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Single-cell RNA sequencing (scRNA-seq) is a powerful tool to profile the transcriptomes of a 
large number of individual cells at a high resolution. These data usually contain measurements of 
gene expression for many genes in thousands or tens of thousands of cells, though some datasets now 
reach the million-cell mark. Projecting high-dimensional scRNA-seq data into a low dimensional 
space aids downstream analysis and data visualization. Many recent preprints accomplish this using 
variational autoencoders (VAE), generative models that learn underlying structure of data by 
compress it into a constrained, low dimensional space. The low dimensional spaces generated by 
VAEs have revealed complex patterns and novel biological signals from large-scale gene expression 
data and drug response predictions. Here, we evaluate a simple VAE approach for gene expression 
data, Tybalt, by training and measuring its performance on sets of simulated scRNA-seq data. We 
find a number of counter-intuitive performance features: i.e., deeper neural networks can struggle 
when datasets contain more observations under some parameter configurations. We show that these 
methods are highly sensitive to parameter tuning: when tuned, the performance of the Tybalt model, 
which was not optimized for scRNA-seq data, outperforms other popular dimension reduction 
approaches – PCA, ZIFA, UMAP and t-SNE. On the other hand, without tuning performance can 
also be remarkably poor on the same data. Our results should discourage authors and reviewers from 
relying on self-reported performance comparisons to evaluate the relative value of contributions in 
this area at this time. Instead, we recommend that attempts to compare or benchmark autoencoder 
methods for scRNA-seq data be performed by disinterested third parties or by methods developers 
only on unseen benchmark data that are provided to all participants simultaneously because the 
potential for performance differences due to unequal parameter tuning is so high.  
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1. Introduction

Single-cell RNA sequencing (scRNA-seq) profiles the transcriptomes of individual cells [1], 
allowing researchers to study heterogeneous cell characteristics and responses [2, 3]. Due to the 
small amount of RNA captured in each cell as well as technical factors related to capture efficiency, 
scRNA-seq data have a high dropout rate (many genes have no measured expression in each cell). 

© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and 
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Researchers often analyze these data by projecting cells into a low dimensional space, which enables 
downstream analysis such as imputation of missing measurements and visualization.  

Widely used approaches include the linear principal component analysis (PCA) [4], which 
doesn’t take dropout into account, and ZIFA [5], which uses zero-inflated factor analysis to model 
the dropout events and do dimension reduction. The t-distributed stochastic neighbor embedding (t-
SNE) method is also widely used [6]. This method uses local structure, but it is time consuming for 
large datasets and has been reported to be highly sensitive to hyperparameters [7]. The recently 
proposed Uniform Manifold Approximation and Projection (UMAP) [8] method attempts to address 
these limitations by preserving more global structure and as much local structure as t-SNE. These 
approaches do not model the dropout characteristic of scRNA-seq data.  

Deep generative neural network models can learn low-dimensional representations from large 
amounts of unlabeled data and have been successfully applied to many domains, such as image and 
text generation [9]. Variational autoencoders (VAE) learn this representation by compressing data 
into a constrained, low-dimensional space [10]. VAEs have been used in biology to analyze large-
scale gene expression data and drug response predictions [11, 10]. In recent months, preprints 
proposing numerous deep neural network models for scRNA-seq data have been posted. Grønbech 
et al. [12] proposed a Gaussian-mixture VAE model for raw counts from scRNA-seq data and found 
the model can learn biologically groupings of scRNA-seq dataset. Eraslan et al. developed a deep 
count autoencoder based on zero-inflated negative binomial noise model for data imputation [13]. 
Lopez et al. developed single-cell Variational Inference (scVI) based on hierarchical Bayesian 
models, which can be used for batch correction, dimension reduction and identification of 
differentially expressed genes [14]. Deng et al. propose an autoencoder that includes a feedback step 
after zeroes are imputed [15]. These methods often report performance, but while many report 
hyperparameter selections, few describe how those parameters were reached. 

 In this work, our goal was to understand the extent to which reported performance of the neural 
network methods was due modifications for scRNA-seq data. We applied a straightforward VAE 
developed for bulk gene expression data, Tybalt [10], to simulated and real scRNA-seq data under 
various parameter settings. Some performance characteristics, including a decrease in performance 
when the number of examples was increased, suggest substantial sensitivity to hyperparameters. We 
sought to optimize parameters and adjust the dimensionality of the model to rescue performance. In 
our prior work from PSB 2015 using autoencoders for the analysis of bulk gene expression data, 
performance was relatively stable over many parameter values [16]. In contrast, the performance of 
the standard VAE, Tybalt, changes from dismal to better than other popular dimension reduction 
approaches – PCA, ZIFA, UMAP and t-SNE – with only modest parameter tuning. 

