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The thermodynamics of ligand{protein molecular recognition is investigated by the

energy landscape approach for two systems: methotrexate(MTX){dihydrofolate

reductase(DHFR) and biotin{streptavidin. The temperature{dependent binding

free energy pro�le is determined using the weighted histogram analysis method.

Two di�erent force �elds are employed in this study: a simpli�ed model of ligand{

protein interactions and the AMBER force �eld with a soft core smoothing com-

ponent, used to soften the repulsive part of the potential. The results of multiple
docking simulations are rationalized from the shape of the binding free energy

pro�le that characterizes the thermodynamics of the binding process.

1 Introduction

Molecular recognition underlies protein{protein and ligand{protein association
and has considerable importance in the �eld of drug design 1;2. In many as-
pects, the molecular recognition and protein folding problems are similar, both
requiring accurate energy evaluation and adequate sampling of the associated
conformational space. Simpli�ed models that reduce the complexity of both
the protein representation and the energy function have been useful in theo-
retical studies of protein folding, making apparent the salient features of the
problem. The energy landscape approach, built upon these simple models, has
proven fruitful in unraveling protein folding mechanisms 3. By combining ki-
netic and thermodynamic analyses of protein{like heteropolymers, it has been
conjectured that thermodynamic parameters such as transition temperatures
may dictate the kinetics of protein foldability 4;5.

The assertion that there is a fundamental connection between protein fold-
ing and molecular recognition has been recently put forward in the statistical
mechanical analysis of binding energy landscapes6;7. The complex character of
ligand{protein interactions results in a highly frustrated binding energy land-
scape with many energetically similar but structurally di�erent local minima
that present a multitude of binding modes 6;7;8. Even predicting the structure
of a ligand{protein complex with the protein held �xed in its bound conforma-
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tion, typically called the docking problem, requires the robust determination
of the global energy minimum from an enormous number of conformations.

Considerable progress towards solving the docking problem has been made
in recent years with a variety of e�cient stochastic algorithms9. By designing a
simpli�ed molecular recognition energy model, the energy landscape approach
has been e�ective in the analysis of thermodynamic and kinetic requirements
for robust computational structure prediction of ligand{protein complexes 6;7.
However, e�orts to explain the successes and failures in structure prediction of
ligand{protein complexes have been more limited. The energy landscape pic-
ture was developed from studies of minimalist molecular recognition models
and the funnel{like character of simpli�ed energy landscapes has been invoked
to explain the results of ligand{protein docking. While previous studies3;4 have
relied on a cartoon{like picture of folding funnels, the binding energy landscape
approach represents the equilibrium thermodynamics and can be used to high-
light the connections between kinetic simulations and the energy landscape. It
is of signi�cant theoretical and practical interest to provide a more rigorous
justi�cation of the funnel hypothesis and determine the relationship between
the results of simple models and more realistic force �eld models.

In this study, we perform equilibrium simulations for two classic ligand{
protein systems, MTX{DHFR10 and biotin{streptavidin11, and generate their
binding free energy pro�les with histogram methods. These systems are among
the �rst ligand{protein complexes whose crystal structures were determined at
high resolution and are frequently employed to validate computational methods
in structure{based drug design. Both a simpli�ed molecular recognition energy
model 12 and a more realistic representation of ligand{protein interactions by
the AMBER force �eld 13 are employed in these simulations, and we analyze
how the kinetic results of multiple docking simulations relate to the character
of the underlying binding free energy landscape.

2 Monte Carlo simulations

The simpli�ed molecular recognition model used in this study includes both
intramolecular energy terms for the ligand, given by torsional and non-bonded
functions, and simpli�ed intermolecular ligand-protein interaction terms con-
sisting of steric and hydrogen bond contributions 12. These contributions are
calculated from a piecewise linear potential summed over all protein and lig-
and heavy atoms, together with an angular dependence for the hydrogen bond
interaction. The parameters of the pairwise potential depend on the four dif-
ferent atom types: hydrogen-bond donor, hydrogen-bond acceptor, both donor
and acceptor, and nonpolar. Primary and secondary amines are de�ned to be
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donors while oxygen and nitrogen atoms with no bound hydrogens are de�ned
to be acceptors. Crystallographic water molecules and hydroxyl groups are
de�ned to be both donor and acceptor, carbon and sulfur atoms are de�ned
to be nonpolar. The steric and hydrogen bond-like potentials have the same
functional form, with an additional three-body contribution to the hydrogen
bond term 14.

