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Analysis of patient genomes and transcriptomes routinely recognizes new gene sets associated with human 

disease. Here we present an integrative natural language processing system which infers common functions for 

a gene set through automatic mining of the scientific literature with biological networks. This system links 

genes with associated literature phrases and combines these links with protein interactions in a single 

heterogeneous network. Multiscale functional annotations are inferred based on network distances between 

phrases and genes and then visualized as an ontology of biological concepts. To evaluate this system, we 

predict functions for gene sets representing known pathways and find that our approach achieves substantial 

improvement over the conventional text-mining baseline method. Moreover, our system discovers novel 

annotations for gene sets or pathways without previously known functions. Two case studies demonstrate how 

the system is used in discovery of new cancer-related pathways with ontological annotations.  

 

Keywords: text mining, functional annotations, knowledge network, gene interactions  

1. Introduction 

With significant advances in ‘omics technologies, it has become increasingly routine to identify 

functionally related sets of genes based on different biological patterns. For example, a gene set may 

be computationally derived based on differential expression1,2, based on associations to the same 

phenotypes3,4, or based on a high density of molecular interactions among the genes5–8. Because of 

their functional relationships, these gene sets can often be interpreted as cellular pathways or protein 

complexes, enabling a systems approach to studying human diseases beyond individual genes2-5. 

     Given a gene set of interest, a critical task is to learn what is its overall function as a pathway or 

complex in the cell. There are two major approaches to address this task. The first approach is to 

search for significant overlap with known pathways in manually curated databases such as the Gene 
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Ontology (GO)9 and the Kyoto Encyclopedia of Genes and Genomes (KEGG)10. However, it is very 

likely that little or no overlap can be found due to the limited coverage of these databases, especially 

when querying with gene sets related to a rare disease. 

    The second approach is to search for scientific articles that describe each gene in the set, and then 

summarize these articles to describe the aggregate function of the gene set. Manually performing this 

process requires substantial domain knowledge and does not scale to large pathways. While automatic 

summarization of free text has been proposed by many text-mining methods11-12, these methods can 

describe only one gene rather than a gene set. In particular, automatic summarization for a gene set 

requires addressing several new challenges. First, the increased number of free text articles introduces 

diverse and noisy annotations compared to individual genes. Second, the relationship between 

pathway functions and gene interactions should be considered, since genes can perform very different 

functions when participating in different biological processes. Third, literature contains many 

potential and diverse function annotations, only some of which are relevant. Thus researchers need 

systematic approaches to filter, organize and display the most useful information in literature to better 

understand the biological pathways represented by a gene set. Many related approaches mine 

literature data to study the functions of a group of genes together. CoCiter tests the significance of co-

citation of a gene set either from a user-defined queried gene sets or a known pathway13. Since the 

functions of this gene set are provided by user, CoCiter is not able to automatically mine new 

functional annotations to describe the gene set. Martini is a gene set comparison tool which assesses 

the similarity of two gene sets by using keywords extracted from Medline abstracts14. Although gene 

sets are compared using keywords, the functional description for each gene set is not explicitly 

generated. 

    Here we develop a novel approach to automatically mine functional annotations of pathways from a 

large corpus of literature supported by biological networks. Our approach has two major advantages 

over previous text mining methods. First, it integrates semantic information derived from literature 

with biological information derived from experimental and interactome data. In this framework, 

annotations and genes are linked through a comprehensive similarity network. By propagating 

information in the network, an annotation can be assigned to a gene even when the two were never 

mentioned together in the same literature. Second, we adopt a new way to organize and visualize 

functional annotations using a data structure called a “Hierarchical Concept Ontology”. This ontology 

reduces redundant information and visual complexity to display the complex structure embedded in 

the network. We evaluate our method on both manually-curated pathway annotations and gene sets 

derived from computational tools. We observe substantial improvement in predicting the manually 

curated annotations in comparison to a text-mining baseline (non-network) approach. We further 

explore two case studies to demonstrate how our method can combine text mining, molecular 

networks and advanced visualization to discover new pathways related to cancer. 
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2. Methods 

