs located in distinct regions, including (1) binding with same transcription factor 
(via ChIP-seq), (2) binding with distinct transcription factors (via ChIP-seq) connecting through 
protein-protein interaction (PPI), and (3) within the anchor regions of long-range chromatin 
interactions (via ChIA-PET 34). We compared the enrichment of regulatory mechanisms with two 
conventional methods, which prioritized SNP pairs by (1) any intergenic Lead SNP pairs and (2) 
intergenic Lead SNP pairs with at least one mRNA overlap (non-statistical mRNA overlap) in 
eQTL associations, respectively. To avoid loss of information when calculating regulatory functions 
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between Loci in ENCODE, every Lead SNP was extended to its strongly associated LD SNPs based 
on the RegulomeDB database 35 (inheritable haplotype).  

3.  Results and Discussion 

3.1.  Overall results and visualization 

Prioritization of convergent downstream mechanisms of SNPs required extensive conservative 
scale-free permutation resampling of network edges (node degrees constant), shown substantially 
more conservative than conventional theoretical statistics or similarity-scores cutoffs (Suppl. Fig. 
1). We prioritized 3,870 intergenic Lead SNP pairs (1,378 intergenic-intergenic; 2,492 intergenic-
intragenic) at FDR<0.05 that share at least one of the three imputed biological mechanisms, of which 
755 pairs are found within the same disease class (280 intergenic-intergenic pairs; 475 intergenic-
intragenic; 80 were associated with the same diseases). Without additional prioritization, the 
network relates these 755 pairs with as many as 1,683 mRNAs and 2,060 GO terms. After 
convergent mechanism prioritization, these SNP pairs implicate 14 disease classes, 277 Lead SNPs 
(167 intergenic, 98 noncoding intragenic, 12 protein-coding), 230 mRNAs, and 134 GO  

 

Fig. 2. The network of 755 prioritized intergenic SNP pairs within disease class at FDR<0.05. 80 SNP pairs are 
within the same disease (previously published), 675 are within the same disease class but across distinct diseases 
(new). 3,115 SNP pairs prioritized cross-class are not shown. 19 SNPs were associated with two distinct diseases in 
distinct classes by GWAS and shown. 
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Figure 4. Details of implicated co-classified diseases through SNP pair similarity confirming shared genetic 
underpinning and biological mechanisms. Two classes, cancers (Fig. 2-3 #3) and cardiovascular disease (Fig.2-3; 
#6), shown. Disease-pairs are related by at least one out of 755 prioritized pairs of Lead SNPs, each associated with 
a disease in the pair respectively. Previous studies have shown somatic mutations and transcriptomes can reclassify 
cancers molecularly. Here a new property is presented: common mechanisms of noncoding intergenic regions. 

 

Fig. 3. The subset of the prioritized network of disease class mechanisms containing 230 mRNAs shared between 
428 SNP pairs and their associated GO mechanisms (48 GO-MFs, and 86 GO-BPs). Biological modularity of shared 
groups of mRNAs is associated with distinct SNPs themselves associated with distinct co-classified diseases. Not 
shown are the biomodules where 327 SNP-pairs are associated by distinct mRNAs to distinct but similar pathways 
(Methods 2.2). Names of classes are defined in Fig. 2. 
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mechanisms. A simplified network shows only the 755 prioritized intergenic Lead SNP pairs and 
their related disease classes, leaving out the mRNAs and GO-terms for simplicity (Fig. 2). 14 of the 
15 studied disease classes harbor convergent biological processes and molecular functions perturbed 
by a set of intergenic SNPs with similar downstream effects, presenting an apparent modularity for 
each class. We further show a sub-network of prioritized biological mechanisms for the prioritized 
SNP pairs associated with the same classes in Fig. 3. The convergent connections among intergenic 
SNPs of distinct diseases within the same disease class suggest the investigation of an unusual form 
of pleiotropy: distinct intergenic risks of co-classified disease sharing common downstream 
mechanisms that could affect the same target transcripts that may relate to the emergence of both 
diseases in the same pathophysiological classification (e.g., Fig. 4 showing the detail of co-classified 
diseases associated through SNP pair similarity in Fig. 2, only  cancer and cardiovascular system 
shown).  

3.2.  Enrichment of shared biological mechanisms in prioritized intergenic SNP pairs of distinct 
co-classified diseases (Methods 2.4) 

 

Fig. 5. Enrichment of shared biological mechanisms among 755 intergenic Lead SNP pairs associated with the same 
disease classes (Method 2.1, LD cutoff r2<0.8), remains similar with more stringent LD cutoff (r2<0.01, not shown) 
and also remains the same when excluding the previously published 80 SNP pairs associated with the same diseases 
(results not shown). The subset of 280 prioritized SNP pairs comprising only intergenic-intergenic pairs also remains 
significant (Suppl. Fig. 2). 