These results should guide the reporting of new methods. First, it is critically important that 
reviewers expect manuscripts in this area to report the extent to which hyperparameters affect 
performance across multiple datasets. Second, manuscripts reporting new techniques should be 
evaluated both on theoretical grounding as well as empirical results. Because results can be changed 
easily by light tuning, self-reported performance numbers may provide only weak evidence. Third, 
assessments and benchmarking should be done by disinterested parties with a realistic amount of 
parameter tuning or should be performed by first parties on datasets for which the labels are not 
revealed until after predictions are made. 
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2.  Methods 

2.1.  Data Simulation 

We simulated scRNA-seq data using Splatter [17]. We used the default simulation parameters 
provided by Splatter to generate synthetic scRNA-seq data with variable numbers of genes, cell 
types, cells, outliers, etc. We simulated data with variable numbers of cells (ncell: 500 - 5000), 
genes (nGenes: 20000 - 60000), cell types (nGroups: 5 – 15) and probabilities of expression 
outliers (outlier: 0.1 – 0.5). In total, we generated 40 simulated single-cell datasets. We 
normalized the raw count matrix by TPM (Transcripts Per Kilobase Million). 

2.2.  Model Structure and Training 

VAEs model the distribution P(X) of data in a high dimensional space from a low dimensional 
latent space z. VAEs consist of two connected neural networks: the encoder and decoder. Data are 
compressed by the encoder and reconstructed by the decoder. The variation probability Q(z|X) is 
used to approximate the posterior distribution P(z|X), which is then optimized to minimize the 
Kullback–Leibler (KL) divergence between Q(z|X) and P(z|X) and reconstruction loss [18, 19]. A 
baseline model for gene expression data, termed Tybalt and which we use here, was described in 
[10]. The encoder was a multi-layer (varied from 0 to 2) neural network. The representative latent 
space z was sampled from a Gaussian distribution 𝑞"(𝑧|𝑋), with mean and variance generated by 
the encoder network. The learned latent space z was used to re-generate the count matrix X’ by the 
decoder, which was also a multi-layer neural network (from 0 to 2) (Figure 1). For the first stage, 
we trained Tybalt with three structures: a one-layer model with a gene-wise TPM vector connected 
to 20 latent features and then reconstructed output; a two-layer model with the TPM vector encoded 
into a 100-node hidden layer, then the 20 latent features, then a 100-node hidden layer, and then the 
reconstructed output; and a three-layer model which contains two 100-node hidden layers. The 
model was built in Keras (version 2.0.6) [20] with a TensorFlow (Version 1.0.1) backend [21]. 
 

 
Figure 1: Overview of the structure of variation autoencoder. The model consists an encoder network and a decoder 

network, both of them are designed as 0-2 layers fully connected neural networks. 

2.3.  Parameter Tuning 

We tuned parameters using a grid search over batch size (50, 100, 200), epochs (25, 50, 100, 
200), neural network depth (2, 3) and, for models with two or more layers, the dimensionality 
of the first layer (100, 250, 500). Simulated data were partitioned into training and test data, with 
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the test set being 10% of the full data. For real data, we selected three single cell datasets with 
author-assigned cell type labels [25 – 27]. We downloaded count matrices from the Hemberg 
Group repository of data (https://hemberg-lab.github.io/scRNA.seq.datasets/). We zero-one 
normalized the count matrix before training the VAE. 

2.4.  Performance Measurement 

We used three evaluation metrics to measure performance: 1) k-means based 2) kNN based 3) 
average silhouette score. The k-means based and kNN based measurements measure how well the 
low-dimensional space allows simple methods to recover simulated cell types. The average 
silhouette score measures the extent to which clusters are separable in the latent space. An ideal 
method is accurate and produces separable clusters. 

2.4.1.  k-means performance assessment 

In the k-means based evaluation we performed iterative k-means clustering on the low-dimensional 
latent space. We compared the predicted clustering results with the known cell types in the simulated 
data. We performed k-means clustering for 50 times to get a stable measurement and – to evaluate 
a best-case scenario – we set the number of clusters, k, to the number of true cell types in the data. 
We assessed methods by the normalized mutual information (NMI) [22], between cell types and the 
known categories as well as the adjusted rand index (ARI) [23]. 