Our method consists of four major steps (Fig. 1). First, it constructs a vocabulary of high quality 

phrases (a sequence of one or more words) by processing a large corpus of PubMed journal articles15 

using a software AutoPhrase16. Second, phrases are connected within a weighted network based on 

their probability of co-occurrence within the same articles. Third, our method builds a phrase-gene 

similarity network by joining the phrase-phrase network with an existing gene-gene network derived 

from experimental data. Fourth, phrases are ranked by how well they describe the function of a gene 

set. Finally, top-ranked phrases are projected into a low-dimensional space and hierarchically 

clustered to create a Concept Ontology.  

 

 
Figure 1. Diagram of our method 

2.1 Constructing a phrase-gene network 

We construct a weighted network to quantify the functional similarities between both phrases and 

genes. The edge weight wAB between phrase A and phrase B is defined as:  

                                                       𝑤𝐴B =
𝑃𝑟(𝐴,𝐵)

𝑃𝑟(𝐴)𝑃𝑟(𝐵)
                                                     (1) 

where Pr(A) is the marginal probability that phrase A appears in any article and Pr(A, B) is the 

probability that phrase A and phrase B co-occur in the same article. Intuitively, two phrases receive a 

large edge weight if they co-occur together more often than expected given their individual 

probabilities. In practice, non-informative phrases such as ‘cell lines’ and ‘system biology’ have many 

network neighbors with low edge weights; thus we retain only the top 50 edges for each phrase. To 

calculate the edge weight between two genes, we integrate multiple heterogeneous data sources, 

including gene co-expression, protein-protein interaction, protein-domain co-occurrence and genetic 

interaction (see section 3.1). We perform this integration in an unsupervised fashion using a network-
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fusion-based algorithmic framework17. To calculate the edge weight between a phrase and a gene, the 

name of the gene is considered as a phrase and the weight is then calculated by Eqn. 1. In this way, 

the phrase-phrase and gene-gene networks are joined into a single network consisting of both phrases 

and genes as nodes. 

2.2 Ranking candidate annotations of a pathway 

Based on connections in this initial phrase-gene network, we further identify non-obvious links 

between phrases and genes through a random walk transformation of the network. An association 

score between gene A and phrase B is defined as the probability of randomly walking from A to B in 

the network, with restart probability = 0.5. Similarly, the association score between a queried gene set 

(pathway) and a phrase is defined as the average association score between the phrase and all genes in 

the set. We then rank pathways based on these scores. To efficiently rank a large number of phrases in 

a reasonable time, we only consider phrases that are within a distance of <3 to any of the genes in a 

queried pathway. Use of this filter in practice did not result in any significant decrease in performance 

(as evaluated below). Finally, we select all phrases with scores above a threshold as the candidate 

annotations of the queried pathway. We will discuss how to empirically pick this threshold in the 

below ‘Experimental results’ section. 

2.3 Visualizing results as a Concept Ontology  

The number of candidate annotations returned by the previous step can be very large, especially for 

large pathways. In general, synonyms are connected by the strongest weights because they are 

exchangeable in the literature. Phrases related to the same topic such as ‘tumor suppressor’ and ‘driver 

mutations’ will also be assigned strong weights but weaker than synonyms. Such intuition encouraged 

us to organize the flat phrase networks into a data-driven hierarchical ‘concept’ ontology18-19. For this 

purpose we adopt a network embedding approach17 in which phrases are projected into a low-

dimensional space and the cosine of two phrase embedding vectors is used as their pairwise distance. 

Given this new distance matrix, we then apply a network clustering approach, CLiXO18, to transform 

the flat phrase network into a data-driven ‘concept’ ontology, where leaf nodes are phrases and 

internal nodes are clusters of similar phrases suggestive of higher order ‘concepts’. Low-level 

concepts tend to be relatively concrete, because all phrases are strongly connected with each other, 

while high-level concepts tend to be more abstract, because phrases are more loosely connected with 

each other. Similar to a manually curated ontology, we assign each concept a name using a 

representative phrase having minimum distance with all the other phrases in the same concept cluster. 