We investigate a variant of the AMBER force �eld that has been adapted
to ligand{protein docking simulations. The short{ranged repulsive interac-
tions present in many molecular force �elds such as AMBER, lead to rough
energy surfaces with high energy barriers separating local minima. With this
force �eld small changes in position can lead to signi�cant energy changes.
For molecular docking simulations, it has been shown that the energy surface
must be smooth for robust structure prediction of ligand{protein complexes 6;
softening the potentials is one way to smooth the force �eld 15. In this ap-
proach, the Lennard{Jones interaction and the electrostatic interaction, with
� = 2r, are modi�ed to eliminate the singularity at short{range and soften the
potential, by adding two parameters r1 and r2, where

V
soft
Lennard�Jones(rij) =

�Aij

rij6 + r6
1

+
Bij

(rij6 + r6
1
)2

V
soft
electrostatic(rij) =

qiqj

2(rij6 + r6
2
)1=3

The AMBER force �eld with soft core parameters, r1 = 2.7 �A for Lennard{
Jones interactions, and r2 = 1.7 �A for electrostatic interactions, were used
in this study. Here, rij is the distance between atoms i and j, Aij and Bij

are the parameters of the Lennard{Jones potential, and qi are the partial
charges. In addition, a desolvation correction term was added to the AMBER
force �eld to account for the free energy of interactions between the atoms of
the ligand{protein system and the implicitly modeled solvent. This term was
derived by considering the transfer of an atom from an environment where it
is completely surrounded by solvent to an environment in which it has explicit
atomic neighbors 16. Upon transfer, the neighbors displace solvent, estimated
by a Gaussian weighting function of the e�ective volumes of the surrounding
atoms. The volume of solvent displaced from an atom i, Xi, is given by the
sum over all neighbor atoms, n, of the van der Waals volume of the neighbor
atom vn times a Gaussian weighting function of the distance rin between the
atom and the neighbor
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where � = 3.5 �A is the �rst peak in the carbon{water pair correlation function.
The desolvation energy of every atom is determined by multiplying the volume
of solvent displaced from the atom by the solvent a�nity of the atom, where
the solvent a�nity is assumed to be proportional to the square of its partial
atomic charge in the AMBER force �eld.

Ligand conformations and orientations are searched by a Monte Carlo sim-
ulated annealing technique in a parallelepiped that encompasses the binding
site obtained from the crystallographic structure of the corresponding complex,
with a 2.0 �A cushion added to every side of this box. In each of 200 independent
simulated annealing simulations, the temperature was lowered exponentially
from 5000 K to 100 K. Each simulation consists of 128,000 sweeps with 40
temperature points in the exponential annealing schedule, 80 cycles per tem-
perature point and 40 sweeps per cycle. A sweep is de�ned as a single trial
move for each degree of freedom of the system.

In addition to the kinetic docking simulations, we performed Monte Carlo
equilibrium simulations at T = 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 and 5000 K. Each consisted of
an equilibration stage of 106 sweeps and a data collection stage of 107 sweeps.
The maximum step sizes were updated every cycle of 103 sweeps and data was
collected at the end of each cycle, resulting in a total of 104 data points at each
temperature. To facilitate e�cient sampling, we employed the dynamically
optimized acceptance ratio method 17, whereby the maximum step sizes at
each temperature are dynamically chosen to optimize the acceptance ratio,
which is the ratio of accepted moves to the total number of trial moves since
the previous update.

The multiple histogram method 18 combines data from di�erent temper-
atures to estimate the density of states, which can then be used to compute
equilibrium properties over a continuous range of temperatures. We apply the
weighted histogram analysis method to compute ligand{protein binding energy
landscapes 19, F (R; T ), as a continuous function of reaction coordinate R and
temperature T . The potential of mean force F (R; T ) at arbitrary temperature
relative to a reference position Rc is computed from the probability density
P (R; T ) as

F (R; T ) = �kBT ln[P (R; T )=P (Rc; T )];

where
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P (R; T ) =
X

E

W (E;R) exp[�E=kBT ]:

We de�ne R to be the root mean square di�erence (rmsd) of the ligand coordi-
nates from the native state, and the native state is chosen to be the reference
state, so Rc = 0:0. In this work, we use the �rst bin in the histogram to
estimate de�ne P (Rc; T ). The density of states W (E;R) is expressed in terms
of the histograms Hi(E;R) tabulated during the Monte Carlo simulations 18.