We investigated whether intergenic Lead SNP pairs, with each SNP associated with two distinct co-
classified diseases, were more likely to share a biological mechanism (prioritized) than SNP pairs 
associated with distinct diseases classified in distinct pathophysiological classes. Enrichment 
analyses were performed for the 755 prioritized SNP pairs associated with same classes among 
3,870 prioritized intergenic Lead SNP pairs at different eQTL p-value cutoffs (10-6 ≤ eQTL p-
value≤10-4; 100,000 permutation resampling, SNP pair FDR<0.05) and different node degrees SNP 
node degree (count of mRNAs associated with that SNP at the eQTL p-value cutoff). As shown in 
Fig. 5, odds ratios (ORs) range from 1.4 to 3.8 (x-axis: 5.1´10-6≤p-value≤0.02), 1.4 to 3.4 (6.5´10-

26≤P≤2.1´10-2), and 1.9 to 3.7 (8.3´10-4≤P≤2.2´10-7) for mRNA overlapping, MF similarity, and 
BP similarity, respectively. This internal validation supports the hypothesis that biological 

Prioritized SNP-pairs by

mRNA overlap

E
n

ri
c
h

m
e

n
t 

(o
d

d
s
 r

a
ti
o

)

A C Prioritized SNP-pairs by

 biological process similarity

B Prioritized SNP-pairs by

 Molecular Function similarity

Baseline                        (odds ratio=1, NS) 

≥ 3 ≥ 5≥ 1

Threshold of mRNAs

associated to each SNP

mRNA overlap

GO-MF similarity

GO-BP similarity

*

0
1

2
3

0
1

2
3

0
1

2
3

 10−4 10−5   10−6

p−value cutoffs  for eQTL association (Log scale)  

 10−4 10−5   10−6  10−4 10−5   10−6

SNP-pairs = intergenic SNP-pairs

Same disease 

class SNP-pairs

Distinct disease

 class SNP-pairs

Prioritized

SNP-pairs

Non Prioritized

SNP-pairs

Contingency table:*Example panel A, 

Odds ratio 2.1

 

D

408 1,621

211,400 1,764,498

Pacific Symposium on Biocomputing 2018

531



 
 

 

mechanisms are more likely to be shared within a class of diseases and may define in part a common 
pathophysiology of otherwise distinct diseases. 

3.3.  Enrichment of ENCODE regulatory elements and chromatin interaction in prioritized 
intergenic SNP pairs of distinct co-classified diseases (Methods 2.5) 

ENCODE data provides an opportunity to question if convergent candidate mechanisms of 
prioritized SNP pairs of co-classified diseases imputed by eQTL associations may be attributed to 
common regulatory elements (e.g., transcriptional factors) or long-range chromatin interactions. If 
so, this could be suggestive of possible epistasis between disease risks of distinct co-classified 
diseases, in other words, a disease class epistasis. We identified substantial enrichment in three types 
of regulatory elements: shared transcription factor (Fig. 6 panel A), interacting transcription factors 
(Fig. 6 panel B), and long-range chromatin interactions in the region of the SNPs in the pair (Fig. 
6 panel C). However, the effect size (odds ratio) of enrichment of regulatory elements in SNP pairs 
associated with distinct co-classified diseases shown in the figure is about 30 percent smaller than 
that of our previously published enrichment of SNP pairs associated with the same disease (not 
shown 23). Taken together, these results indicate that common regulatory mechanisms of intergenic 
SNPs strongly underpin the pathogenesis of a disease and to a moderate degree some mechanisms 
are also shared by distinct, yet pathophysiologically co-classified diseases.  

4. Limitations and future studies 

First, we only reported eQTLs derived from LCL cell lines. Studies on 44 tissues in the GTEx project 
are ongoing and will be reported elsewhere. SNPs with marginal p-values 36 will also be investigated 