Cytoscape20 is then applied to visualize the data-driven Concept Ontology. 

 

3. Experimental results 
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3.1 Dataset and experimental settings 

We obtained 33,462,308 journal articles from PubMed published between 1994 to 2017. For each 

article, we only used the abstract and title rather than the whole article. We obtained 41,367 gene 

descriptions and gene name synonyms from NCBI15. The lengths of descriptions ranged from 100 to 

300 words. AutoPhrase16 then identified 727,289 phrases from the text corpus combining both gene 

descriptions and journal articles.  

    To calculate gene similarities, we aggregated various types of molecular networks using a Random 

Forest (RF) model trained to best recover the GO semantic distance between gene pairs. The trained 

model can be viewed as a nonlinear weighting of different kinds of features to reflect statistical 

pairwise correlations between two genes. The integrated data sources include coexpression networks, 

protein-protein interaction networks and protein-domain co-occurrences and genetics interactions, as 

follows. For co-expression networks, we used 980 genome-wide datasets extracted from the Gene 

Expression Omnibus (GEO) database21. We also used co-expression networks from the Genotype-

Tissue Expression (GTEx)22 project in which both global and tissue-specific co-expression are 

considered. In addition, we calculated a co-expression matrix on both the Human Protein Atlas and 

the Cancer Cell Line Encyclopedia23,24. For protein-protein interaction networks, we included all 

interactions in InBioMap25 and only physical interactions in BioGRID26.  In addition, we included 

genetic interaction data inferred from radiation hybrid genotypes27 and domain co-occurrence data 

from InterPro28 and PFAM29. 

3.2 Performance 

3.2.1 Recovering curated names in GO 

We examined the ability of our method to recover the names of known biological processes and 

cellular components in GO, given only information about their sets of annotated genes. For each GO 

term, we looked for its curated name among all candidate phrases ranked according to their 

association scores to the genes in the term (Section 2.2). Gene-term annotations were taken using 

experimental evidence codes (EXP, IDA, IPI, IMP, IGI, and IEP) but not in silico codes (e.g. IEA) to 

avoid potential leakage of labels. 

    We found that for 40% of terms in the biological process branch of GO, the curated name was 

among the top 50 candidates (Fig. 2a). Similarly, for 50% of terms in the cellular component branch, 

the curated name was among the top 50 candidates (Fig. 2b). More generally, we calculated the 

proportion of GO terms for which the curated name was among the top K candidate names of the 

term. For comparison, we set up a baseline approach in which a phrase is scored and ranked  simply 

by the number of articles that mention this phrase together with any of the genes in the gene set. This 

simple but intuitive baseline mimics a search engine that ranks documents based on word frequency30. 
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Our method substantially outperformed this baseline approach in naming terms across all three 

branches of GO (Fig. 2a-c). Here, for each term we only considered the curated name itself and did 

not reward returning the names of ancestors or descendants. In practice, however, we also observed 

the names of ancestors and descendants among the top ranked phrases (Fig. S1-3). 

    Further examining these results, we observed that the rank of the curated name identified by our 

method was positively correlated with the size of the gene set (Fig. 2d). That is, our method predicted 

more accurately when the gene set was small. For sets with fewer than 250 genes, our method found 

the correct curated term among the top 10 phrases the majority of the time. When the gene set was 

larger than 750 genes, our method could only detect the curated name among the top ~75 phrases. An 

explanation for this result is that large gene sets tend to cover broad or diverse functions and thus are 

more difficult to summarize by 

a short phrase.  

 

Figure 2. Comparison of our 

method and baseline on 

recovering term names of three 

Gene Ontology categories: 

Biological Process (a), Cellular 

Component (b) and Molecular 

Function (c). The fraction of 

terms for which the curated name 

was among the top K candidate 

phrases. (d) The correspondence 

between the rank of term names 

and the sizes of terms. The Y-axis 

shows the distribution of ranks of 

curated names with varying 

sparsity levels shown in the X-

axis. 