3 Results and Discussion

We investigate the kinetics of ligand{protein docking and the success rate in
predicting the crystal structure of the complex by Monte Carlo simulated an-
nealing for the MTX{DHFR and biotin{streptavidin ligand{protein systems.
MTX and biotin have seven and �ve rotatable bonds, respectively. We sup-
plement these kinetic studies with equilibrium studies of the binding energy
landscape. These binding free energy pro�les do not measure the binding a�n-
ity of the ligands but rather characterize the relative thermodynamic stability
of various binding domains. They should be regarded as two{dimensional slices
with the reference energy F (Rc; T ) de�ned to be zero at each temperature.

3.1 MTX{DHFR

For the MTX system, the standard AMBER force �eld was investigated along
with the soft{core variation, but the standard force �eld yields only a low
success rate in the docking simulations of MTX (Fig. 1), and was not used
to investigate the biotin system. The soft{core AMBER force �eld yields a
high success rate in docking simulations, as does the piecewise linear energy
function (Figs. 2, 3). The crystal structure is the lowest{energy structure
found for the soft{core AMBER force �eld, and consequently is the predicted
structure (Fig. 4).

For the standard AMBER force �eld, the MTX{DHFR binding energy
landscape is determined only within a 2.5 �A range of the crystal structure (Fig.
5). By contrast, the MTX{DHFR binding energy landscapes for the soft{core
AMBER and the piecewise linear energy function extend beyond 8 �A of the
crystal structure (Figs. 6, 7). The reason for this di�erence is that only states
near to the crystal structure are sampled during the equilibrium simulations
with the standard AMBER force �eld because states that deviate signi�cantly
from the crystal structure are too high in energy or are separated by high
barriers. The soft{core AMBER and the piecewise linear energy function do
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Figure 1: The frequency of predict-

ing the crystal structure of the MTX{
DHFR complex with the standard

AMBER force �eld.
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Figure 2: The frequency of predict-

ing the crystal structure of the MTX{
DHFR complex with the soft{core

AMBER force �eld.
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Figure 3: The frequency of predict-

ing the crystal structure of the MTX{

DHFR complex with the piecewise lin-

ear energy function.
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Figure 4: The frequency of predicted

structures of the MTX{DHFR com-

plex with the soft{core AMBER force

�eld as a function of energy and rmsd
from the crystal.
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Figure 5: The binding free energy landscape for MTX with the standard AMBER

force �eld. For each two{dimensional temperature slice, the reference energy F (Rc; T )

is de�ned to be zero.

not have singularities at interatomic distances and a much larger fraction of
conformational space is accessible, particularly at high temperature.

With the soft{core AMBER force �eld, a binding mode centered near
2.5 �A is most stable at high temperature, with the crystal favored only at
lower temperature (Fig. 6). By contrast, the crystal binding mode is favored
throughout the examined temperature range for the piecewise linear force �eld
(Fig. 7). In both cases, the native binding mode belongs to a broad basin;
for the soft{core AMBER force �eld, the funnel extends to approximately
7.0 �A while the funnel for the piecewise linear energy function extends to
around 4.0 �A. The binding free energy landscape for the piecewise linear energy
function is more rugged than that of the soft{core AMBER force �eld, with two
additional metastable minima centered near 5.0 and 7.0 �A. These additional
minima generate additional barriers to the native binding basin, and coupled
with the relatively small size of the native binding basin, may be responsible
for the erroneous structures predicted by the docking simulations with the
piecewise linear energy function, at 5.0 �A and beyond (Fig. 3), that are not
found with the soft{core AMBER force �eld (Fig. 2).