2.4.2.  kNN performance assessment 

For the kNN evaluation, we used k nearest neighbors to predict cell type from latent space distances 
and assessed performance by 5-fold cross validation within the simulated dataset. To more closely 
replicate how methods are used in practice, the model was tuned within only the training data by a 
sweep over the neighbor number parameter with 3-fold cross validation. We assessed performance 
using accuracy, precision, recall and f-score, but report only accuracy due to space constriants. 

2.4.3.  Average silhouette score performance assessment 

We used the silhouette score [24] to measure the extent to which simulated cell type clusters are 
internally close in the latent space but separated from other cell types. The silhouette value is 
between -1 to 1. A silhouette value of 1 indicates that the data point is of distance zero from other 
points of the same type, while one of -1 indicates that the point is distance zero from all points of a 
different cluster but some distance from points of the same cluster. Average silhouette score over 
all points then indicates how separable each cell type is in the latent space. 

3.  Results  

3.1.  The performance of multiple methods on simulated data 

We tested the performance of five dimension reduction approaches: Tybalt, ZIFA, UMAP, t-SNE 
and PCA using the three different evaluation metrics over the data simulated by Splatter [17] as 
described in the Methods section. We selected metrics that would be sensitive to the quality of 
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reduced representations (k-means, knn, and silhouette width) because our goal was to assess these 
representations and not to build the best possible cell type predictor. The k-means clustering 
approach evaluates the extent to which a hypersphere in the latent space is capable of capturing cell 
types accurately. We used both NMI and ARI to measure performance, though results for each are 
relatively similar so we present only NMI within the main text due to space constraints. The kNN 
approach evaluates the extent to which local structure in the latent space reflects cell type. The 
silhouette width approach evaluates the extent to which the within-type distances in the latent space 
are smaller than the between-type distances.  

 
Figure 2: Performance of different dimensionality reduction approaches based on simulated single cell datasets 

measured by normalized mutual information (NMI) 

3.1.1.  k-means based results 

The performance of most methods varied substantially under simulation parameters (Figure 2). As 
expected, more cell types led to reduced performance, assessed via NMI, of PCA, ZIFA, and the 
variational autoencoders. As the number of cells changed, the performance of ZIFA and PCA 
fluctuated. Intriguingly, the three-layer VAE, which had the most parameters to fit and which should 
have improved with more data, performed worse as the number of cells increased. Later we show 
that this result is due to substantial parameter sensitivity. Less surprisingly, increasing the number 
of genes (and consequently parameters) reduced the performance of larger autoencoders. Outliers 
reduced the performance of PCA but had relatively inconsistent effects on other methods. For the 
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default parameters, the two-layer Tybalt model was generally high-performing, but both the one- 
and three-layer models showed variable performance. This surprising sensitivity to simulated data 
characteristics suggests that VAEs may be very sensitive the fit between parameters and data. 

3.1.2.  kNN and silhouette score results 

Results based on the kNN and silhouette evaluations are consistent with the results from k-
means. We display results for representative datasets to show variability. The GitHub repository 
contains complete results. Performing kNN in the latent space revealed relatively poor performance 
of the linear methods (Figure 3, PCA and ZIFA). UMAP and t-SNE perform well across many 
combinations, and the VAEs generally performed reasonably well until the number of genes became 
very high, presumably because the number of parameters leads to insufficient training data. 

The silhouette score evaluation tests something slightly different than the k-means and kNN 
evaluations. While those focus on the extent to which there is some detectable separation between 
cell types, the silhouette score evaluates the extent to which within cell-type distances are smaller 
than between cell-type distances. Despite this difference, the results remain consistent (Figure 4) 
with the other evaluations. As the number of cell types increases, the performance of all method is 
drops, though the decrease is somewhat less pronounced with t-SNE and UMAP. This evaluation 
also shows the same unexpected performance drop as the number of cells (thus, examples) increases 
with three-layer VAE models. 

 
 

Figure 3: kNN performance for representative simulated single cell datasets under different parameters. Error bars 
show the standard deviation of accuracy across cross validation intervals, and stability differed between methods. 
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Figure 4: Performance of different dimensionality reduction approaches based on average silhouette score. 