      

Next, we studied another critical problem: Given a ranking of phrases, how do we determine the 

threshold to select the most relevant phrases? To address this problem, for each GO term, we 

compared the ranking of its curated name with its association score. As shown in Figs. 3a-b, better 

rankings of curated names were generally tied to stronger association scores. This implies that the 

association scores across different GO terms are comparable. Therefore, we applied a universal 

threshold on the association score to determine final annotations for every GO term. We found that 

when the score is larger than -6 (log domain), we could always find the curated name among top 40 
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ranked phrases, regardless of term size (Fig. 3b). Therefore, we used -6 as our universal threshold to 

determine annotations. 

 
Figure 3. Selecting relevant phrases based on the association score. (a) For each GO term, the association score 

of its curated name is plotted with the rank of this score among all candidate phrases. (b) Zoom-in of panel (a) 

reveals that applying a threshold of ≥ -6 on the association score guarantees that the curated name of a term is 

ranked among the top 40 candidate phrases. 

 

 

Figure 4. Discovery and 

characterization of a new 

pathway by our method. (a) The 

pathway is defined by eight 

genes related by protein 

interactions, co-expression and 

protein shared domains. These 

functions of these genes are 

collectively described by 38 

phrases. (b) Cancer types in 

which these genes are significant 

mutated in The Cancer Genome 

Atlas (TCGA). 
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3.2 Functional annotations for unknown cancer pathways 

Encouraged by the ability of our method to recover the curated names of known pathways, we set out 

to assign names to new gene sets inferred from molecular data. We analyzed a total of 2,132 gene sets 

detected by the hierarchical clustering algorithm CLiXO18 based on a human gene similarity network 

with 19,035 genes and 181,156,095 edges (Section 3.1). Of these, we only considered those that did 

not significantly overlap with known pathways. In this section, we chose two example gene sets 

which were suggested to be highly related to cancer by our approach to demonstrate how our method 

can help to discover new biological knowledge. 

     

 
Figure 5. Summarization of biological function by a Concept Ontology. The 38 phrases describing the pathway 

in Fig. 4 were hierarchically clustered based on their semantic relations using the CLiXO algorithm. These 

phrases were organized into six major concepts. We list two of the journal articles, Mao et al.32 and Rotin et 

al.29,31, contributing to the concepts ‘lung disease’ and ‘epithelial cell’. 

 

As a first case study, we examined a pathway consisting of eight strongly interacting genes: NEDD4, 

PTEN, SLC11A2, SLC11A1, SFTPC, MT3, NDFIP1 and NDFIP2 (Fig. 4a). To our knowledge, this 

pathway was previously unknown, as it has poor overlap with all catalogued pathways in GO and 

KEGG (Jaccard Index ≤ 0.25). Our method identified 38 literature phrases associated with this set of 

genes (Fig. 4a). Although each of these phrases might represent a distinct biological function, we 

found that some were highly related to one another, forming a hairball-like subnetwork of gene-phrase 

linkages (Fig. 4a). Thus, it would be very challenging for a human to summarize the overall functions 

of this pathway. To address this challenge, we applied CLiXO to hierarchically organize these phrases 

into a Concept Ontology. Visualization of this ontology revealed six major functions at multiple 
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scales (Fig. 5). On a molecular level, this pathway has functions related to ‘ion transport’, 

‘acetoacetate decarboxylase activity’ and ‘ubiquitin ligase’. On a cellular and organismal level, it is 

involved in ‘epithelial cells’ and ‘lung disease’. These descriptions were supported by direct 

associations between phrases and genes in multiple articles, such as  ‘lung disease’ and NEDD4 in 

Rotin et al.29,31 and ‘lung epithelial cell’ and PTEN in Mao et al.32, and by indirect associations 

learned through the random walk transformation. As validation of these descriptions, we found that 

genes in this pathway were recurrently mutated in lung squamous cell carcinoma (LUSC), a disease in 

epithelial cells33, based on MutSigCV scores34 in The Cancer Genome Atlas (TCGA)35. All evidence 

suggested that this is a novel functional pathway related to lung cancer.  

