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Abstract 
Single-cell genomics technology is an exciting emerging area that holds the promise to revolutionize 
our understanding of diseases and associated biological processes. It allows us to explore processes 
active in bulk tissue samples, survey tissue complexity, characterize heterogeneous cell populations 
and explore the role of cellular heterogeneity and interactions in disease. To deal with these new 
experimental data, new computational methods, software, and data portals to analyze, integrate and 
interpret the complexity of the system are clearly needed. The many areas where new analytical 
methods are needed include: (1) computational methods to identify bona fide patterns of gene 
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expression, mutations, or DNA methylation among single cells; (2) imaging of gene expression or in 
situ transcriptomic analysis to allow study of the spatial-temporal relationships of single cells in 
complex tissues; (3) new tools and methods to integrate multi-omics single cell data that can handle 
the sparsity associated with those data, and (4) new software packages and data portals to enable 
cloud/HPC deployment to both developers and non-informatics end-users. Here we briefly review 
the state-of-the-art single cell analysis methods, ranging from clustering to visualization, and discuss 
the future directions of single cell bioinformatics that overcomes the computational and technical 
challenges as well as promotes the wide-spread adoption in biomedical research labs. 

Keywords: single cell; bioinformatics; software; computation; analysis; sequencing; clustering; 
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1. Background

Single cell genomics represents a major breakthrough in biological science. The technology has
challenged both our understanding of how cells function alone and in communities, and the methods
we have developed to analyze data from bulk tissue samples1–3. The most widely used single-sell
technology is single cell RNA-sequencing (scRNA-seq). Platforms, such as Drop-seq, Fluidigm C1
system, and 10x Genomics Chromium System, have made it possible to study a large number of
single cells in various biological systems in individual labs as well a world-wide consortium, the
Human Cell Atlas, which has as its goal the creation of a reference human cell data resource.
Beyond understanding fundamentals of gene expression patterns in each cell, this technology has
been utilized in many areas of applications, such as characterizing developmental processes,
discovering new cell types, revealing the heterogeneity within tumors, depicting tumor
microevolution, as well as identifying novel biomarkers for disease progression and drug
resistance4.

As an exciting frontier of genomics technology, scRNA-seq data analysis is also computationally 
difficult, due in part to both the technology and basic biology of single cells5. For example, as each 
cell has very limited amount of RNA molecules and the capturing technology is not even close to 
100% efficient, specific RNAs may be omitted and appear as “drop-outs”, meaning that the assay 
fails to capture them and thus their expression value is falsely reported as zero. PCR is sometimes 
used to amplify RNA as part of the product, “jackpotting” can occur; leading to inflated read counts 
for other genes. When using droplet based methods, occasionally multiple cells may be incorporated 
in the droplet, leading to doublets which can confuse data interpretation. Additionally, batch effect 
is known in single-cell experiments, like other omics assays. All of these factors have impact on 
estimating true expression values and each requires the use of rigorous modeling methods to 
estimate the effect and correct for it. 
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To address various issues such as the ones stated above, we have seen numerous computational 
methods reported recently. There are also new bioinformatics pipelines, packages and data portals 
available for public use, depending on users’ background and preference6,7. A scRNA-seq analysis 
pipeline usually includes the following preprocessing steps: batch-effect removal, outlier removal, 
normalization, imputation and gene filtering. Downstream analyses include methods for clustering, 
differential expression analysis, pathway/ontology enrichment analysis, protein network interaction 
mapping, and pseudo-time construction. Read counts, the representation of gene expression (GE), 
are conventionally used as the inputs for bioinformatics analysis. However, some researchers also 
proposed to use other information, such as small nucleotide variation (SNV) as less bias-prone 
features to conduct downstream functional analysis8.   
 
2.   Summary of single cell analysis session at PSB 2019 

In the single cell analysis session at PSB 2019, four submitted full-length manuscripts were 
accepted. They cover a range of topics from visualization, pseudo-time inference, and evaluation of 
clustering methods to probabilistic approach to include gene expression data for metabolic 
modeling.  
 