3.1.3.  Summary of the performance comparison 

Our results indicate that no dimensionality reduction method outperformed the rest in all cases. 
The performances of the linear methods (PCA and ZIFA) were generally poorer under the cases that 
we tested, and the performances of t-SNE and UMAP were generally quite robust within the bounds 
that were tested. Perhaps the most interesting finding of this stage of the analysis was that the VAE-
based methods struggled in expected situations (i.e., when the number of genes, and consequently 
parameters, increased) but also in unexpected situations (i.e., when the number of cells, and 
consequently training examples, increased). This suggested that either the model structure or 
parameter combinations must be poor, because otherwise more examples would always lead to 
better performance. We explore the implications of this finding more fully in Section 3.3. 

3.2.  2-dimensional projection of simulated datasets 

To visualize the results associated with the evaluation described in 3.1, we projected cells into 
the learned latent spaces and then reduced those spaces to 2-dimensional space via t-SNE on the 
latent space values while coloring by the simulated cell types (Figure 5). We observe performance 
characteristics that hint at why the methods exhibited strong or poor performance in different 
settings. For example, with few outliers the structure of t-SNE remains reasonable, but as the number 
of outliers increases some points begin to shift to the extremes of the projection. UMAP generally 
has high between-group distances and low within-group distances and is not affected by cell types. 
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The linear methods (ZIFA and PCA) along with the single-layer variational autoencoder (Tybalt) 
appear to unequally space the cell types, even though these are not correlated with each other. The 
two- and three-layer Tybalt models do not have this relationship, though the three-layer model 
appears to train poorly with more outliers. 

 

Figure 5: 2-dimensional projection of simulated single cell data using one-, two- and three-layer VAE models 
(Tybalt), t-SNE, ZIFA, UMAP and PCA based on different proportions of outliers (0.1 – 0.5). 

3.3.  Analysis of VAE performance failures 

As observed in the previous section, we found that the three-layer Tybalt model’s performance 
dropped precipitously under certain conditions. Our hypothesis was that the hyperparameters were 
not appropriate for this setting. We sought to determine the extent to which we could rescue 
performance under the least expected failure mode from Section 3.1: namely that performance 
dropped when the number of examples increased. We performed a parameter sweep as described in 
section 2.3. Note that this grid search is of a very modest size, so we would expect modest 
performance changes.  Results for the k-means evaluation are shown in Table 1. We noticed that the 
performance of VAE changes dramatically during parameter selection. In this case, performance 
varies from dismal to better than most the other dimensionality reduction approaches. With 30,000 
cells the worst three-layer model has an NMI of zero, while the best has an NMI of 0.96 (Table 1). 
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Table 1.  Best and worst parameter values for two- and three- layer Tybalt models with many cells for simulated 
datasets. l: learning rate, b: batch size, e: epoch, c: dimensionality of the first hidden layer. 

2-layer model            
Best combination Worst combination 

ncells l b e c NMI ARI l b e c NMI ARI 
10000 0.0005 200 25 100 0.99 0.99 0.0005 50 200 500 0.08 0.05 
20000 0.001 200 25 250 0.98 0.95 0.001 200 200 500 0.2 0.13 
30000 0.0005 100 100 100 0.97 0.97 0.0005 50 100 500 0 0 

3-layer model            
Best combination Worst combination 

ncells l b e c NMI ARI l b e c NMI ARI 
10000 0.001 50 100 100 1 1 0.002 200 200 500 0.06 0.04 
20000 0.0005 100 25 250 0.97 0.95 0.001 100 100 500 0.02 0.01 
30000 0.0005 100 25 250 0.96 0.94 0.0005 50 200 250 0 0 

 
We also selected three single cell datasets of various cell numbers and tissues where author-

assigned sample labels were available. Baron et al. [25] and Wang et al. [26] assay the human 
pancreas with 8569 and 635 cells respectively. Camp et al. [27] measured 777 cells from human 
liver tissue. As with simulated data, VAE performance changed substantially after parameter tuning, 
although the range of reasonable parameters appears to be broader than in simulated data (Table 2). 
 