    As a second case study, we examined another pathway, consisting of eight genes FBXW7, ARL2, 

FBXW11, FBXW2, BTRC, PWP2, COPA and FBXW10. These genes strongly interacted with each 

other primarily through domain co-occurrence, suggesting their proteins share similar 3D structures 

(Fig. 6a). This pathway was also previously unknown (Jaccard Index ≤ 0.1 in GO and KEGG). Our 

method described its functions with 37 phrases, which could be hierarchically organized into six 

major concepts (Fig. 7). An interesting concept was ‘acute monoblastic leukemia’, suggesting this 

pathway was cancer-associated. As shown in Fig. 7, validation for this pathway was achieved by 

tracing back the actual literature referencing these genes and diseases simultaneously. One of the 

articles, Gelbard et al.36, related FBXW7 to sinonasal carcinoma, a kind of head and neck cancer. This 

is consistent with our finding that these genes were recurrently mutated in the HNSC and UCEC 

patient cohorts in TCGA (Fig. 6b). These two examples demonstrate how pathways can be 

automatically discovered and annotated by integrating years of biomedical knowledge with ‘omics 

datasets. 

 

 

Figure 6. Discovery and 

characterization of another new 

pathway by our method. (a) The 

pathway is defined by eight 

genes related by protein 

interactions, co-expression, and 

protein shared domains. The 

functions of these genes are 

collectively described by 37 

phrases set out around the 

periphery. (b) Cancer types in 

which these genes are 

recurrently mutated in TCGA. 
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Figure 7. Summarization of biological function by a Concept Ontology. The 37 phrases describing the pathway 

in Fig. 6 were hierarchically clustered based on their semantic relations, using the CLiXO algorithm. These 

phrases were organized into six major concepts. We list two of the journal articles, Spinella et al.37 and Gelbard 

et al.36, from which the concept ‘acute monoblastic leukemia’ was inferred.  

 

4. Conclusion  

In this work, we have developed a novel text mining and visualization tool for automated pathway 

functional annotation. Our main idea is to integrate literature and molecular interaction information 

into a large heterogenous network and then use a random walk-based approach to rank candidate 

pathway descriptions. In the final step, we use a Concept Ontology to visualize annotations as a more 

informative alternative to a flat network of biomedical phrases. In this work our primary focus is to 

annotate gene set, however, our framework can be well generalized  to other applications. For 

instance, if the user provides a set of drugs, targets and their corresponding interaction networks, our 

method should be able to return the potential downstream and upstream pathways where these drugs 

might influence. Another application is that we can replace gene set with a group of disease symptoms 

and replace molecular network with symptom similarity network. Then our method might help to 

define the potential pathways and genes that lead to such symptoms.  

    One of the major limitations of our work is currently we can not accept users’ input to specify a 

particular context. For example, the user might want to know the roles of these genes in brain or the 

user only want to know the location information. Theoretically speaking, these information is all 

included in our result, however, they might not rank high enough to pass our filter. There are many 

interesting directions to explore in the future. To name a few, we plan to automatically generate 

sentences instead of phrases for new pathways. Sentences are more widely accepted and carry more 
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information than phrases. Another direction is to improve our algorithm to move beyond the abstract 

and title to scanning complete articles and even figures. A more challenging direction is to link 

functional descriptions more deeply with molecular data. In our current method, the types of 

interactions among genes do not influence the final functional annotations. However, in practice, a 

rich protein-protein interactions and genetic interactions usually suggest a protein complex.  

Supplementary Data: http://swang141.web.engr.illinois.edu/PSB/NetAnt_PSB2018_suppl.pdf 
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