Fig. 6.  Enrichment of common ENCODE-derived regulatory mechanisms in genomic regions of the prioritized 
intergenic Lead SNP pairs for disease classes. More stringent LD cutoff (R2<0.01) yielded similar results (not 
shown). 
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using the proposed method to unveil their pairwise synergy. Second, gene ontology annotations are 
biased by human interest. Even though the biases were controlled partially by the scale-free persisted 
permutations, some biases may still exist and induce false positive results. Alternative unbiased 
approaches may be worth incorporating in the future such as the information-theoretic framework 
to address the accuracy of the GO annotation 37-39. Third, the permutations on large eQTL networks 
are expensive; we are working on more efficient implementations and strategies. Fourth, the 
validation in a GWAS of epistasis between convergent intergenic SNPs associated with distinct co-
classified diseases is not possible retrospectively as clinical phenotypes are generally obtainable for 
only one disease in a GWAS. A prospective study for the validation is cost-prohibitive; we are thus 
planning a collaboration with eMERGE researchers to conduct a PheWAS. Finally, the SNPs 
prioritized in this study are statistically associated with but not necessarily functionally causal to a 
disease (or co-classified diseases) thus other polymorphisms inherited in the same loci must be 
considered. Of note, our approach incorporated this calculation through the Linkage Disequilibrium 
parameter (Methods section 2.5). Also, further systematic investigation on the relationship between 
functional synergy and genetic interaction of SNPs prone to same or co-classified diseases will 
provide insight into the mechanisms of disease classes.  

Beyond the modularity within classes, related disease classes are obviously also interconnected 
through shared genes and gene ontology annotations in Fig. 3. This study focused on intergenic 
SNPs prioritized across distinct diseases of the same class, leaving out thousands of SNP pairs 
prioritized across classes. Indeed, cross-class biomodularity merits its own publication and 
additional analyses due to its complexity.   

5. Conclusion 

Using the quantified measurement of SNP biological similarity we recently developed, we identified 
755 intergenic SNP pairs associated by convergent eQTL function to distinct, yet 
pathophysiologically co-classified diseases. We found that these independently inherited (LD 
r2<0.01) intergenic SNP pairs were more likely to be enriched in (i) shared transcription factors, (ii) 
interacting transcription factors, and (iii) long-range chromatin interactions. A common genetic 
architecture of the pathophysiology of co-classified diseases is unsurprising; however, a common 
noncoding intergenic architecture for clinical classification harbors many new questions. For 
example, is epistasis occurring between distinct disease risks, and if so, can some disease risks 
protect against other diseases through antagonism of long-range chromatin interactions implicating 
noncoding intergenic regions? Additionally, can we implicate new drug targets or reposition drugs 
through the shared intergenic interactions between distinct co-classified diseases? While the 
prioritized intergenic SNP pairs associated with each disease class reassuringly recapitulates the 
pathophysiological classification of disease of complex inheritance, does this implicate that complex 
diseases are fundamentally distinct from Mendelian ones through these noncoding interactions? 
Indeed, GWAS identified about half the variants in intergenic regions. However, the array platforms 
are seeded biasedly with half the probes in intergenic regions (selection bias). This proposes that 
more than 80% of the complex-disease associated variants could be located in intergenic regions, 
suggesting that if the heritability gap is attributable to genetic interactions, the majority of these 
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would occur with intergenic noncoding regions. On the other hand, our study aligns further 
intergenic genetic signal with that of the central dogma of molecular biology, as we provide for each 
prioritized SNP pair falsifiable hypotheses of convergent mechanisms implicating coding regions 
(eQTL mRNAs).  
     This prioritized network implies complex epistasis between intergenic polymorphisms of co-
classified diseases and offers a roadmap for a novel therapeutic paradigm: repositioning medications 
that target proteins within downstream mechanisms of intergenic disease-associated SNPs.  
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Supplementary Figures 

 
Suppl. Fig. 1. Permutation-based empirical statistics is more conservative than Fisher’s Exact Test when assessing 
mRNA overlap (left panel) and semantic similarity of biological processes (right panel) of SNP pairs. Prioritized 
SNP pairs are shown in red. 

 
Suppl. Fig. 2. Enrichment of shared mechanisms among the subset of intergenic-intergenic Lead SNP pairs 
associated with distinct diseases of the same disease classes. Compared with Fig. 5 where intergenic-intragenic 
pairs were included with the same LD cutoff r2<0.8, the enrichment is higher for exclusively intergenic pairs. 

 

10−4 10−5 10−6

0
1

2
3

4

10−4 10−5 10−6

0
1

2
3

4

10−4 10−5 10−6

0
1

2
3

4

p−value cutoffs  for eQTL association (Log scale)  

E
nr

ic
hm

en
t (

od
ds

 r
at

io
)

Prioritized SNP−pairs by 
      mRNA overlap

A Prioritized SNP−pairs by mRNA
molecular  function similarity

Prioritized SNP−pairs by mRNA  
bioloigcal  process similarity

B C

*

Baseline, NS          (odds ratio=1) 

≥ 3 ≥ 5≥ 1

Threshold of mRNAs
associated with each SNP

mRNA overlap
GO-MF ITS
GO-BP ITS

Pacific Symposium on Biocomputing 2018

535