Table 2.  Best and worst parameter values for two- and three- layer Tybalt models for real datasets. l: learning rate, b: 

batch size, e: epoch, c: dimensionality of the first hidden layer. 
2-layer model             

Best combination Worst combination 
Datasets l b e c NMI ARI l b e c NMI ARI 

Baron et al. 0.0005 100 25 100 0.64 0.38 0.002 50 200 500 0.36 0.17 
Wang et al. 0.001 200 200 500 0.46 0.3 0.0005 200 25 100 0.2 0.11 
Camp et al. 0.002 50 25 500 0.81 0.71 0.0005 100 25 100 0.64 0.47 

3-layer model             
Best combination Worst combination 

Datasets l b e c NMI ARI l b e c NMI ARI 
Baron et al. 0.0005 100 25 500 0.63 0.36 0.001 100 200 500 0.33 0.17 
Wang et al. 0.0005 50 200 500 0.45 0.3 0.0005 200 25 100 0.24 0.13 
Camp et al. 0.0005 200 50 500 0.76 0.62 0.0005 200 25 250 0.61 0.42 

 
We projected cells into the latent space learned by Tybalt models pre- and post-tuning to 

visualize the effect of hyperparameters (Figure 6). The two-layer model was robust within the tested 
range. With the optimal parameters there was a slightly larger gap between cell types, but the cell 
types were still clearly separated. For the three-layer model there were substantial differences. 
Before tuning, the three-layer model shows some signs of a failure to train, which could explain the 
poor quantitative performance. After tuning, the cell types were clearly separated. These results 
demonstrate that parameter tuning dramatically affects performance for VAE models in this domain. 
In the case we evaluated, this appears to be more pronounced with the deeper neural network. 
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However, it is also possible that the default parameters that we selected to tune around happened to 
be a relatively robust space for two-layer networks for scRNA-seq data. 

4.  Conclusions 

Certain preprints now report good performance for deep neural network methods using VAEs 
or other types of autoencoders for the analysis of scRNA-seq data [12, 13, 14, 15]. In certain cases, 
the authors report performance using a set of parameters (see Table 2 of Lopez et al.) without 
reporting how hyperparameters were tuned or how performance varied through tuning [14]. This 
poses a particular challenge when authors report performance comparisons with other methods. For 
example, Deng et al. [15] compare their scScope method with scVI, but they report “we followed 
the same parameter setting in the original study Lopez et al. [14] and setting the latent dimension to 

 
Figure 6: Parameter tuning improve the performance for deeper network. 2-dimensional projection of simulated 

single cell data using tybalt_depth2 and Tybalt_depth3 before and after parameter tuning. 
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50.” However, Lopez et al., report numerous potential parameter combinations, so which ones were 
used is impossible to interpret. 

We sought to understand the extent to which reported variability in performance was due to 
differences in methods versus differences in parameter settings. Thus, we evaluated the performance 
of a simple VAE model developed for bulk gene expression data, Tybalt, under various parameter 
settings. We find that, in many cases, a base VAE of two layers performs similarly to other methods. 
However, we also find substantial performance differences with hyperparameter tuning. Though 
this is not entirely unexpected, the sensitivity of this class of methods under various parameter 
settings is not widely reported in the literature. Indeed, papers sometimes neglect to report the extent 
to which parameters were tuned and the extent to which authors optimize the parameter settings of 
other methods is unclear. 

Wolpert and Macready [28] reported a No Free Lunch theorem that states that improved 
performance of an optimizer on one problem is paired with a decrease in performance in some other 
area. Our results suggest that algorithms that are more sensitive to parameters, combined with a 
publication process that encourages method developers to compare their own approaches to others, 
may experience a Continental Breakfast Included (CBI) effect. We term this the CBI effect because 
it accrues primarily to certain methods in specific settings. The CBI effect arises when researchers 
expend more researcher degrees of freedom [29] on their own method instead of other methods. The 
CBI effect is particularly strong when methods are highly sensitive to parameters, because the results 
change more substantially with each researcher degree of freedom that is expended. 

Our results indicate evaluation of model performance based on empirical results can be 
misleading in the presence of the CBI effect. For example, we are able to make performance on the 
same dataset for a three-layer neural network vary from near random to near perfect (Section 3.3). 
At the current time, we recommend that authors who which to apply these methods expect to 
perform parameter tuning to achieve acceptable performance, which is likely to require substantially 
more compute time than is often reported because many manuscripts report only the compute time 
to train the final model. Moving forward, an unbiased approach is important for model evaluation 
and comparison. We recommend that authors developing these methods refrain from emphasizing 
comparisons unless methods are equally tuned and/or some sort of blinded design is used to control 
researcher degrees of freedom. It may be most practical to rely primarily on disinterested third 
parties or challenge-based frameworks for comparisons between methods.  

5.  Reproducibility 

We provide the source code and scripts to reproduce the analysis at 
https://github.com/greenelab/CZI-Latent-Assessment/tree/master/single_cell_analysis  
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