The work from Ouyang’s group reports on a new method called LISA: Landmark Isomap for Single 
cell Analysis. It is an unsupervised method that constructs cell trajectory and the pseudo-time 
relationships. The authors present a thorough comparison to two widely used methods, TSCAN and 
Monocle2, using both simulated and real data. Their analysis concludes that LISA captures the 
biology of the system being analyzed more efficiently than Monocle2 or TSCAN, yet is more 
computationally efficient. Thus, it can be applied to ever-larger scRNA-seq data sets and might 
potentially useful in the analysis of other single cell omics data. 
 
Huang et al. use a topological analysis method called Mapper to visualize single cell RNAseq 
subpopulation data. Topological analysis of scRNA-seq is very interesting and allows the 
delineation of complex relationships that extend beyond the simple clustering that is more 
commonly used. The authors compared their method to tSNE and showed that Mapper better 
preserves continuous structure in the data.  
 
In Wolpert and Macready’s No Free Lunch Theorem paper, they argued against general purpose 
algorithms tested on small data sets and built without taking advantage of prior knowledge of the 
system being analyzed 9. The work of Greene et al. is a case study in this regard, applied to scRNA-
seq analysis. The authors analyzed the effects of parameter tuning in a variational autoencoder 
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(VAE) on the clustering of simulated scRNA-seq results. They warned that without proper 
parameter sets, deep learning results can lead to significant error.  
 
Gold et al. presents new application of prior work on sparsely-connected autoencoders (SSCA) and 
variation autoencoders (SSCVA), in single cell RNA-seq analysis. This paper replaces those 
statistical methods that were popular in this field with machine learning methods and adds some 
interpretability by mapping genes to gene sets. The results of SSCVA appear to be better than SSCA, 
but the gene-set level extraction is not better than raw gene expression.  

3.   Single cell analysis, what is in the future? 

At present, scRNA-seq is the most widely used method of single cell analysis. As we previously 
noted that there are many choices for each of the various steps along the data analysis pipeline for 
single cell data. However, there is no clear consensus as to what represents best practices. This, in 
large part, represents the fact that scRNA-seq is so new that even discoveries of apparently new cell 
types in a bulk tissue sample need substantial validation using other methods and independent data 
sets before one can consider them to be reliable. As a result, there are no reliable benchmark data 
sets that can be used to objectively evaluate the many methods and pipelines that are now available.  
 
Nevertheless, scRNA-seq data sets provide the opportunity to explore tens of thousands of 
individual cells—data sets that dwarf the number of samples in most other gene expression studies. 
Such expansive data provides many new opportunities for methods development and the use of 
creative approaches that can handle massive yet sparse data. Ultimately, these new methods must 
be critically assessed, and validation will require both careful evaluation of the methods and the 
design and conduct of experimental studies.  
 
What is most exciting about single cell field is that the technology continues to rapidly evolve, 
setting the stage for further methodology development. One particularly interesting application is 
spatially-informed single cell analysis, in which the spatial relationship between various cell types 
is preserved. Current scRNA-seq protocols first dissociate individual cells and remove debris, 
followed by single cell encapsulation and sequencing. Analysis of such expression data will require 
new computational methods to detect spatial patterns and model the relationships between cell types 
and their associations with various phenotypes.  
 
Another exciting possibility is the development of multi-omic analysis in which genomic, 
transcriptomic, epigenomic, or other data types are collected on each cell10,11. Development of these 
methods for single cell data presents great challenges as noisy or missing data can lead to incorrect 
conclusions about the interaction between the sources of those data. Computational methods 
developed for bulk cell multi-omics integration12, may be the first-line option for single-cell multi-
omics integration, after significant efforts on cleaning, imputation, and normalization that preserve 
relationships between data types.  
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Finally, efforts that improve user’s experience will be very valuable. One area is increasingly 
recognized as essential is the development of new methods for visual representation of complex 
data. With the potential to generate data on millions of cells from hundreds of cell types in a single 
experiment, there is a clear need for methods that can show the relationships that exist between those 
cell types that reflect their lineages, relationships, and interacting processes between cell types 
which are related to the phenotypes.  GUI based data portals for interactive scRNA-seq analysis will 
also help the researchers to navigate through massive amount of information.  
 
Regardless of which area one chooses to focus, it is clear that there are many opportunities for 
methods development and application in single cell analysis. More importantly, single cell analysis 
promises to help us understand the complexities of human health and disease—but only if we have 
appropriate analytical methods. 
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