Although the binding free energy landscape generated with the piecewise
linear energy function reveals three metastable domains (Fig. 7), the native
binding mode dominates the thermodynamic equilibrium even at high temper-
atures, and alternative local minima are never global minima and therefore
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Figure 6: The binding free energy landscape for MTX with the soft{core AMBER

force �eld. For each two{dimensional temperature slice, the reference energy F (Rc; T )

is de�ned to be zero.
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Figure 7: The binding free energy landscape for MTX with the piecewise linear energy

function. For each two{dimensional temperature slice, the reference energy F (Rc; T )

is de�ned to be zero.
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are not stable. Apparently, the shape of the MTX{DHFR binding energy
landscape with the piecewise linear energy function is such that the barriers
between high energy states can be overcome at high temperatures, and the
probability to remain in these alternate states at low temperature is small.
The di�erences in the shape of the binding free energy pro�le determined with
the piecewise linear energy function and the soft{core AMBER energy func-
tion are primarily located in regions that are metastable and therefore may not
a�ect the results of docking simulations too strongly. The presence of exten-
sive funnels for these two force �elds, by contrast to the narrow funnel for the
standard AMBER force �eld, rationalizes the high success rate in identifying
the crystal structure during the docking simulations.

3.2 Biotin{streptavidin

Docking simulations of the biotin{streptavidin complex with the soft{core AM-
BER energy function predict a number of incorrect structures, with rmsd from
the crystal structure between 2.0 and 7.0 �A (Fig. 8). On the other hand, the
success rate in determining the crystal structure from multiple docking simu-
lations with the piecewise linear energy function is very high, with 98% of the
simulations predicting a structure within 1.0 �A rmsd of the crystal (Fig. 9).
The binding free energy pro�les generated with these two force �elds can ratio-
nalize the kinetic docking results. The free energy pro�le of biotin{streptavidin
binding generated with the soft{core AMBER force �eld is characterized by a
broad basin between 1.0 and 7.0 �A, with a series of narrow minima inside this
basin (Fig. 10). While the global energy minimum for the biotin{streptavidin
complex with the soft{core AMBER force �eld is thermodynamically stable
at low temperature, the alternate minima are stable at high temperature and
apparently the system can become trapped in these states during the docking
simulation. By contrast, the shape of the binding free energy pro�le deter-
mined with the piecewise linear energy function smoothly connects the state
centered about 2.0 �A, which is stable at high temperature, with the state near
1.0 �A, which is stable at low temperature (Fig. 11). The lack of appreciable
barriers separating these minima apparently is responsible for the high success
rate in the docking simulations.

4 Conclusions

The results suggest that one important factor that governs the success rate in
predicting the native ligand-protein complex is the roughness of the binding
energy surface. In the absence of broad funnels leading to the native state, as in
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Figure 8: The frequency of predict-
ing the crystal structure of the bi-

otin/streptavidin complex with the

soft{core AMBER force �eld.
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Figure 9: The frequency of predict-
ing the crystal structure of the bi-

otin/streptavidin complex with the

piecewise linear energy function.
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Figure 10: The binding free energy landscape for biotin with the soft{core AMBER

force �eld. For each two{dimensional temperature slice, the reference energy F (Rc; T )

is de�ned to be zero.
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Figure 11: The binding free energy landscape for biotin with the piecewise linear

energy function. For each two{dimensional temperature slice, the reference energy

F (Rc; T ) is de�ned to be zero.

the case of MTX{DHFR with the standard AMBER force �eld, the probability
of predicting the crystal structure is low. The results on MTX{DHFR with
both the soft{core AMBER and the piecewise linear energy function suggest
that alternate metastable minima do not necessarily lead to low success rates
provided that the global minimum has a signi�cant basin of attraction and the
alternative local minima are only marginally stable. The docking of biotin to
streptavidin with the soft{core AMBER force �eld demonstrates a potential
complication that arises when alternate minima are stable at high temperature:
the system may become trapped in these states during docking simulations.

By analyzing the thermodynamics and kinetics of molecular recognition,
we have shown that the results of multiple docking simulations can be rational-
ized in the context of the corresponding binding free energy pro�les determined
from equilibrium simulations. We have shown that for robust ligand-protein
docking, the binding energy landscape should be smooth to minimize the like-
lihood of trapping in local minima, and have funnels leading to the global free
energy minimum. These results also suggest that force �elds designed for dock-
ing simulations, which may di�er from standard force �elds, can be optimized
by the criterion that they yield wide funnels leading to the crystal structure;
this criterion can supplement the previously{used criterion of success rate in
docking simulations 6.
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